Error! No text of specified style in document.
Page 2 V(44)

Change Request

	Title:
	Clarification on DeviceID & RI ID
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	DL-DRM

	Doc to Change:
	OMA-DRM2.0 (10 december 2004)

	Submission Date:
	14 feb 2005

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Charles Knibbeler, Philips, Email: Charles.Knibbeler@philips.com

	Replaces:
	OMA-DLDRM-2005-0027-DRM2.0

1 Reason for Change

The current version of the specification is not very clear in how to deal with the DeviceID and RI ID element in several ROAP messages in case the device and/or the RI have more than one public key (and possibly more certificates).

This CR is a proposal for editorial changes in the specification that will make these requirements more explicit.

2 Impact on Backward Compatibility

As this CR is related to editorial changes only, there are no compatibility issues.

3 Impact on Other Specifications

As this CR is related to editorial changes only, there is no impact on other specifications.

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

We recommend to modify the text of the specification as detailed in section 6.

6 Detailed Change Proposal

In summary the proposal is:

· In case the device holds more than one public key, it may send more than one Device ID’s in the Device Hello message.

· In case the RI holds more than one public key, it shall select one of these and send the corresponding RI ID in the RI Hello message.

· After successful completion of the registration protocol, the Device ID and the RI ID will be re-calculated based on the Device Certificate and the RI Certificate, agreed upon in the registration protocol.

Proposed Editorial changes in the specification: (copy of section 1-5 of the DRM2.0 spec. with changes in red)

1. Scope

2. References

2.1 Normative References

2.2 Informative References

3. Terminology and Conventions

3.1 Conventions

3.2 Definitions

3.3 Abbreviations

4. Introduction

5. The Rights Object Acquisition Protocol (ROAP) Suite

5.1 Overview

The Rights Object Acquisition Protocol (ROAP) is the common name for a suite of DRM security protocols between a Rights Issuer (RI) and a DRM Agent in a Device. The protocol suite contains a 4-pass protocol for registration of a Device with an RI and two protocols by which the Device requests and acquires Rights Objects (RO). The 2-pass RO acquisition protocol encompasses request and delivery of an RO whereas the 1-pass RO acquisition protocol is only a delivery of an RO from an RI to a Device (e.g. messaging/push). The ROAP suite also includes 2-pass protocols for Devices joining and leaving a Domain; the Join Domain protocol and the Leave Domain protocol.

5.1.1 The 4-pass Registration Protocol

The Registration protocol is a complete security information exchange and handshake between the RI and the Device and is generally only executed at first contact, but may also be executed when there is a need to update the exchanged security information, or when DRM Time in the Device is deemed inaccurate by the Rights Issuer. This protocol includes negotiation of protocol parameters and protocol version, cryptographic algorithms, exchange of certificate preferences, optional exchange of certificates, mutual authentication of Device and RI, integrity protection of protocol messages and optional Device DRM Time synchronization.

Successful completion of the Registration protocol results in the establishment of an RI Context in the Device containing RI-specific security related information such as agreed protocol parameters, protocol version, and certificate preferences. An RI Context is necessary for execution of the other protocols in the ROAP suite.

[image: image1.emf]Device Rights Issuer OCSP Responder

1

2

3

a

b

4

RegistrationRequest

RegistrationResponse

Device Hello

RI Hello

OCSP Request

OCSP Response

Figure 1: The 4-pass Registration Protocol

As indicated in the figure above, the RI may optionally perform a nonce-based OCSP request for its own certificate (using a nonce supplied by the Device) during the registration protocol, and then provide the Device with the returned OCSP response. The RI will perform this nonce-based OCSP request if it determines that the Device’s DRM Time is inaccurate. A Device will then be able to adjust its DRM Time based on the time in the OCSP response. If the Device is an Unconnected Device that does not support DRM Time, the RI must perform a nonce-based OCSP request for its own certificate (using a nonce supplied by the Device) during the registration protocol.

5.1.2 The 2-pass Rights Object Acquisition Protocol

The 2-pass RO acquisition protocol is the protocol by which the Device acquires Rights Objects. This protocol includes mutual authentication of Device and RI, integrity-protected request and delivery of ROs, and the secure transfer of cryptographic keying material necessary to process the RO. The successful execution of this protocol assumes the Device to have a pre-established RI Context with the RI.

[image: image2.emf]Device Rights Issuer

1

2

RO Request

RO Response

Figure 2: The 2-pass Rights Object Acquisition Protocol

5.1.3 The 1-pass Rights Object Acquisition Protocol

The 1-pass RO acquisition protocol is designed to meet the messaging/push use case. Its successful execution assumes the Device to have an existing RI Context with the sending RI. In contrast to the 2-pass RO acquisition protocol, it is initiated unilaterally by the RI and requires no messages to be sent by the Device. One use case is distribution of Rights Objects at regular intervals, e.g. supporting a content subscription. The 1-pass protocol is essentially the last message of the 2-pass variant.

[image: image3.emf]Device Rights Issuer

1

RO Response

Figure 3: The 1-pass Rights Object Acquisition Protocol

5.1.4 The 2-pass Join Domain Protocol

The Join Domain protocol is the protocol by which a Device joins a Domain. The protocol assumes an existing RI Context with the RI administering the Domain.

Successful completion of the Join Domain protocol results in the establishment of a Domain Context in the Device containing Domain-specific security related information including a Domain Key. A Domain Context is necessary for the Device to be able to install and utilize Domain ROs.

[image: image4.emf]Device Rights Issuer

1

2

JoinDomainRequest

JoinDomainResponse

Figure 4: The 2-pass Join Domain Protocol

5.1.5 The 2-pass Leave Domain Protocol

The Leave Domain protocol is the protocol by which a Device leaves a Domain. The protocol assumes an existing RI Context with the RI administering the Domain.

[image: image5.emf]Device Rights Issuer

1

2

LeaveDomainRequest

LeaveDomainResponse

Figure 5: The 2-pass Leave Domain Protocol

5.1.6 The ROAP Trigger

All protocols included in the ROAP suite except the 1-pass RO acquisition protocol may be initiated using a ROAP Trigger. The Device MAY also initiate them unilaterally as a result of user interactions. The Rights Issuer generates and sends the ROAP Trigger to the Device to trigger a ROAP protocol exchange. Alternatively, the Rights Issuer may delegate ROAP Trigger generation to other systems by providing necessary information (such as Rights Object identifiers and Domain identifiers) to these systems. A ROAP Trigger (whether generated directly or indirectly by the RI) may also be transmitted to the Device by other systems (e.g. by a Content Issuer).

When the Device receives the ROAP Trigger, it initiates the ROAP protocol exchange as soon as possible. Appropriate user consent MUST have been obtained prior to initiating any ROAP protocols as a result of a ROAP Trigger. Since the ROAP comprises several protocols, the ROAP Trigger includes an indication of the actual protocol (Registration, RO acquisition, Join Domain, or Leave Domain) to be started by the Device.

[image: image6.emf]ROAP Trigger {roRequest}

RO Request

RO Response

ROAP Trigger {joinDomain}

Join Domain Request

Join Domain Response

ROAP Trigger {leaveDomain}

Leave Domain Request

Leave Domain Response

ROAP Trigger {registrationRequest}

DeviceHello

RI Hello

RegistrationRequest

RegistrationResponse

Rights Issuer Device

...

...

...

Figure 6: ROAP Trigger

5.2 Initiating the ROAP

5.2.1 The ROAP Trigger

The ROAPTrigger type is a sequence of a chosen ROAP trigger (see below), an optional signature on the ROAP trigger, and an optional <encKey> element containing a wrapped MAC key. The purpose of a ROAP trigger is to initiate a particular ROAP protocol.

<schema

 targetNamespace="urn:oma:bac:dldrm:roap-trigger-1.0"

 xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:roap-trigger="urn:oma:bac:dldrm:roap-trigger-1.0"

 xmlns:roap="urn:oma:bac:dldrm:roap-1.0"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

 elementFormDefault="unqualified"

 attributeFormDefault="unqualified">

<import namespace="urn:oma:bac:dldrm:roap-1.0" schemaLocation="roap.xsd"/>

<import namespace="http://www.w3.org/2000/09/xmldsig#"

 schemaLocation="http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/xmldsig-core-schema.xsd"/>

<import namespace="http://www.w3.org/2001/04/xmlenc#"

 schemaLocation="http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/xenc-schema.xsd"/>

<complexType name="RegistrationRequestTrigger">

 <sequence>

 <element name="riID" type="roap:Identifier"/>

 <element name="nonce" type="roap:Nonce" minOccurs="0"/>

 <element name="roapURL" type="anyURI"/>

 </sequence>

 <attribute name="id" type="ID"/>

</complexType>

<complexType name="ROAcquisitionTrigger">

 <sequence>

 <element name="riID" type="roap:Identifier"/>

 <element name="nonce" type="roap:Nonce" minOccurs="0"/>

 <element name="roapURL" type="anyURI"/>

 <element name="domainID" type="roap:DomainIdentifier"

 minOccurs="0"/>

 <sequence maxOccurs=”unbounded”>

 <element name="roID" type="ID"/>

 <element name="contentID" type="anyURI" maxOccurs="unbounded"/>

 </sequence>

 </sequence>

 <attribute name="id" type="ID"/>

</complexType>

<complexType name="DomainTrigger">

 <sequence>

 <element name="riID" type="roap:Identifier"/>

 <element name="nonce" type="roap:Nonce" minOccurs="0"/>

 <element name="roapURL" type="anyURI"/>

 <element name="domainID" type="roap:DomainIdentifier"/>

 </sequence>

 <attribute name="id" type="ID"/>

</complexType>

<!-- ROAP trigger -->

<element name="roapTrigger" type="roap-trigger:RoapTrigger"/>

<complexType name="RoapTrigger">

 <annotation>

 <documentation xml:lang="en">

 Message used to trigger the device to initiate a Rights Object Acquisition Protocol.

 </documentation>

 </annotation>

 <sequence>

 <choice>

 <element name="registrationRequest" type="roap-trigger:RegistrationRequestTrigger"/>

 <element name="roAcquisition" type="roap-trigger:ROAcquisitionTrigger"/>

 <element name="joinDomain" type="roap-trigger:DomainTrigger"/>

 <element name="leaveDomain" type="roap-trigger:DomainTrigger"/>

 </choice>

 <element name="signature" type="ds:SignatureType" minOccurs="0"/>

 <element name="encKey" type="xenc:EncryptedKeyType" minOccurs="0"/>

</sequence>

<attribute name="version" type="roap:Version"/>

<attribute name=”proxy” type=”boolean”/>

</complexType>

</schema>

The <riID> element identifies the RI, as specified in section 5.4.2.2.1. For triggers besides the <registrationRequest>, the DRM Agent MUST use this value to verify that it has a valid RI Context with the Rights Issuer. If the DRM Agent does not have a valid RI Context with the identified Rights Issuer then the DRM Agent MUST initiate the Registration Protocol before initiating the protocol indicated in the <roapTrigger> element.

The <nonce> element provides a way to couple ROAP triggers with ROAP requests. When present, a Device MUST include the <nonce> value as a nonceTrigger attribute in a subsequent ROAP request. See further Section 5.3.4 below. RIs MUST include a <nonce> element in "LeaveDomain" triggers. RIs MUST follow the guidelines for nonces as expressed in Section 5.3.10 below.

The DRM Agent MUST use the URL specified by the <roapURL> element when initiating the ROAP transaction. The <roapURL> is used in conjunction with the protocol indicated in the <roapTrigger> element as described below to determine which ROAP PDU to send:

· If the <roapTrigger> element carries a <registrationRequest> element, the PDU MUST be a ROAP-DeviceHello PDU.

· If the <roapTrigger> element carries an <roAcquisition> element, the PDU MUST be a ROAP-RORequest PDU.

· If the <roapTrigger> element carries a <joinDomain> element, the PDU MUST be a ROAP-JoinDomain PDU.

· If the <roapTrigger> element carries a <leaveDomain> element, the PDU MUST be a ROAP-LeaveDomain PDU.

The <domainID> element MAY be included in certain ROAP triggers. If included, the Device MUST incorporate the <domainID> in the ROAP PDU that is sent in response to the trigger.

One or several <roID> elements MUST be included in the <roAcquisition> trigger to identify the ROs to be acquired. The RI MAY specify more than one <roID> element to initiate download of multiple ROs. The DRM Agent MUST include all received <roID> elements in the <roInfo> portion of the subsequent ROAP-RORequest PDU.

One or several <contentID> elements MUST be included in the <roAcquisition> trigger, at least one for each <roID> element. In the case where a single RO applies to several DCFs the <roAcquisition> trigger MUST include a <contentID> element for each DCF. In the case where a single RO applies to several Content Objects inside one DCF (Multipart DCF), the trigger SHALL include the <contentID> element of the first Content Object in the Multipart DCF. The <contentID> elements MUST contain the ContentID as specified in the ContentID field in the Common Header of the Content Object inside the associated DCF (or PDCF) [DRMCF-v2].

If the DRM Agent has a valid RI Context with the identified Rights Issuer, then the DRM Agent MAY initiate the ROAP transaction without acquiring consent from the user. If the DRM Agent does not have a valid RI Context with the identified Rights Issuer, then the DRM Agent MUST obtain user consent before connecting to the RI and initiating the transaction.

In the case where a DRM Agent receives a ROAP Trigger where the <roapTrigger> element carries a <registrationRequest> element, the DRM Agent MUST use the value of the <riID> element to verify that it has a valid RI Context with the Rights Issuer, prior to initiating the transaction.

The Rights Issuer MAY authenticate the ROAP Trigger by including a signature of the trigger in the <signature> element (see section 5.3.3 for information on digital signatures). The RI MUST include a <signature> element if a <leaveDomain> element is present. With one exception (see below), Devices MUST verify signed ROAP triggers. If the Device cannot verify the signature, the Device SHOULD inform the user and MUST discard the ROAP Trigger.

The only exception to the verification requirement is when the trigger is a "LeaveDomain" trigger, the Device is not a member of the identified Domain, and the trigger has been authenticated with a MAC based on the Domain Key. In this case, the Device MUST acquire user consent before initiating the ROAP.

The <ds:Reference> element of the <ds:SignedInfo> child element of the <signature> shall reference a ROAPTrigger element by using the same value for the URI attribute as the value for the ROAP trigger element's id attribute. In the case of a “LeaveDomain” trigger, the <ds:KeyInfo> child element of the <signature> element shall use its URI attribute of the <ds:RetrievalMethod> element to reference a wrapped MAC key in the <encKey> element, and the signature algorithm (expressed in the Algorithm attribute of the <ds:SignatureMethod> element) MUST be "http://www.w3.org/2000/09/xmldsig#hmac-sha1".

The <encKey> element shall in the case of a “LeaveDomain” trigger be present and shall contain a MAC key wrapped with the current Domain key. The value of the Id attribute of this element shall equal the value of the URI attribute of the <ds:RetrievalMethod> child element of the <signature> element as specified above.

The version attribute is a <major.minor> representation of the ROAP trigger. For this version of the specification, version SHALL be set to "1.0". Minor version upgrades must always be backwards compatible.

If present, the proxy attribute indicates that the ROAP Trigger is not for the Connected Device but is intended for an Unconnected Device. Upon receipt of a ROAP Trigger containing the proxy attribute with the value set to “true” a Connected Device that supports the functionality to provide connectivity for Unconnected Devices (as specified in section Error! Reference source not found.) MUST start the procedures specified in section Error! Reference source not found.. If the proxy attribute is present but the value is set to “false” then Connected Devices MUST treat the ROAP Trigger as if it did not contain the proxy attribute.

The MIME type for the ROAP Trigger is “application/vnd.oma.drm.roap-trigger+xml”.

5.2.2 Initiating ROAP from a DCF

This section applies ONLY to Connected Devices.

If the DRM Agent receives a DCF with both a Silent header and a Preview header, the DRM Agent MUST give priority to the header that appears first in the DCF.

If the DRM Agent has a valid RI Context with the RI, the DRM Agent MAY attempt to acquire Rights silently for the DCF if the DCF includes a Silent header with a specified silent rights URL or a Preview header with method “preview-rights” and a specified preview rights URL, In this case, the DRM Agent MUST compare the domain name of the silent or preview URL with the list of authorized domain names already stored by the DRM Agent for that RI. The DRM Agent MUST be capable of extracting a fully qualified domain name from URLs that follow the format defined in [RFC2396]. For the purpose of domain name comparison, the DRM Agent MUST use the mechanism described in Section 1 of [RFC 2965]. If the domain name in the specified URL is in the list of authorized domain names already stored by the DRM Agent for that RI, the DRM Agent MUST silently attempt to acquire the RO for the DCF by sending a request message to the silent or preview URL stored in the DCF, and responding to the ROAP Trigger and/or Download Descriptor that will be returned by the Rights Issuer.

The RI MUST return a suitable ROAP error if this RO request cannot be reconciled to a prior purchase transaction. Upon receipt of a ROAP error, the Device MAY take further action. In this case, if the context is a user-initiated session, it is recommended that the Device start a browsing session with the RI by sending a request to the DCF RightsIssuerURL. If the context is a DRM Agent-initiated session to acquire rights silently and automatically, then the DRM Agent is RECOMMENDED to abandon the rights acquisition effort.

In all other cases, the DRM Agent MUST NOT attempt to silently acquire the RO for the DCF. It MUST obtain the user’s consent before attempting to acquire an RO for the DCF. Once the user has given consent, the DRM Agent MUST send a request to the DCF RightsIssuerURL, and MUST be prepared to receive either an XHTML page or ROAP Trigger from the RI. The DRM Agent MUST NOT attempt to acquire an RO for the DCF if the user does not provide consent. The DRM Agent MAY store the DCF, however, even if the user does not give consent for RO acquisition.

On any occasion where the DRM Agent successfully retrieves and installs an RO acquired as a result of a Silent header or Preview header (with method preview-rights) in a DCF, the DRM Agent MUST add the domain name of the silent or preview URL to the list of authorized domain names for that RI, if the domain name is not already present. As specified in section 5.4.2.4, a DRM Agent must be capable of storing a minimum of 5 domain names for each RI Context. In the case where a new domain name is to be added to the list and the list of domain names is full, then the last domain name SHOULD be deleted. Each remaining domain name at position n, SHOULD be moved to position n+1 and the new domain name SHOULD be stored in the first position.

5.3 ROAP XML Schema Basics

5.3.1 Introduction

Core parts of the XML schema for ROAP, found in Appendix A, are explained in this section. Specific protocol message elements are defined in the Section 5.4. Examples are found in Appendix Error! Reference source not found..

The XML format for ROAP messages have been designed to be extensible. However, it is possible that the use of extensions will harm interoperability and therefore any use of extensions should be carefully considered.

XML Types defined in this sub-section are not ROAP messages; rather they provide building blocks that are used by ROAP messages.

5.3.2 General XML Schema Requirements

Some ROAP exchanges rely on the parties being able to compare received values with stored values. Unless otherwise noted, all elements in this document that have the XML Schema "string" type, or a type derived from it, MUST be compared using an exact binary comparison. In particular, ROAP implementations MUST NOT depend on case-insensitive string comparisons, normalization or trimming of white space, or conversion of locale-specific formats such as numbers.

The ROAP specification does not define a collation or sorting order for attributes or element values. ROAP implementations MUST NOT depend on specific sorting orders for values.

Devices MUST support at least 256 byte long values for attributes or elements of type anyURI in the schemas specified in this specification. Rights Issuers are RECOMMENDED to use values that are less than 256 bytes in length for such elements or attributes.

5.3.3 Canonicalization & Digital Signatures

This specification makes use of digital signatures and message authentication codes (MACs) to ensure integrity and authenticity of exchanged information. DRM Agents and RIs MUST support RSA-PSS [PKCS-1] as default digital signature scheme but MAY agree to use a different one (see 5.4.2.1). The input to the digital signature operations and the MAC operations SHALL be the canonical form of XML data in accordance with [XC14N]. DRM Agents and RIs MUST send integrity-protected information in canonicalized form and MUST NOT employ any subsequent transformations or modifications to such content. Despite this, DRM Agents SHOULD, and RIs MUST, canonicalize received and integrity protected information before verifying digital signatures and MACs calculated on the information.

Note that all ROAP XML PDUs are XML 1.0 data.

5.3.4 The Request type

All ROAP requests are defined as extensions to the abstract Request type. The elements of the Request type therefore apply to all ROAP requests. All ROAP requests MAY contain a triggerNonce attribute. The triggerNonce attribute MUST be present in a ROAP request if and only if a ROAP trigger containing a <nonce> element initiated the ROAP request. In this case, the value of the triggerNonce attribute MUST be the same as the value of the ROAP trigger's <nonce> element.

<complexType name="Request" abstract="true">

 <attribute name="triggerNonce" type="roap:Nonce"/>

</complexType>

5.3.5 The Response type

All ROAP responses are defined as extensions to the abstract Response type. The elements of the Response type therefore apply to all ROAP responses. All responses contain a status attribute that indicates whether the preceding request was successful or not.

<complexType name="Response" abstract="true">

 <attribute name="status" type="roap:Status" use="required"/>

</complexType >

The generation and delivery of any kind of Response message is conditioned by the RI and its policies. The RI MAY deny access to its resources. If this happens, the RI MUST close the protocol gracefully by sending the Device the corresponding Response message by including an appropriate error code (e.g. AccessDenied). Implementation details of policies by a given RI are out of the scope of this specification.

5.3.6 The Status type

The Status simple type enumerates all possible error messages.

<simpleType name="Status">

<restriction base="string">

<enumeration value="Success"/>

<enumeration value=”Abort”/>

<enumeration value="NotSupported"/>

<enumeration value="AccessDenied"/>

<enumeration value="NotFound"/>

<enumeration value="MalformedRequest"/>

<enumeration value="UnknownCriticalExtension"/>

<enumeration value="UnsupportedVersion"/>

<enumeration value="UnsupportedAlgorithm"/>

<enumeration value="NoCertificateChain"/>

<enumeration value="InvalidCertificateChain"/>

<enumeration value="TrustedRootCertificateNotPresent"/>

 <enumeration value=”SignatureError”/>

<enumeration value="DeviceTimeError"/>

<enumeration value="NotRegistered"/>

<enumeration value="InvalidDCFHash"/>

<enumeration value="InvalidDomain"/>

<enumeration value="DomainFull"/>

</restriction>

</simpleType>

Upon transmission or receipt of a message for which Status is not "Success", the default behaviour, unless explicitly stated otherwise below, is that both the RI and the Device SHALL immediately close the connection and terminate the protocol. RI systems and Devices are required to delete any session-identifiers, nonces, keys, and/or secrets associated with a failed run of the ROAP protocol.

When possible, the Device SHOULD present an appropriate error message to the user.

These error messages are valid in all ROAP-Response messages unless explicitly stated otherwise.

Abort indicates that the RI rejected the Device’s request for unspecified reasons.
NotSupported indicates that the Device made a request for a feature currently not supported by the RI.

AccessDenied indicates that the Device is not authorized to contact this RI.
NotFound indicates that the requested object was not found. This error is only valid in the ROAP-ROResponse message.

MalformedRequest indicates that the RI failed to parse the Device's request.

UnknownCriticalExtension indicates that a critical ROAP extension used by the Device was not supported or recognized by the RI.

UnsupportedVersion indicates that the Device used a ROAP protocol version not supported by the RI. This error is only valid in the ROAP-RIHello message.

UnsupportedAlgorithm indicates that the Device suggested algorithms that are not supported by the RI (this error should not occur as long as all Devices and all RIs implement the mandatory algorithms, since any negotiation will successfully fall back on these). This error is only valid in the ROAP-RIHello message.

NoCertificateChain indicates that the RI could not verify the signature on a Device request due to not having access to the Device's certificate chain. This error is only valid in the following messages: ROAP-RegistrationResponse, ROAP-ROResponse, ROAP-JoinDomainResponse, and ROAP-LeaveDomainResponse.

InvalidCertificateChain indicates that the RI could not verify the signature on a Device request due to the certificate chain being invalid in some way (other than the absence of a trusted root certificate which could be used to verify the chain). This error is only valid in the following messages: ROAP-RegistrationResponse, ROAP-ROResponse, ROAP-JoinDomainResponse, and ROAP-LeaveDomainResponse.

TrustedRootCertificateNotPresent indicates that the RI could not verify the signature on a Device request due to the absence of a trusted root certificate which could be used to verify the chain. This error is only valid in the following messages: ROAP-RegistrationResponse, ROAP-ROResponse, ROAP-JoinDomainResponse, and ROAP-LeaveDomainResponse.

SignatureError indicates that the RI could not verify the Device's signature. This error is only valid in the following messages: ROAP-RegistrationResponse, ROAP-ROResponse, ROAP-JoinDomainResponse, and ROAP-LeaveDomainResponse.

DeviceTimeError indicates that a Device request was invalid due to the Device’s DRM Time being inaccurate as assessed by the Rights Issuer. This error is only valid in the following messages: ROAP-ROResponse, ROAP-JoinDomainResponse, and ROAP-LeaveDomainResponse. The Device SHOULD initiate the 4-pass Registration protocol, using the riURL as stored in the RI Context. The Device MUST have user consent to contact the RI, in the same way as for processing ROAP triggers as specified in section 5.2.1.

NotRegistered indicates that the Device tried to contact an RI which does not have any registration information stored for the Device. This error is only valid in the following messages: ROAP-ROResponse, ROAP-JoinDomainResponse, and ROAP-LeaveDomainResponse. The Device SHOULD initiate the 4-pass Registration protocol, using the riURL as stored in the RI Context. The Device MUST have user consent to contact the RI, in the same way as for processing ROAP triggers as specified in section 5.2.1.

InvalidDCFHash is sent when the RI detects an incorrect DCF hash value in a ROAP-RORequest message. This error is only valid in the ROAP- ROResponse message.

InvalidDomain indicates that the request was invalid due to an unrecognized Domain Identifier. This error is only valid in the following messages: ROAP-ROResponse, ROAP-JoinDomainResponse, and ROAP-LeaveDomainResponse.

DomainFull indicates that no more Devices are allowed to join the Domain. This error is only valid in the ROAP-JoinDomainResponse message.
5.3.7 The Extensions type

The Extensions type is a list of type-value pairs that define optional ROAP features supported by a Device or an RI. Extensions may be sent with any ROAP message. Please see Section 5.4 in this document for applicable extensions. Unless an extension is marked as critical, a receiving party need not be able to interpret it, and a receiving party is always free to disregard any (non-critical) extensions.

<complexType name="Extensions">

 <sequence maxOccurs="unbounded">

 <element name="extension" type="roap:Extension"/>

 </sequence>

</complexType>

<complexType name="Extension" abstract="true">

 <attribute name="critical" type="boolean"/>

</complexType>

5.3.8 The Protected Rights Object type

The ProtectedRO type is a sequence of an <ro> element of type roap:ROPayload and a <mac> element carrying a MAC value over the <ro> element. The ProtectedRO type is used to carry protected Rights Objects in ROAP-ROResponse messages and Domain ROs (when sent in DCFs or separately).

<element name="protectedRO" type="roap:ProtectedRO"/>

<complexType name="ProtectedRO">

 <sequence>

 <element name="ro" type="roap:ROPayload"/>

 <element name="mac" type="ds:SignatureType"/>

 </sequence>

</complexType>

The <ro> element is described in the next section.

The <mac> element provides integrity of the <ro> element and key confirmation. The MAC is calculated over the complete <ro> element. Before performing the MAC calculation, the Rights Issuer MUST canonicalize the <ro> element in accordance with [XC14N]. See also Section 5.3.3. The URI attribute of the <ds:Reference> element of the <ds:SignedInfo> child element of the <mac> SHALL reference the <ro> element by having the same value as the id attribute of the <ro> element. The URI attribute of the <ds:RetrievalMethod> element of the <ds:KeyInfo> child element of the <mac> SHALL reference a wrapped MAC key in the <ro> element’s <encKey> child element by having the same value as the Id attribute of the <encKey> element.

The MIME type for the Protected Rights Object is application/vnd.oma.drm.ro+xml.

The file extension for the Protected Rights Object MUST be “.oro”.
5.3.9 The Rights Object Payload type

Values of the ROPayload type carries (protected) rights and wrapped keys that can be used to decrypt encrypted portions of the rights.

<!-- Rights Object Definitions -->

<complexType name="ROPayload">

 <sequence>

 <element name="riID" type="roap:Identifier"/>

 <element name="rights" type="o-ex:rightsType"/>

 <element name="signature" type="ds:SignatureType" minOccurs="0"/>

 <element name="timeStamp" type="dateTime" minOccurs="0"/>

 <element name="encKey" type="xenc:EncryptedKeyType"/>

 </sequence>

 <attribute name="version" type="roap:Version" use="required" />

 <attribute name="id" type="ID" use="required" />

 <attribute name="stateful" type="boolean"/>

 <attribute name="domainRO" type="boolean"/>

 <attribute name="riURL" type="anyURI"/>

</complexType>

The <riID> element is of type roap:Identifier and SHALL identify the issuing RI.

The <rights> element is of type o-ex:rightsType and MUST be conformant with [DRMREL-v2]. The o-ex:id attribute of this type SHALL be present.

The <signature> element is of type ds:SignatureType from [XMLDsig] and MUST be present when the RO is a Domain RO. The URI attribute of a <ds:Reference> element of the <ds:SignedInfo> child element of the <signature> SHALL reference the <rights> element by having the same value as the o-ex:id attribute of the <rights> element (i.e., when present, the signature SHALL be made at least over the <rights> element). Before performing the signature calculation, the Rights Issuer MUST canonicalize all elements the signature shall be made over, in accordance with [XC14N]. See also Section 5.3.3. The <ds:KeyInfo> child element of the <signature> element SHALL identify the signing key. The Device MUST verify that the signing key is associated with the RI identified in the <riID> element.

The <timeStamp> value MUST be given in Universal Coordinated Time (UTC). The time-stamp provides replay protection, see further in section Error! Reference source not found..

The <encKey> element is of type xenc:EncryptedKeyType from [XMLEnc]. It consists of a wrapped concatenation of a MAC key, KMAC and an RO encryption key, KREK. The Id attribute of this element SHALL be present and SHALL have the same value as the value of the URI attribute of the <ds:RetrievalMethod> element in any <ds:KeyInfo> elements inside the <rights> element. The <ds:KeyInfo> child element of the <encKey> element SHALL identify the wrapping key. In the case of a Rights Object intended for a Device, the child of the <ds:KeyInfo> element SHALL be of type roap:X509SPKIHash, identifying a particular DRM Agent's public key through the (SHA-1) hash of the DER-encoded subjectPublicKeyInfo value in its certificate. In the case of a Rights Object intended for a Domain, it will be of the type roap:DomainIdentifier, identifying the correct Domain key. Note that the encrypted key material consists of two keys - a MAC key and a Rights Object Encryption key. For further information, see the Key Management discussion in section Error! Reference source not found..

The version attribute indicates the version of the ROPayload type. For this version of the OMA DRM specification, the value SHALL be “1.0”. Minor version upgrades must always be backwards compatible. The ROPayload version must not be confused with the OMA DRM version, which is independently set. The reason for having different versions is to enable Domain ROs to be shared between Devices with different OMA DRM protocol versions.

The id attribute of the ROPayload type identifies the RO and will, when applicable, correspond to an <roID> value in a previous ROAP-RORequest. The id attribute is also used as a reference point for the MAC as described in the previous section.

The stateful attribute, when present and set to “true”, indicates that the RO contains stateful rights (i.e. needs replay protection). The id attribute MUST be globally unique when this attribute is present and set to true, in order to enable a Device to correctly enforce replay protection (Note: one way for an RI to generate globally unique identifiers is to combine an RI-unique and freshly generated nonce with the hash of the RI's public key). If the stateful attribute is not present, or is set to "false", then the RI does not regard the RO as stateful.

The domainRO attribute, when present and set to "true", indicates that the RO is for a Domain. If the domainRO attribute is not present, or is set to "false", then the RO is for a particular Device.

The riURL attribute, if present, SHALL contain a URL that the Device can use to contact the RI, for example, to register with the RI or to join a Domain (as specified in section Error! Reference source not found.) indicated in a roap:DomainIndentifier element. The value of the riURL MUST be a URL according to [RFC2396], and MUST be an absolute identifier. If the Device utilizes the riURL for registration purposes, the Device MUST have user consent to contact the RI, in the same way as the requirement for processing ROAP triggers as specified in section 5.2.1.

5.3.10 The Nonce type

The Nonce type is used to carry arbitrary values in the ROAP protocol messages. A nonce, as the name implies, must be used only once. For each ROAP message that requires a nonce element to be sent, a fresh nonce SHALL be generated randomly each time. Nonce values MUST be at least 14 Base64-encoded characters long (approx. 80 bits). Devices MUST at least support nonce values 14 Base-64 encoded characters long.
<simpleType name="Nonce">

 <restriction base="base64Binary">

 <minLength value="14"/>

 </restriction>

</simpleType>

5.4 ROAP Messages

In this section, ROAP protocol suite messages, including their parameters, encodings and semantics are defined. The ROAP protocol messages are divided into three categories: Registration, RO Acquisition, and Domain management.

5.4.1 Notation

In the message parameter tables below, "M" stands for "mandatory presence" and "O" stands for "optional presence".

5.4.2 Registration Protocol

5.4.2.1 Device Hello

The ROAP-DeviceHello message is sent from the Device to the Rights Issuer to initiate the 4-pass Registration protocol. This message expresses Device information and preferences.

5.4.2.1.1 Message description

	Parameter
	ROAP-DeviceHello

	Version
	M

	Device ID
	M

	Supported Algorithms
	O

	Extensions
	O

Table 1: Device Hello Message Parameters

Version is a <major.minor> representation of the highest ROAP version number supported by the Device. Devices MUST support all versions prior to the one they suggest. For this version of the protocol, Version SHALL be set to "1.0". Minor version upgrades must always be backwards compatible.

Device ID identifies the Device to the RI. The only identifier currently defined is the hash of the Device's public key info, as it appears in the certificate (i.e. the hash of the complete DER-encoded subjectPublicKeyInfo component in the Device's certificate). The default hash algorithm is SHA-1. The Device MUST send at least one Device ID. In case a device holds multiple public keys, the Device MAY select one or more of these public keys and send the corresponding Device IDs. Other identifiers are allowed but interoperability when using them is not guaranteed.

Supported Algorithms identifies the cryptographic algorithms (hash algorithms, MAC algorithms, signature algorithms, key transport algorithms and key wrap algorithms) that are supported by the Device. Algorithms are identified using common URIs. The following algorithms and associated URIs MUST be supported by all Devices and RIs:

Hash algorithms:

SHA-1: http://www.w3.org/2000/09/xmldsig#sha1
MAC algorithms:

HMAC-SHA-1: http://www.w3.org/2000/09/xmldsig#hmac-sha1
Signature algorithms:

RSA-PSS-Default: http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-1#rsa-pss-default
Key transport algorithms:

RSAES-KEM-KDF2-KW-AES128:
http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-1#rsaes-kem-kdf2-kw-aes128
Key wrapping algorithms:

AES-WRAP: http://www.w3.org/2001/04/xmlenc#kw-aes128
SHA-1 is defined in [SHA-1]. HMAC-SHA-1 is defined in [HMAC]. RSA-PSS-Default is RSASSA-PSS with all parameters having default values (see [PKCS-1] Appendix C). AES-WRAP is defined in [AES-WRAP]. RSA-KEM-KDF2-KW-AES128 is defined in Section 7, Key Management.

Use of other algorithm URIs is optional. Since all Devices and all RIs must support the algorithms above, they need not be sent. Only URIs for algorithms not in this list needs to be sent in a ROAP-DeviceHello message.

Extensions: The following extensions are defined for the ROAP-DeviceHello message:

Certificate Caching: The presence of this extension indicates to the RI that the Device has a capability to store information in the RI context whether an RI has stored Device certificate information or not. (Note: This is not about whether the Device has stored RI certificate information or not. For this, the Peer Key Identifier extension is used - see the ROAP-RegistrationRequest, ROAP-RORequest, and ROAP-JoinDomainRequest messages.) If the Device has this capability, then the Device MUST include the Certificate Caching extension. If this extension is used, the RI can use the Peer Key Identifier or the Certificate Caching extension in its ROAP-RIHello message to indicate that it has stored the Device public key or that it is capable of storing Device certificate information, respectively.

5.4.2.1.2 Message syntax

The <deviceHello> element specifies the ROAP-DeviceHello message, which is the first message sent in the 4-pass ROAP Registration protocol. It has complex type roap:DeviceHello, which extends the basic roap:Request type.

<element name="deviceHello" type="roap:DeviceHello"/>

<complexType name="DeviceHello">

 <annotation>

 <documentation xml:lang="en">

 Message sent from Device to RI to establish an RI Context.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Request">

 <sequence>

 <element name="version" type="roap:Version"/>

 <element name="deviceID" type="roap:Identifier"

 maxOccurs="unbounded"/>

 <element name="supportedAlgorithm" type="anyURI"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="extensions" type="roap:Extensions"

 minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

The following schema fragment defines the Version type. As noted above, for this version of ROAP, its value shall be "1.0".

<simpleType name="Version">

 <restriction base="string">

 <pattern value="\d{1,2}\.\d{1,3}"/>

 </restriction>

</simpleType>
The following schema fragment defines the Identifier type and its alternatives. Any non-standard identifier value must be expressed in well-formed XML.

<complexType name="Identifier">

 <choice>

 <element name="keyIdentifier" type="roap:KeyIdentifier"/>

 <any namespace="##other" processContents="strict"/>

 </choice>

</complexType>

<complexType name="KeyIdentifier" abstract="true"/>

A key can be defined by use of a hash of the key. The hash shall in this case be made over the DER-encoded subjectPublicKeyInfo value from the applicable certificate.

<complexType name="X509SPKIHash">

 <complexContent>

 <extension base="roap:KeyIdentifier">

 <sequence>

 <element name="hash" type="base64Binary"/>

 </sequence>

 <attribute name="algorithm" type="anyURI" default="http://www.w3.org/2000/09/xmldsig#sha1"/>

 </extension>

 </complexContent>

</complexType>

<!-- The corresponding ds:KeyInfo element -->

<element name="X509SPKIHash" type="roap:X509SPKIHash"/>

The following extension is defined for the ROAP-DeviceHello message:

<complexType name="CertificateCaching">

 <complexContent>

 <extension base="roap:Extension"/>

 </complexContent>

</complexType>

5.4.2.2 RI Hello

The ROAP-RIHello message is the second message of the Registration protocol and is sent from the Rights Issuer to the Device in response to a ROAP-DeviceHello message. The message expresses RI preferences and decisions based on the values supplied by the Device.

5.4.2.2.1 Message description

	Parameter
	ROAP-RIHello

	
	Status = “Success”
	Status ≠ “Success”

	Status
	M
	M

	Session ID
	M
	-

	Selected Version
	M
	-

	RI ID
	M
	-

	Selected Algorithms
	O
	-

	RI Nonce
	M
	-

	Trusted Device Authorities
	O
	-

	Server Info
	O
	-

	Extensions
	O
	-

Table 2: RI Hello Message Parameters

Status indicates if the ROAP-DeviceHello request was successfully (Status = Success) handled or not. In the latter case an error code as specified in Section 5.3.6 is sent.

Session ID is a protocol session identifier set by the RI. This allows for several, concurrent, RI-Device sessions.
Selected Version is the selected ROAP version. The selected version will be min(Device suggested version, highest version supported by RI). This information is part of the RI Context.

RI ID identifies the RI to the Device. The only identifier currently defined is the hash of the Rights Issuer’s public key info, as it appears in the certificate (i.e. the hash of the complete DER-encoded subjectPublicKeyInfo component in the Rights Issuer’s certificate). The default hash algorithm is SHA-1. In case the RI holds multiple public keys, the RI must select exactly one of these and sends the corresponding RI ID. Other identifiers are allowed but interoperability when using them is not guaranteed. This information is part of the RI Context.

Selected Algorithms specifies the cryptographic algorithms (hash algorithm, signature algorithm, MAC algorithm and key transport algorithm) to use in subsequent ROAP interactions. If the Device indicated support of only mandatory algorithms (i.e. left out the <supportedAlgorithms> element), or the RI only supports the mandatory algorithms, then the RI need not send this field. Otherwise, the RI MUST provide this parameter and MUST identify one algorithm of each type. This information is part of the RI context.
RI Nonce is a random nonce sent by the RI. Nonces are generated and used in this message as specified in section 5.3.10.
Trusted Device Authorities is a list of Device trust anchors recognized by the RI. This parameter is optional. The parameter is not sent if the RI already has the Device's certificate or otherwise is able to verify a signature made by the Device. If the parameter is present but empty, it indicates that the Device is free to choose any Device certificate to authenticate itself. Otherwise the Device MUST choose a certificate chaining back to one of the recognized trust anchors. Trust anchors are identified in the same manner as Devices and RIs.
Server Info contains server-specific information that the Device must return unmodified, in the ROAP-RegistrationRequest. The Device must not attempt to interpret the value of this parameter. Devices MUST support the Server Info element being of length 512 bytes and MAY support Server Info elements of length greater than 512 bytes. RIs SHOULD keep Server Info length to 512 bytes or less.
Extensions: The following extensions are defined for the ROAP-RIHello message:

· Peer Key Identifier: An identifier for a Device public key stored by the RI. If the identifier matches one of the Device ID’s in the preceeding DeviceHello message, it means the RI has already stored that Device ID and the corresponding Device certificate chain, and the Device need not send that certificate chain in a later request message. If the extension is empty, it means the RI has already stored all Device ID’s listed in the preceeding DeviceHello message and the corresponding Device certificate chains, and the Device need not send its certificate chain in a later request message. Keys are identified in the same way as Devices are (a hash of the DER-encoded subjectPublicKeyInfo component of the Device's certificate). If the RI has stored the Device public key the RI MUST use this extension in the ROAP-RIHello. This extension also informs the Device that the RI has the capability to store information about Device certificates.

· Certificate Caching: When present, this extension indicates to the Device that the RI has the capability to store information about the Device certificate and that Device certificate chain sending is not necessary in subsequent protocol instances once the RI has received the Device certificate chain. This extension is not needed if the Peer Key Identifier is used, since the latter contains even more specific information.

· Device Details: By including this extension, the RI requests the Device to return Device-specific information such as manufacturer and model in a subsequent ROAP-RegistrationRequest message. When present, the DeviceDetails extension SHALL be empty (i.e. <extension xsi:type="roap:DeviceDetails"/>)".

If the Certificate Caching extension was present in the ROAP-DeviceHello message and the RI has capabilities to store Device certificates, then the RI MUST send either the Peer Key Identifier or the Certificate Caching extension in its ROAP-RIHello message. If the Certificate Caching extension was not present in the ROAP-DeviceHello message, then the RI need not send the Certificate Caching extension in its ROAP-RIHello. If the ROAP-RIHello contains a Peer Key Identifier extension, it SHOULD NOT contain a Certificate Caching extension.

The Device SHOULD note in the RI Context whether the RI has a correct public key for the Device stored and/or whether the RI has the capability to store information about the Device’s certificate.

5.4.2.2.2 Message syntax

The <riHello> element specifies the ROAP-RIHello message, which is sent in response to the ROAP-DeviceHello message. It has complex type roap:RIHello.

<element name="riHello" type="roap:RIHello"/>

<complexType name="RIHello">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to a deviceHello message.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="selectedVersion" type="roap:Version"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="selectedAlgorithm" type="anyURI" maxOccurs="unbounded"

minOccurs="0"/>

 <element name="riNonce" type="roap:Nonce"/>

 <element name="trustedAuthorities" type="roap:KeyIdentifiers" minOccurs="0"/>

 <element name="serverInfo" type="base64Binary" minOccurs="0"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 </sequence>

 <attribute name="sessionId" type="hexBinary"/>

 </extension>

 </complexContent>

</complexType>

<complexType name="KeyIdentifiers">

 <sequence minOccurs=”0” maxOccurs="unbounded">

 <element name="keyIdentifier" type="roap:KeyIdentifier"/>

 </sequence>

</complexType>

The following schema fragment defines the Peer Key Identifier extension:

<complexType name="PeerKeyIdentifier">

 <complexContent>

 <extension base="roap:Extension"/>

 <sequence minOccurs=”0”>

 <element name="identifier" type="roap:KeyIdentifier"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

The following schema fragment defines the Device Details extension:

<complexType name="DeviceDetails">

 <complexContent>

 <extension base="roap:Extension">

 <sequence minOccurs=”0”>

 <element name="manufacturer" type="string"/>

 <element name="model" type="string"/>

 <element name="version" type="string"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>
5.4.2.3 Registration Request

A Device sends the ROAP-RegistrationRequest message to an RI to request registration with the RI. The message is sent as the third message in the 4-pass Registration protocol.

5.4.2.3.1 Message description

	Parameter
	ROAP-RegistrationRequest

	Session ID
	M

	Device Nonce
	M

	Request Time
	M

	Certificate Chain
	O

	Trusted RI Authorities
	O

	Server Info
	O

	Extensions
	O

	Signature
	M

Table 3: Registration Request Message Parameters

Session ID SHALL be identical to the Session ID parameter of the preceding ROAP-RIHello message, otherwise the RI SHALL terminate the Registration protocol.

Device Nonce is a nonce chosen by the Device. Nonces are generated and used in this message as specified in section 5.3.10.

Request Time is the current DRM Time as measured by the Device. Connected Devices and Unconnected Devices that support DRM Time MUST insert their current DRM Time. Unconnected Devices that do not support DRM Time MUST use the value “Undefined”.
Certificate Chain: This parameter MUST be present unless the preceding ROAP-RIHello message contained the Peer Key Identifier extension and its value identified the key in the Device's current certificate. When present, the value of a Certificate Chain parameter shall be a certificate chain including the Device's certificate. The chain SHALL not include the root certificate. The Device certificate must come first in the list. Each following certificate must directly certify the one preceding it. If the RI indicated trust anchor preferences in the previous ROAP-RIHello message, the Device MUST select a Device certificate and chain which chains back to one of the trust anchors indicated by the RI. This mimics the features of [RFC3546]. The RI may need to update this information based on the received Certificate Chain.
Trusted RI Authorities is a list of RI trust anchors recognized by the Device. If the parameter is empty, it indicates that the RI is free to choose any certificate. Trust anchors are identified in the same way as Devices and RIs.
Server Info: As discussed above, this parameter will only be present if a Server Info parameter was present in the preceding ROAP-RIHello message. In that case, the Server Info parameter MUST be present and MUST be identical to the Server Info parameter received in the preceding ROAP-RIHello message.
Extensions: The following extensions are defined for the ROAP-RegistrationRequest message:

· Peer Key Identifier: An identifier for an RI public key stored in the Device. If the identifier matches the RI ID in the preceeding RI Hello message, or if the extension is empty, it means the RI need not send down its certificate chain in its response message. Keys are identified in the same way as Devices and RIs.

· No OCSP Response: Presence of this extension indicates to the RI that there is no need to send any OCSP responses since the Device has cached a complete set of valid OCSP responses for this RI.

· OCSP Responder Key Identifier: This extension identifies a trusted OCSP responder key stored in the Device and is used to save bandwidth. If the identifier matches the key in the certificate used by the RI's OCSP responder, the RI MAY remove the OCSP Responder certificate chain from the OCSP response before providing the OCSP response to the Device.

· Device Details: This extension defines three fields: manufacturer, model and version. The manufacturer field identifies the Device’ manufacturer, the model field identifies the Device's model and the version field identifies the Device's version as defined by its manufacturer. This extension MUST be supported and MUST be sent by a Device that receives an empty Device Details extension in a ROAP-RIHello message.
The Device MUST send the Peer Key Identifier extension if, and only if, it has stored the RI public key corresponding to the RI ID in the preceeding RIHello message. The Device MUST send the No OCSP Response extension if, and only if, it has a complete set of valid OCSP responses for the RI certificate chain. The Device MUST send the OCSP Responder Key Identifier extension if, and only if, it has stored an OCSP Responder key for this RI.

Signature is a signature on data sent so far in the protocol. The signature is made using the Device's private key on the two previous messages (ROAP-DeviceHello, ROAP-RIHello) and the current message (besides the Signature element itself). The signature method is as follows:

The previous messages and the current one except the Signature element is canonicalized using the exclusive canonicalization method defined in [XC14N].

The three messages are concatenated in their chronological order, starting with the ROAP-DeviceHello message. The resulting data d is considered as input to the signature operation.

The signature is calculated on d in accordance with the rules of the negotiated signature scheme.

The RI MUST verify the signature on the ROAP-RegistrationRequest message.

5.4.2.3.2 Message syntax

The <registrationRequest> element specifies the ROAP-RegistrationRequest message, which is the third message in the ROAP Registration protocol. It has complex type roap:RegistrationRequest, which extends the basic roap:Request type.

<element name="registrationRequest" type="roap:RegistrationRequest"/>

<complexType name="RegistrationRequest">

 <annotation>

 <documentation xml:lang="en">

 Message sent from Device to RI to request registration.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Request">

 <sequence>

 <element name="nonce" type="roap:Nonce"/>

 <element name="time" type="roap:dateTimeOrUndefined"/>

 <element name="certificateChain" type="roap:CertificateChain"

 minOccurs="0"/>

 <element name="trustedAuthorities" type="roap:KeyIdentifiers"

 minOccurs="0"/>

 <element name="serverInfo" type="base64Binary" minOccurs="0"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 <attribute name="sessionId" type="hexBinary" use="required"/>

 </extension>

 </complexContent>

</complexType>

The <time> element expresses, in UTC, the current DRM Time as measured by the Device. The value “Undefined” is used by Unconnected Devices that do not support DRM Time.

<simpleType name="dateTimeOrUndefined">

 <union memberTypes="dateTime roap:UndefinedString"/>

</simpleType>

<simpleType name="UndefinedString">

 <restriction base="string">

 <enumeration value="Undefined"/>

 </restriction>

</simpleType>

The following schema fragment defines the CertificateChain type, containing a sequence of one or more base64-encoded X.509 certificates in DER-encoded form.
<complexType name="CertificateChain">

 <sequence maxOccurs="unbounded">

 <element name="certificate" type="base64Binary"/>

 </sequence>

</complexType>

The following schema fragment defines the extensions defined for the ROAP-RegistrationRequest message (besides the Peer Key Identifier and Device Details extensions already defined earlier in this document):

<complexType name="NoOCSPResponse">

 <complexContent>

 <extension base="roap:Extension"/>

 </complexContent>

</complexType>

<complexType name="OCSPResponderKeyIdentifier">

 <complexContent>

 <extension base="roap:Extension">

 <sequence>

 <element name="identifier" type="roap:KeyIdentifier"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

5.4.2.4 Registration Response

The ROAP-RegistrationResponse message is sent from the Rights Issuer to the Device in response to a ROAP-RegistrationRequest message. This message completes the Registration protocol, and if successful, enables the Device to establish an RI Context for this RI.

5.4.2.4.1 Message description

	Parameter
	ROAP-RegistrationResponse

	
	Status = “Success”
	Status ≠ “Success”

	Status
	M
	M

	Session ID
	M
	O

	RI URL
	M
	-

	Certificate Chain
	O
	-

	OCSP Response
	O
	-

	Extensions
	O
	-

	Signature
	M
	-

Table 4: Registration Response Message Parameters

Status indicates if the ROAP-RegistrationRequest message was successfully (Status = Success) handled or not. In the latter case an error code as specified in Section 5.3.6 is sent.

Session ID SHALL be identical to the Session ID of the preceding ROAP-RegistrationRequest (and ROAP-RIHello) message. If the Session ID of the ROAP-RegistrationResponse does not equal the Session ID of the corresponding ROAP-RIHello, the Device MUST terminate the protocol. The Session ID can be present only if the Rights Issuer could detect the session identifier in the registration request.
RI URL: if the ROAP-RegistrationRequest message was successful (Status=Success) then the RI URL parameter indicates the URL that SHOULD be stored in the RI Context. This URL SHOULD be used by the Device in later interactions with the RI to send ROAP requests. The value of the parameter MUST be a URL according to [RFC2396], and MUST be an absolute identifier.

Certificate chain: This parameter MUST be present unless the preceding ROAP-RegistrationRequest message contained the Peer Key Identifier extension, the extension was not ignored by the RI, and its value identified the RI's current key. When present, the value of a Certificate Chain parameter shall be a certificate chain including the RI's certificate. The chain MUST NOT include the root certificate. The RI certificate must come first in the list. Each following certificate must directly certify the one preceding it. If the Device indicated trust anchor preferences in its ROAP-RegistrationRequest message, the RI SHOULD select a certificate and chain which chains back to one of the trust anchors in the Device's list. This mimics the features of [RFC3546].

The Device MAY store RI certificate verification data indicating that an RI certificate chain has been verified. The purpose of this is to avoid repeated verification of the same certificate chain. The RI certificate verification data stored in this way MUST uniquely identify the RI certificate and MUST be integrity protected. The Device SHOULD check if the RI certificate chain received in this parameter corresponds to the stored certificate verification data for this RI. If so, the Device need not verify the RI certificate chain again, otherwise the Device MUST verify the RI certificate chain. If an RI certificate is received that is not in the stored certificate verification data for this RI, and if the Device can determine (in the case of Connected Devices and Unconnected Devices that support DRM Time) that the expiry time of the received RI certificate is later than the RI Context for this RI, and the certificate status of the RI certificate as indicated in the OCSP response is good (see [OCSP-MP]) then the Device MUST verify the complete chain and SHOULD replace the stored RI certificate verification data with the received RI certificate data and set the RI context expiry time to that of the received RI certificate expiry time.

However, if the Device does store RI certificate verification data in this way, it MUST store the expiry time of the RI's certificate (as indicated by the notAfter field within the certificate) in the RI Context and MUST compare the Device's current DRM Time with the stored RI certificate expiry time whenever verifying the signature on signed messages from the RI. If the Device's current DRM Time is after the stored RI certificate expiry time, then the Device MUST abandon processing the RI message and MUST initiate the registration protocol.

OCSP Response: This parameter, when present, SHALL be a complete set of valid OCSP responses for the RI's certificate chain. The Device MUST NOT fail due to the presence of more than one OCSP response element. This parameter will not be sent if the Device sent the Extension No OCSP Response in the preceding ROAP-RegistrationRequest (and the RI did not ignore that extension). An exception to this is when the RI deems that the Device's DRM Time is inaccurate. For the processing of this parameter, see further in Section 6 A Device which did not send the No OCSP Response extension in its ROAP-RegistrationRequest message, MUST check that an OCSP response is present in the received ROAP-RegistrationResponse message. If no OCSP response is present, then the Device MUST abort the Registration protocol.

Extensions: The following extensions are defined for the ROAP-RegistrationResponse message.

· Domain Name Whitelist: This extension allows an RI to specify a list of fully qualified domain names (as defined in [RFC 2396]) that are to be regarded as trusted for the purposes of Silent and Preview headers. The Device MUST store the domain names along in the RI Context for this RI. The Device MUST be able to use these domain names for processing DCFs containing the Silent header or a Preview header with method “preview-rights” and a specified preview URL, as defined in section 5.2.2 of this document. The Device MUST treat each domain name received in the Domain Name Whitelist as if it were a fully qualified domain name that had been extracted from an RI URL according to the conditions defined in section 5.2.2 of this document. The Device MUST be capable of storing a minimum of 5 fully qualified domain names for each RI Context supported on the Device.

Signature is a signature on data sent in the protocol. The signature is made using the RI's private key on the previous message (ROAP-RegistrationRequest) and the current message (besides the Signature element itself). The signature method is as follows:

· The previous message and the current one except the Signature element is canonicalized using the exclusive canonicalization method defined in [XC14N].

· The two messages are concatenated in their chronological order, starting with the ROAP-RegistrationRequest message. The resulting data d is considered as input to the signature operation.

· The signature is calculated on d in accordance with the rules of the negotiated signature scheme

The Device MUST verify this signature. A Device MUST NOT accept the Registration protocol as successful unless the signature verifies, the RI certificate chain has been successfully verified, and the OCSP response indicates that the RI certificate status is good. If the registration failed the Device MUST NOT store the RI Context for this RI, otherwise the Device SHOULD store the RI Context for this RI.

The stored RI Context SHALL at a minimum contain: riURL, RI ID, Selected Version, Selected Algorithms, and a Certificate Caching indication if the RI has stored the Device certificate or not (all this information is carried in the ROAP-RIHello message). The RI Context MAY also contain RI certificate validation data, OCSP responder key and the current set of OCSP responses. The RI Context SHALL also contain an RI Context Expiry Time, which is defined to be the RI certificate expiry time. For Unconnected Devices that do not support DRM Time, the RI Context is infinite i.e., it does not have an expiry time. If the RI Context has expired, the Device MUST NOT execute any other protocol than the 4-pass Registration protocol with this RI, and upon detection of RI Context expiry the Device SHOULD initiate the Registration protocol using the riURL stored in the RI Context. The Device SHALL have at most one RI Context with each RI. An existing RI Context SHALL be replaced with a newly established RI Context after successful re-registration with the same RI.

Note that any cached OCSP responses have their own validity period, which normally will be much shorter than the validity period of the RI Context.
After successful completion of the ROAP registration protocol the Device and the RI SHALL calculate the Device ID that corresponds to the Device certificate that is agreed upon in this registration protocol. This value of the Device ID SHALL be stored in the RI context. Also, after successful completion of the ROAP registration protocol the Device and the RI SHALL calculate the RI ID that corresponds to the RI certificate that is agreed upon in this registration protocol. This value of the RI ID SHALL be stored in the RI context.
5.4.2.4.2 Message syntax

The <registrationResponse> element specifies the ROAP-RegistrationResponse message, and constitutes the last message in the Registration protocol. It has complex type roap:RegistrationResponse, which extends the basic roap:Response type.

<element name="registrationResponse" type="roap:RegistrationResponse"/>

<complexType name="RegistrationResponse">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to a registrationRequest message.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="riURL" type="anyURI"/>

 <element name="certificateChain" type="roap:CertificateChain"

 minOccurs="0"/>

 <element name="ocspResponse" type="base64Binary" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 <attribute name="sessionId" type="hexBinary"/>

 </extension>

 </complexContent>

</complexType>

The following schema fragment defines the Domain Name Whitelist extension:

<complexType name="DomainNameWhiteList">

 <complexContent>

 <extension base="roap:Extension">

 <sequence maxOccurs="5">

 <element name="dn" type="string"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

5.4.3 RO Acquisition

5.4.3.1 RO Request

The ROAP-RORequest message is sent from a Device to an RI to request Rights Objects. This message is the first message of the 2-pass RO Acquisition protocol.

5.4.3.1.1 Message description

	ROAP-RORequest

	Parameter
	Mandatory/Optional

	Device ID
	M

	Domain ID
	O

	RI ID
	M

	Device Nonce
	M

	Request Time
	M

	RO Info
	M

	Certificate Chain
	O

	Extensions
	O

	Signature
	M

Table 5: RO Request Message Parameters

Device ID identifies the requesting Device. The value MUST equal the stored Device ID as specified in section 5.4.2.4.1.
Domain ID, when present, identifies the Domain for which the requested ROs shall be issued.

RI ID identifies the authorizing RI. The value MUST equal the stored RI ID as specified in section 5.4.2.4.1.

Device Nonce is a nonce chosen by the Device. Nonces are generated and used in this message as specified in section 5.3.10.

Request Time is the current DRM Time, as seen by the Device.
RO Info identifies the requested Rights Object(s). The parameter consists of a (non-empty) set of Rights Object identifiers identifying the requested Rights Objects, and for each RO identifier an optional hash of the DCF associated with the requested RO. The DCF hash SHOULD be included when the Device is in possession of the associated DCF, unless its inclusion, as determined by some vendor-specific algorithm, would be impractical (e.g. due to the size of the DCF). If the 2-pass protocol is initiated by a ROAP Trigger, the Device SHOULD use the <contentID> elements of the ROAP Trigger to identify the associated DCF(s) over which a DCF hash should be calculated. The DCF hash, if computed, MUST be computed as specified in section 5.3 of [DRMCF-v2] using the SHA-1 algorithm.

Certificate Chain: This parameter is sent unless it is indicated in the RI Context that this RI has stored necessary Device certificate information. When present, the parameter value SHALL be as described for the Certificate Chain parameter in the ROAP-RegistrationRequest message.

Extensions: The following extensions are defined for the ROAP-RORequest message:
· Peer Key Identifier: An identifier for an RI public key stored in the Device. If the identifier matches stored RI ID as specified in section 5.4.2.4.1, or if the extension is empty, it means the Device has already stored the RI ID and the corresponding RI certificate chain, and the RI need not send down its certificate chain in its response message.

· No OCSP Response: Presence of this extension indicates to the RI that there is no need to send any OCSP responses since the Device has cached a complete set of valid OCSP responses for this RI.

· OCSP Responder Key Identifier: This extension identifies an OCSP responder key stored in the Device. If the identifier matches the key in the certificate used by the RI's OCSP responder, the RI MAY remove the OCSP Responder certificate chain from the OCSP response before providing the OCSP response to the Device.

· Transaction Identifier: Allows a Device to provide the RI with information for tracking of transactions, for example relating to loyalty programs (an example of this could be reward scheme information from the DCF scheme). The Device SHOULD use the <contentID> elements of the ROAP Trigger to identify the associated DCF(s) from which the TransactionID should be extracted.

The Device MUST send the Peer Key Identifier extension if, and only if, it has stored the RI public key corresponding to the stored RI ID as specified in section 5.4.2.4.1. The Device MUST send the No OCSP Response extension if, and only if, it has a complete set of valid OCSP responses for the RI certificate chain. The Device MUST send the OCSP Responder Key Identifier extension if, and only if, it has stored an OCSP Responder key for this RI.

Signature is a signature on this message (besides the Signature element itself). The signature method is as follows:

· The message except the Signature element is canonicalized using the exclusive canonicalization method defined in [XC14N].

· The result of the canonicalization, d, is considered as input to the signature operation.

· The signature is calculated on d in accordance with the rules of the negotiated signature scheme

The RI MUST verify the signature on the ROAP-RORequest message.

5.4.3.1.2 Message syntax

The <roRequest> element specifies the ROAP-RORequest message. It has complex type roap:RORequest, which extends the basic roap:Request type.

<element name="roRequest" type="roap:RORequest"/>

<complexType name="RORequest">

 <annotation>

 <documentation xml:lang="en">

 Message sent from Device to RI to request an RO.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Request">

 <sequence>

 <element name="deviceID" type="roap:Identifier"/>

 <element name="domainID" type="roap:DomainIdentifier"

 minOccurs="0"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="nonce" type="roap:Nonce"/>

 <element name="time" type="dateTime"/>

 <element name="roInfo">

 <complexType>

 <sequence maxOccurs="unbounded">

 <element name ="roID" type="ID"/>

 <element name="dcfHash" minOccurs="0">

 <complexType>

 <sequence>

 <element name="hash" type="base64Binary"/>

 </sequence>

 <attribute name="algorithm" type="anyURI”

 default="http://www.w3.org/2000/09/xmldsig#sha1"/>

 </complexType>

 </element>

 </sequence>

 </complexType>

 </element>

 <element name="certificateChain" type="roap:CertificateChain" minOccurs="0"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

The following schema fragment defines the Transaction Identifier extension:

<complexType name="TransactionIdentifier">

 <complexContent>

 <extension base="roap:Extension">

 <sequence maxOccurs=”unbounded”>

 <element name="contentID" type=”anyURI”/>

 <element name="id">

 <simpleType>

 <restriction base="string">

 <length value="16"/>

 </restriction>

 </simpleType>

 </element>

 </sequence>

 </extension>

 </complexContent>

</complexType>

5.4.3.2 RO Response

The ROAP-ROResponse message is sent from the RI to the Device either in response to a ROAP-RORequest message (two-pass variant) or by RI initiative (one-pass variant). It carries the protected ROs.

5.4.3.2.1 Message description

	Parameter
	ROAP-ROResponse

	
	2-pass

Status = Success
	2-pass

Status ≠ Success
	1-pass

	Status
	M
	M
	M

	Device ID
	M
	-
	M

	RI ID
	M
	-
	M

	Device Nonce
	M
	-
	-

	Protected ROs
	M
	-
	M

	Certificate Chain
	O
	-
	O

	OCSP Response
	O
	-
	M

	Extensions
	O
	-
	O

	Signature
	M
	-
	M

Table 6: RO Response Message Parameters

Status indicates if the request was successfully handled or not. In the latter case an error code specified in Section 5.3.6 is sent.

Device ID identifies the requesting Device, in the same manner as in the ROAP-DeviceHello message as specified in section 5.4.2.1.1. The value returned here MUST equal the Device ID sent by the Device in the ROAP-RORequest message that triggered this response in the 2-pass ROAP. In the 1-pass ROAP, the MUST equal the stored Device ID of the recipient Device, as defined in section 5.4.2.4.1. If the Device ID is incorrect, the ROAP-ROResponse processing will fail and the Device MUST discard the received ROResponse PDU.

RI ID identifies the RI. In the 2-pass protocol, the value MUST equal the RI ID sent by the Device in the preceding ROAP-RORequest message. In the 1-pass protocol, the value MUST equal the stored RI ID as specified in section 5.4.2.4.1.

Device Nonce: This parameter, if present (2-pass), MUST have the same value as the corresponding parameter value in the preceding ROAP-RORequest.

Protected RO(s) are the Rights Objects (in the form of <ProtectedRO> elements), in which sensitive information (such as content encryption keys, CEKs) is encrypted.

Certificate Chain: This parameter MUST be present unless a preceding ROAP-RORequest message contained the Peer Key Identifier extension, the extension was not ignored by the RI, and its value identified the RI's current key. When present, the value of a Certificate Chain parameter shall be as described for the Certificate Chain parameter of the ROAP-RegistrationResponse message

The Device SHOULD check if the RI certificate chain received in this parameter corresponds to stored certificate verification data for this RI. If so, the Device need not verify the RI certificate chain again, otherwise the Device MUST verify the RI certificate chain. If an RI certificate is received that is not in the stored certificate verification data for this RI, and if the expiry time of the received RI certificate is later than the RI Context for this RI, and the certificate status of the RI certificate as indicated in the OCSP response is good, then the Device MUST verify the complete chain and SHOULD replace the stored RI certificate verification data with the received RI certificate data and set the RI context expiry time to that of the received RI certificate expiry time.
OCSP Response: This parameter, when present, SHALL be a complete set of valid OCSP responses for the RI's certificate chain. The Device MUST NOT fail due to the presence of more than one OCSP response element. This parameter will not be sent if the Device sent the Extension No OCSP Response in a preceding ROAP-RegistrationRequest (and the RI did not ignore that extension). For the processing of this parameter, see further Section 6.
Extensions: The following extensions are defined for the ROAP-ROResponse message:
· Transaction Identifier: Allows an RI to provide a Device with information for tracking of transactions, for example relating to loyalty programs (an example of this could be reward scheme information from the DCF). The RI MUST NOT include a TransactionIdentifier ROAP extension in the ROResponse when the ROResponse contains a RO bound to a GroupID as specified in section Error! Reference source not found.. Upon reception of a ROResponse containing a TransactionIdentifier ROAP extension and a RO bound to a GroupID a Device MUST ignore the TransactionIdentifier ROAP extension.

Signature is a signature on data sent in the protocol. The signature is computed using the RI's private key and the current message (besides the Signature element itself). The signature method is as follows:

· All elements except the Signature element are canonicalized using the exclusive canonicalization method defined in [XC14N].

· The resulting data d is considered as input to the signature operation.

· The signature is calculated on d in accordance with the rules of the negotiated signature scheme

The Device MUST verify this signature. A Device MUST NOT accept the RO acquisition as successful unless the signature verifies, the RI certificate chain has been successfully verified, and the OCSP response indicates that the RI certificate status is good. If the acquisition protocol failed, the Device MUST NOT install the received ROs.

Before installing any received ROs that are stateful (indicated by the stateful attribute of the <ro> element), the Device MUST apply the RO Replay protection described in the Replay Protection Section.

5.4.3.2.2 Message syntax

The <roResponse> element specifies the ROAP-ROResponse message. It has complex type roap:ROResponse, which extends the basic roap:Response type.

<element name="roResponse" type="roap:ROResponse"/>

<complexType name="ROResponse">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to a roRequest message.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="deviceID" type="roap:Identifier"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="nonce" type="roap:Nonce" minOccurs="0"/>

 <element name="protectedRO" type="roap:ProtectedRO" maxOccurs="unbounded"/>

 <element name="certificateChain" type="roap:CertificateChain" minOccurs="0"/>

 <element name="ocspResponse" type="base64Binary" minOccurs="0" maxOccurs="unbounded"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

The roap:ProtectedRO type is defined in The Protected Rights Object payload type section.

5.4.4 Domain Management

5.4.4.1 Join Domain Request

The ROAP-JoinDomainRequest message is sent from a Device to an RI and is a request to join a Domain. This message is the first of the 2-pass Join Domain protocol.

5.4.4.1.1 Message description

	ROAP-JoinDomainRequest

	Parameter
	Mandatory/Optional

	DeviceID
	M

	RI ID
	M

	Device Nonce
	M

	Request Time
	M

	Domain Identifier
	M

	Certificate Chain
	O

	Extensions
	O

	Signature
	M

Table 7: Join Domain Request Message Parameters

Device ID identifies the requesting Device. The value MUST equal the stored Device ID as specified in section 5.4.2.4.1.

RI ID identifies the authorizing RI. The value MUST equal the stored RI ID as specified in section 5.4.2.4.1.

Device Nonce is a nonce chosen by the Device. Nonces are generated and used in this message as specified in section 5.3.10.
Request Time is the current DRM Time, as seen by the Device. Connected Devices and Unconnected Devices that support DRM Time MUST insert their current DRM Time. Unconnected Devices that do not support DRM Time MUST use the value “Undefined”.
Domain Identifier shall identify the Domain the Device wishes to join.

Certificate Chain: This parameter is sent unless Certificate Caching is indicated in the RI Context with this RI. When present, the parameter value shall be as described for the Certificate Chain parameter in the ROAP-RegistrationRequest message.

Extensions: The following extensions are defined for the ROAP-JoinDomainRequest message:
· Peer Key Identifier: An identifier for an RI public key stored in the Device. If the identifier matches stored RI ID as specified in section 5.4.2.4.1, or if it is empty, it means the Device has already stored the RI ID and the corresponding RI certificate chain, and the RI need not send down its certificate chain in its response message.

· No OCSP Response: Presence of this extension indicates to the RI that there is no need to send any OCSP responses since the Device has cached a complete set of valid OCSP responses for this RI.

· OCSP Responder Key Identifier: This extension identifies an OCSP responder key stored in the Device. If the identifier matches the key in the certificate used by the RI's OCSP responder, the RI MAY remove the OCSP Responder certificate chain from the OCSP response before providing the OCSP response to the Device.

· Hash Chain Support: When this extension is present, it signals that the client supports a technique of generating Domain Keys through hash chains, see section Error! Reference source not found..

The Device MUST send the Peer Key Identifier extension if, and only if, it has stored the RI public key corresponding to the stored RI ID as specified in section 5.4.2.4.1. The Device MUST send the No OCSP Response extension if, and only if, it has a complete set of valid OCSP responses for the RI’s certificate chain. The Device MUST send the OCSP Responder Key Identifier extension if, and only if, it has stored an OCSP Responder key for this RI. The Device MUST send the Hash Chain Support extension if, and only if, it supports hash-chained Domain keys.

Signature is a signature on this message (excluding the Signature element itself). The signature method is as follows:

· The message except the Signature element is canonicalized using the exclusive canonicalization method defined in [XC14N].

· The result of the canonicalization, d, is considered as input to the signature operation.

· The signature is calculated on d in accordance with the rules of the negotiated signature algorithm.

The RI MUST verify the signature on the ROAP-JoinDomainRequest message.

5.4.4.1.2 Message syntax

The <joinDomainRequest> element specifies the ROAP-JoinDomainRequest message. It has complex type roap: DomainRequest, which extends the basic roap:Request type. Note that this type is used both for join and leave Domain request messages.

<element name="joinDomainRequest" type="roap:DomainRequest"/>

<complexType name="DomainRequest">

 <annotation>

 <documentation xml:lang="en">

 General PDU for sending domain-related requests from a Device to an RI.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Request">

 <sequence>

 <element name="deviceID" type="roap:Identifier"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="nonce" type="roap:Nonce"/>

 <element name="time" type="roap:dateTimeOrUndefined"/>

 <element name="domainID" type="roap:DomainIdentifier"/>

 <element name="certificateChain" type="roap:CertificateChain" minOccurs="0"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

The following schema fragment defines the roap:DomainIdentifier type. The last three characters (digits) represent the Domain Generation (see section Error! Reference source not found. for further information). RIs will always respond with the Domain Key corresponding to the most recent Domain Generation and, if hash chains are not supported, all earlier Domain Keys for this Domain too.

<simpleType name="DomainIdentifier">

 <restriction base="string">

 <pattern value=".{1,17}\d{3}"/>

 </restriction>

</simpleType>

The following schema fragment defines the Hash Chain Support extension:

<complexType name="HashChainSupport">

 <complexContent>

 <extension base="roap:Extension"/>

 </complexContent>

</complexType>
5.4.4.2 Join Domain Response

The ROAP-JoinDomainResponse message is sent by an RI to a Device in response to a ROAP-JoinDomainRequest message. This message is the second message in the 2-pass protocol to join a Device to a Domain.

5.4.4.2.1 Message description

	Parameter
	ROAP-JoinDomainResponse

	
	Status = “Success”
	Status ≠ “Success”

	Status
	M
	M

	Device ID
	M
	-

	RI ID
	M
	-

	Device Nonce
	M
	-

	Domain Info
	M
	-

	Certificate chain
	O
	-

	OCSP Response
	O
	-

	Extensions
	O
	-

	Signature
	M
	-

Table 8: Join Domain Response Message Parameters

Status indicates if the request was successfully handled or not. In the latter case an error code as specified in Section 5.3.6 is sent.

Device ID identifies the requesting Device. The value returned here MUST equal the Device ID sent by the Device in the ROAP-JoinDomainRequest message that triggered this response.

RI ID identifies the RI. The value returned here MUST equal the RI ID sent by the Device in the preceding ROAP-JoinDomainRequest message.
Device Nonce: This parameter MUST have the same value as the corresponding parameter value in the preceding ROAP-JoinDomainRequest.

Domain Info: This parameter carries Domain keys (encrypted using Device’s public key) as well as information about the maximum lifetime of the Domain. Devices MAY use a shorter lifetime than suggested by the RI.

Certificate Chain: This parameter MUST be present unless a preceding ROAP-JoinDomainRequest message contained the Peer Key Identifier extension, the extension was not ignored by the RI, and its value identified the RI's current key. When present, the value of a Certificate Chain parameter shall be as described for the Certificate Chain parameter of the ROAP-RegistrationResponse message.

The Device SHOULD check if the RI certificate chain received in this parameter corresponds to stored certificate verification data for this RI. If so, the Device need not verify the RI certificate chain again, otherwise the Device MUST verify the RI certificate chain. If an RI certificate is received that is not in the stored certificate verification data for this RI, and if the expiry time of the received RI certificate is later than the RI Context for this RI, and the certificate status of the RI certificate as indicated in the OCSP response is "good," then the Device MUST verify the complete chain and SHOULD replace the stored RI certificate verification data with the received RI certificate data and set the RI context expiry time to that of the received RI certificate expiry time.
OCSP Response: This parameter, when present, SHALL be a complete set of valid OCSP responses for the RI's certificate chain. The Device MUST NOT fail due to the presence of more than one OCSP response element. This parameter will not be sent if the Device sent the Extension No OCSP Response in the preceding ROAP-JoinDomainRequest (and the RI did not ignore that extension). An exception to this is when the RI deems that the Device's DRM Time is inaccurate. For the processing of this parameter, see further Section 6.

Extensions: The following extension is currently defined for the ROAP-JoinDomainResponse message:

· Hash Chain Support: When this extension is present it indicates that the RI is using the technique of generating Domain Keys through hash chains described in the Domains Section. The RI MUST NOT include this extension in the ROAP-JoinDomainResponse unless the same extension was received in the preceding ROAP-JoinDomainRequest. If the Device receives the Hash Chains Support extension then it needs only store the latest Domain Key for a given Domain.

Signature is a signature on this message (besides the Signature element itself). The signature method is as follows:

· The message except the Signature element is canonicalized using the exclusive canonicalization method defined in [XC14N].

· The result of the canonicalization, d, is considered as input to the signature operation

· The signature is calculated on d in accordance with the rules of the negotiated signature algorithm.

The Device MUST verify this signature. A Device MUST NOT accept the Join Domain protocol as successful unless the signature verifies, the RI certificate chain has been successfully verified, and the OCSP response indicates that the RI certificate status is good. If the Join Domain protocol failed the Device MUST NOT store a Domain Context, otherwise the Device MUST store the resulting Domain Context.

The stored Domain Context SHALL at a minimum contain: The Domain ID (which includes the Domain Generation), the Domain Context Expiry Time, the riURL (as stored in the associated RI Context), and, if applicable, an indication that the RI supports hash-chained Domain Keys. If the Device and RI both support hash chains, the Domain Context SHALL contain the Domain Key corresponding to the highest known generation, otherwise the Domain Context SHALL contain all Domain Keys of all Domain Generations. The Domain Context SHALL also contain the RI Public Key for the case when the Domain Context Expiry Time extends beyond the RI Context Expiry Time.

A Device MUST NOT install any Domain ROs for a Domain whose Domain Context has expired. In the case of Unconnected Devices that do not support DRM Time, the Domain Context does not expire and hence has a value that is infinite, as indicated in the DomainInfo:NotAfter element.

NOTE: Rights Issuers should carefully consider the security implications of using the value “Infinite” for Devices that support DRM Time.

A Device MAY have several Domain Contexts with an RI.

5.4.4.2.2 Message syntax

The <joinDomainResponse> element specifies the ROAP-JoinDomainResponse message. It has complex type roap:JoinDomainResponse, which extends the basic roap:Response type.

<element name="joinDomainResponse" type="roap:JoinDomainResponse"/>

<complexType name="JoinDomainResponse">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to a joinDomainRequest.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="deviceID" type="roap:Identifier"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="nonce" type="roap:Nonce"/>

 <element name="domainInfo" type="roap:DomainInfo"/>

 <element name="certificateChain" type="roap:CertificateChain" minOccurs="0"/>

 <element name="ocspResponse" type="base64Binary" minOccurs="0" maxOccurs="unbounded"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

The following schema fragment defines the DomainInfo type:

<complexType name="DomainInfo">

 <sequence>

 <element name="notAfter" type="roap:dateTimeOrInfinite"/>

 <element name="domainKey" type="roap:ProtectedDomainKey" maxOccurs="unbounded"/>

 </sequence>

</complexType>

<simpleType name="dateTimeOrInfinite">

 <union memberTypes="dateTime roap:InfiniteString"/>

</simpleType>

<simpleType name="InfiniteString">

 <restriction base="string">

 <enumeration value="Infinite"/>

 </restriction>

</simpleType>

The <notAfter> element expresses, in UTC, the expiry time of the Domain Context. The value ”Infinite” indicates infinite lifetime of the Domain Context.

The <domainKey> element contains the wrapped Domain key and a key-confirming MAC key, see below.

<complexType name="ProtectedDomainKey">

 <sequence>

 <element name="encKey" type="xenc:EncryptedKeyType"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="mac" type="base64Binary"/>

 </sequence>

</complexType>

The <encKey> element contains a MAC key, KMAC, and a Domain Key, KD, wrapped as specified in the Key Management section Error! Reference source not found.. The value of the <encKey> element's Id attribute must equal the value of the <domainId> element in the preceding ROAP-JoinDomainRequest message, save for the Domain Generation part. If Hash Chains are supported by both the Device and the RI, only the Domain Key corresponding to the most recent Domain Generation SHOULD be included, otherwise all Domain Keys for all Domain Generations MUST be included (including their domain identifiers as Id attributes). The child of the <ds:KeyInfo> element inside the <encKey> element SHALL be of type roap:X509SPKIHash, identifying a particular DRM Agent's public key through the hash of the subjectPublicKeyInfo value in its certificate.
The <riID> element is necessary for key confirmation purposes. A Device MUST verify that it has the same value as the <riID> element of the ROAP-JoinDomainResponse message itself.

The <mac> element provides key-confirmation through a MAC on the canonical [XC14N] version of the <domainKey> element (excluding the <mac> element itself) using the MAC key KMAC wrapped in the <encKey> element. The MAC algorithm to use is defined by the RI Context. Devices MUST NOT install domain keys where the MAC is invalid.

5.4.4.3 Leave Domain Request

The ROAP-LeaveDomainRequest message is sent from the Device to the RI. This message is the first message in the 2-pass protocol for removing a Device from a Domain.

5.4.4.3.1 Message description

	ROAP-LeaveDomainRequest

	Parameter
	Mandatory/Optional

	DeviceID
	M

	RI ID
	M

	Device Nonce
	M

	Request Time
	M

	Domain Identifier
	M

	Certificate Chain
	O

	Extensions
	O

	Signature
	M

Table 9: Leave Domain Request Message Parameters

Device ID identifies the requesting Device. The value MUST equal the stored Device ID as specified in section 5.4.2.4.1.

RI ID identifies the authorizing RI. The value MUST equal the stored RI ID as specified in section 5.4.2.4.1.

Device Nonce is a nonce chosen by the Device. Nonces are generated and used in this message as specified in section 5.3.10.
Request Time is the current DRM Time, as seen by the Device. Connected Devices and Unconnected Devices that support DRM Time MUST insert their current DRM Time. Unconnected Devices that do not support DRM Time MUST use the value “Undefined”.

Domain Identifier identifies the Domain.

Certificate Chain: This parameter is sent unless Certificate Caching is indicated in the RI Context with this RI. When present, the parameter value shall be as described for the Certificate Chain parameter in the ROAP-RegistrationRequest message.

Extensions: The following extension is currently defined for the ROAP-LeaveDomainRequest message:

· Not a Domain Member: Presence of this extension indicates to the RI that the Device does not consider itself a member of this Domain (even though it is sending a request for the RI to remove it from the Domain). This could happen, for example, if the Device already has left the Domain, but receives a new trigger to leave it (perhaps because the RI never received the previous ROAP-LeaveDomainRequest). This extension MUST be included in the request if the Device is not a member of the identified Domain.
Signature is a signature on this message (excluding the Signature element itself). The signature method is as follows:

· The message except the Signature element is canonicalized using the exclusive canonicalization method defined in [XC14N].

· The result of the canonicalization, d, is considered as input to the signature operation.

· The signature is calculated on d in accordance with the rules of the negotiated signature algorithm.

The RI MUST verify the signature on the ROAP-LeaveDomain message.

The Device MUST ensure that the Domain Context of the corresponding Domain is deleted before sending the ROAP-LeaveDomainRequest to the RI.

5.4.4.3.2 Message syntax

The <leaveDomainRequest> element specifies the ROAP-LeaveDomainRequest message. It has complex type roap:DomainRequest, which extends the basic roap:Request type.

<element name="leaveDomainRequest" type="roap:DomainRequest"/>

The following schema fragment defines the Not a Domain Member extension:

<complexType name="NotDomainMember">

 <complexContent>

 <extension base="roap:Extension"/>

 </complexContent>

</complexType>

5.4.4.4 Leave Domain Response

The ROAP-LeaveDomainResponse message is sent by an RI to a Device in response to a ROAP-LeaveDomainRequest message. This message is the second message in the 2-pass protocol for removing a Device from a Domain.

5.4.4.4.1 Message description

	ROAP-LeaveDomainResponse

	Parameter
	Mandatory/Optional

	
	Status = "Success"
	Status ≠ "Success"

	Status
	M
	M

	Device Nonce
	M
	-

	Domain Identifier
	M
	-

	Extensions
	O
	-

Table 10: Leave Domain Response Message Parameters

Status indicates if the request was successfully handled or not. In the latter case an error code defined in section 5.3.6 is sent.

Device Nonce is the nonce sent by the Device. This parameter MUST have the same value as the corresponding parameter value in the preceding ROAP-LeaveDomainRequest.
Domain Identifier identifies the Domain from which the RI removed the Device. The Domain Generation part of the Domain Identifier SHALL be ignored.

Extensions: No extensions are currently defined for the ROAP-LeaveDomainResponse message.

The RI sends the ROAP-LeaveDomainResponse after having deleted the association of this Device to the Domain (i.e. updated the Domain membership status).

5.4.4.4.2 Message Syntax

The <leaveDomainResponse> element specifies the ROAP-LeaveDomainResponse message. It has complex type roap:LeaveDomainResponse, which extends the basic roap:Response type.

<element name="leaveDomainResponse" type="roap:LeaveDomainResponse"/>

<complexType name="LeaveDomainResponse">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to a leaveDomainRequest

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="nonce" type="roap:Nonce"/>

 <element name="domainID" type="roap:DomainIdentifier"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

(2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20040205]
(2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20040205]

_1136734989.vsd
�

�

Device�

Rights Issuer�

RO Request�

RO Response�

1�

2�

_1136735213.vsd
�

�

Device�

Rights Issuer�

1�

2�

JoinDomainRequest�

JoinDomainResponse�

_1136735282.vsd
�

�

Device�

Rights Issuer�

1�

2�

LeaveDomainRequest�

LeaveDomainResponse�

_1143030459.vsd
�

�

�

�

Rights Issuer�

ROAP Trigger {roRequest}�

RO Request�

RO Response�

ROAP Trigger {joinDomain}�

Join Domain Request�

Join Domain Response�

ROAP Trigger {leaveDomain}�

Leave Domain Request�

Leave Domain Response�

ROAP Trigger {registrationRequest}�

Device�

DeviceHello�

RI Hello�

RegistrationRequest�

RegistrationResponse�

...�

...�

...�

_1136735094.vsd
�

�

Device�

Rights Issuer�

RO Response�

1�

_1136734823.vsd
�

�

Device�

Rights Issuer�

Device Hello�

RI Hello�

RegistrationRequest�

RegistrationResponse�

OCSP Responder�

OCSP Request�

OCSP Response�

1�

2�

3�

a�

b�

4�

