Doc# OMA-DLDRM-2005-0328-DLOTAv2-Security.doc[image: image3.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Doc# OMA-DLDRM-2005-0328-DLOTAv2-Security.doc
Change Request

Change Request

	Title:
	DLOTAv2 Security
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	BAC-DLDRM

	Doc to Change:
	OMA-TS_DLOTA-V2_0-20050824-D

	Submission Date:
	9/10/2005

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Ozgur Gurleyen, Ozgur.Gurleyen@Vodafone.com
James Irwin, James.Irwin@Vodafone.com

	Replaces:
	n/a

1 Reason for Change

This CR proposes detailed specification text to address the security related aspects of the following use cases from the requirements document:
· Use case 3: Server Authentication and Integrity Protection

· Use case 9: Server Initiated Automatic Download

· Use case 13: User confirmation

2 Impact on Backward Compatibility

The proposed mechanisms build on and extend the option features that were specified within OMA DLOTAv1.0.
3 Impact on Other Specifications

None.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

We recommend that the BAC-DLDRM group approves this CR to be included in the first release of the DLOTAv2 specifications.
6 Detailed Change Proposal

2. References
2.2 Normative References
	[TLS]
	T. Dierks and C. Allen, “Transport Layer Security (TLS) Version 1.0”, RFC 2246, Jan 1999. http://www.ietf.org/rfc/rfc2246.txt

	[GAA]
	“Generic Authentication Function; Access to Network Application Functions using Hypertext Transfer Protocol over Transport Layer Security (HTTPS); (Release 6)”. 3GPP TS 33.222 v6.4.0. http://www.3gpp.org/ftp/Specs/html-info/33222.htm

	[HTTP Auth]
	J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, L. Stewart, “HTTP Authentication: Basic and Digest Access Authentication”, IETF RFC 2617, June 1999

	[OMADM]
	“OMA Device Management v1.2” ,Open Mobile Alliance™, OMA-ERP-DM-V1_2-20050729-C. http://www.openmobilealliance.org/

	[HTTPS]
	“HTTP over TLS”, E. Rescola, IETF RFC 2818, May 2000.

	[WAPTLS]
	OMA WAP-219-TLS, 4.11.2001: http://www.openmobilealliance.org/tech/affiliates/wap/wap-219-tls-20010411-a.pdf.

	[WAPCert]
	OMA WAP-211-WAPCert, 22.5.2001: http://www.openmobilealliance.org/tech/affiliates/wap/wap-211-wapcert-20010522-a.pdf.

	[AESTLS]
	“Advanced Encryption Standard (AES) Ciphersuites for Transport Layer Security(TLS)”, P. Chown, June 2002

5. OMA Download Process
During the download and installation process the user SHOULD be given opportunities to control the download and to determine object specific terms. For any operation, the user SHOULD be informed of progress and given an opportunity to cancel the activity. The user interface of the device SHOULD allow the user to abort the download operation at appropriate points during the download and installation process (i.e. before a well-intentioned attempt to send an installation notification has been done).

When a Media Object is installed, and if an Installation Notification has been requested in the Download Descriptor, a confirmation MUST be sent to the server to indicate that the installation has completed. If the Download Descriptor does not include a request for an Installation Notification then no such confirmation will be sent.

If an InstallNotifyURI has been defined in the Download Descriptor, then errors during the download process MUST be reported using the status report mechanism, The server may use the status report, communicating both success and failure of the transaction, for accounting or for other customer service needs.

[image: image2.png]Discovery 1. Transfer

Application

4. Request User
Confirmation
(Optional) Download

User Agent

5. Retrieve
Media Object

7.Send
Installation
Notification

Server

Download
Descriptor

|, Media Object

Installation
Notification

N

Figure 1. OMA Download OTA Process.
5.2 Object Installation process

Object installation is the process by which a Media Object is downloaded onto the device and made available for execution or rendering.

To install a Media Object, the Download Agent that is responsible for the processing of the Download Descriptor performs a number of actions, and SHOULD provide the user with appropriate feedback if one of the actions fails. It MUST also use the Status Report mechanism (if requested in the Download Descriptor) to give the server infrastructure feedback about a possible failure of the download event, and MUST use the mechanism to report on a successful installation.

Within OMA Download OTA v2 there are three notifications, these notifications are used to provide feedback on the status of the download and installation operations.. These notifications can be used by a service to determine how many Media Objects were downloaded and installed, or if a large number of users aborted the download when they were presented with a formal description of the Media Object.

The 3 notifications supported by OMA Download OTA v2 are:
· Download Completion Notification

The Download Completion Notification indicates to the Status Report Server that the Download Agent successfully downloaded the Media Object. At the point where this notification is sent the Media Object is not available to the user. This notification can be used to achieve the pre-downloading Media Objects use case [DLREQ].
·
Installation Notification

The Installation Notification indicates the installation status of the Media Object to the Status Report Server. If the installation was successful the Media Object will be available to the user after the Download Agent has completed its obligations to send the Installation Notification as specified in section 5.2.8. In the case of a failure the Installation Notification indicates that the Download Agent encountered an error during the installation of the Media Object. If installation fails then the Media Object MUST be discarded.

· Deletion Complete Notification

The Deletion Completion Notification indicates to the Status Report Serverthat the Media Object has been removed from the device, and that the Media Object is no longer available to the user.

Table 1. Installation status code and associated message

	Status Code
	Status Message
	Informative description of Status Code usage

	900
	Success
	Indicates to the service that the Media Object was downloaded and installed successfully.

	901
	Insufficient memory
	Indicates to the service that the device could not accept the Media Object as it did not have enough storage space on the device. This event may occur before or after the retrieval of the Media Object.

	902
	User Cancelled
	Indicates that the user does not want to go through with the download operation. The event may occur after the analyses of the Download Descriptor, or instead of the sending of the Installation Notification (i.e. the user cancelled the download while the retrieval/installation of the Media Object was in process).

	903
	Loss of Service
	Indicates that the client device lost network service while retrieving the Media Object.

	905
	Attribute mismatch
	Indicates that the Media Object does not match the attributes defined in the Download Descriptor, and that the device therefore rejects the Media Object.

	906
	Invalid descriptor
	Indicates that the device could not interpret the Download Descriptor. This typically means a syntactic error.

	907
	Invalid Type
	Indicates that the Device does not support one or more of the media types specified by the Type(s) attribute.

	912
	Deletion Completee
	Indicates that the Media Object is deleted from the device.

	951
	Invalid DDVersion
	Indicates that the device was not compatible with the “major” version of the Download Descriptor, as indicated in the attribute Version (that is a parameter to the attribute Media).

	952
	Device Aborted
	Indicates that the device interrupted, or cancelled, the retrieval of the Media Object despite the fact that the content should have been executable on the device. This is thus a different case from "Insufficient Memory" and "Non-Acceptable Content" (where the device has concluded that it cannot use the content).

	953
	Non-Acceptable Content
	Indicates that after the retrieval of the Media Object, but before sending the installation notification, the Download Agent concluded that the device cannot use the Media Object.

	954
	Loader Error
	Indicates that the URL that was to be used for the retrieval of the Media Object did not provide access to the Media Object. This may represent for example errors of type server down, incorrect URL and service errors.

	955
	Reservation Error
	Indicates that the Download Agent was not able to execute the download transaction at the designated time,

	956
	Reservation Cancelled
	Indicates that after receiving the Download Descriptor with timing reservation related attributes, the Download Agent or User decides to cancel timing reservation.

	957
	Download Completion
	Indicates that the Media Object is correctly downloaded to the Download Agent. In this state, the Media Object is yet to be available to the user.

	958
	Media Object Updated
	Indicates that the Download cancelled the Media Object Download due to the fact the Media Object has been updated.

5.2.3 Step 4; User Confirmation

User confirmation is an important part of the download and installation process, and is required to prevent 3rd parties from surreptitiously installing Media Objects on the device without the users knowledge, however, there are use cases where it is desirable to suppress the user confirmation, for example: services where the Media Object will be downloaded during the night when the user will not be available.
In order to enable these use cases the Download Server can signal that user confirmation should not be requested through inclusion of the suppressUserConfirmation attribute (with the value set to ‘True’) in the Download Descriptor. The Download Agent will only honour this request if the Download Server is authorised. See section 6.4 for details of how the Download Agent can determine if the Download Server is authorised to request suppression of the user confirmation.
If the Download Descriptor includes the suppressUserConfirmation attribute and the value is equal to ‘True’ and the Download Server can be authorised then the Download Agent MUST NOT request user confirmation and must proceed to the next step i.e. Object Retrieval.
If the Download Descriptor includes the suppressUserConfirmation attribute and the value is equal to ‘False’ the Download Agent MUST request user confirmation prior to proceeding.

If the Download Descriptor does not include the suppressUserConfirmation attribute the Download Agent MUST treat the Download Descriptor as if it includes the suppressUserConfirmation attribute with the value equal to ‘False’.

If the Download Agent determines that it needs to request user confirmation then the following information SHOULD, if available, be presented to the user:

· Name

· Vendor

· Size

· Type

· Description
· DownloadTime
If the Download Descriptor determines that the device does not support one or more of the media types as specified by the Type attribute(s) then the behaviour of the Download Agent is dependant upon whether user confirmation is required or not:
· If user confirmation is required then the user SHOULD be prompted to confirm if they wish to proceed with the Download. If the user chooses to reject or cancel the download, based on the information presented, the Download Agent MUST post an “User Cancelled” status report.
· If user confirmation is not required (i.e. the suppressUserConfirmation attribute is present in the Download Descriptor and the value equal to ‘True’ and the Download Server is authorised) then the Download Agent MUST post an “Invalid Type” status report.

The Type attribute may occur multiple times in the Download Descriptor. This indicates that the device is recommended to support all the listed media types in order to successfully download and use the complete Media Object. In this case the Download Agent should interpret the multiple Type attributes in a manner such that the order of occurance indicates the decreasing importance to the user, i.e. that first type attribute has the highest relevance for presentation (it would typically be the, one or more, most important media types to be rendered or executed). If the Media Object is packaged or wrapped in a container format then the first, one or more, type attributes would represent the innermost Media Objects.
5.6 HTTP Specific Functionality

5.6.1 Client capability advertisement

For download operations over HTTP or HTTPS the device should advertise its capabilities (to the extent possible) by using the mechanism of HTTP request headers. Headers that SHOULD be included are Accept headers (at least Accept-Content) and User-Agent or UAProf.

The Server (or servers) supplying the Download Descriptor and the Media Object should use this information to select content that is appropriate for the device.

5.6.2
6.
7.
8.
8.6.1 State Management of download transaction

State Management in the download transaction can be handled using multiple different methods. The definition of these methods is outside the scope of this specification. This section gives two examples of methods that MAY be supported by a Download Agent.

The state management is most relevant in a transaction that leverages the Installation Notification. In this case it is important for the server to be able to associate the offer to download a Media Object (the download descriptor), the actual retrieval of the Media Object, and the Installation Notification (the Status Report).

The first method is based on the URL’s that are included in the Download Descriptor. Each of the URL’s may have a session identifier parameter that allows the server to associate the operations with each other.

The second method is based on the use of cookies, as defined in [HTTPSM]. This method allows the server to issue a cookie that will be associated with each subsequent operation within the download transaction.

8.6.2 Transparency of Download Descriptor mechanism

The Download Descriptor download transaction mechanism is designed to be transparent, i.e. from the content handler (i.e. GIF, JPEG, MIDI, etc.) point of view there should be no difference if the object was downloaded directly using a plain HTTP request-response, or using the Download Descriptor mechanism. If the content handler or the system in general, can benefit from information conveyed in the HTTP headers, then these headers should be available in a transparent manner.

The Download Descriptor transaction consists of three request-response pairs, all of them part of the transaction, and all of them with associated HTTP headers. The Download Agent MUST make the headers associated with the actual Media Object transfer available together with the Media Object. Headers associated with the two other (optional) request-response operations SHOULD NOT be exposed to the Media Object specific content handler.
8.7
9. DLOTAv2 Security

9.6 Download Client Authentication

HTTP Digest [HTTP Digest] MUST be supported for Download Client authentication by both the Download server and the Download Client. The use of client authentication MUST be enforced by the Download server. If authentication is required, the Download Server MUST initiate authentication with in a HTTP session by sending a HTTP 401 (Unauthorized) message as specified in the HTTP Digest Specification.
In cases where HTTP Authentication Proxies are used to perform Download Client authentication, the authentication proxy MUST indicate to the Download client inside an HTTP session that it requires authentication by sending a HTTP 407 (Proxy Authentication Required) as defined in the HTTP Digest Authentication specifications [HTTP Auth].

For 3GPP implementations of Download Clients, HTTP Digest authentication SHOULD be performed according to 3GPP GAA [GAA] specifications.

In cases where 3GPP GAA is not supported Download Clients SHOULD support username/password provisioning mechanisms. In order to provide interoperability OMA DMv1.2 [OMADM] MUST be supported by Download Clients.

9.7 Server Authentication

Download Servers and the Download Clients MUST support TLS [TLS] server authentication to authenticate the Download Server. The need for Server Authentication MUST be indicated using the HTTPS prefix in the URL of the download server. HTTPS implementations MUST conform to IETF RFC 2818[HTTPS]. Server Certificates used by the download servers MUST conform to WAP Certificate profile [WAPCert]

9.8 Server Authorisation

White lists SHALL be supported by the Download Client to provide authorization of Download Servers. The address of each authorized Download Server MUST be configured to the Download Agent. In order to ensure interoperability between various DLOTAv2.0, it is recommended that if OMA DM v1.2 MUST be supported and the provisioning of white lists SHOULD be performed using DM v1.2.
9.9 Confidentiality and Integrity Protection

When TLS is used to provide Download Server Authentication, the authenticated download MUST also be confidentiality and integrity protected using mechanisms defined in the TLS [TLS] specifications. TLS implementations MUST conform to WAP Profile of TLS [WAPTLS] with the following additions:

Download Server MUST implement the following cipher suites:

· TLS_RSA_WITH_AES_128_CBC_SHA [TLS-AES].
· TLS_RSA_WITH_3DES_EDE_CBC_SHA.
Download Client MUST implement the following cipher suites:
· TLS_RSA_WITH_NULL_SHA

· TLS_RSA_WITH_3DES_EDE_CBC_SHA.
For Download Client implementations that prefer additional cipher suites Download Clients SHOULD implement:
· TLS_RSA_WITH_AES_128_CBC_SHA [TLS-AES].
In cases where TLS is not used confidentiality and integrity protection SHOULD be provided by the underlying transport mechanism
9.10 Server Initiated Automatic Download

OMA Download OTA v2 includes the ability for a Download Server to automatically trigger the download and installation of a Media Object. This is achieved by pushing the Download Descriptors to devices via push delivery mechanisms such as:

· WAP Push

· MMS
The well-known value for the Push Application ID of the Download User Agent is:

 - URN: x-wap-application:dlota.ua

 - Number: 0x??

This Push Application ID MUST be used when using WAP Push to deliver Download Descriptors to the Download Agent.

The Download Agent MUST be able to receive and process Download Descriptors that are pushed using the Push Application ID defined above.

Single Server.

When a download client receives a trigger for download, it MUST check if the originator of the trigger message is in the white list (Defined in Section 6.4) stored in the terminal. The client MUST only accept the trigger if the originator of the trigger is in the white list.

The Download Server MUST include a randomly selected unique session ID in the URI of the trigger that is used to initiate the request for the Download Descriptor. The Session ID MUST be 128bits long and randomly generated for each download trigger.
Request-URI shall contain an URI parameter "requesttype" that shall be set to "register", i.e. Request-URI takes the form of "/bmsc.home1.net/keymanagement?requesttype= register
Upon receiving a trigger containing the URI for the download descriptor, the download client MUST contact the download server and present the SessionID in the DD request message. The Request-URI shall contain an URI parameter "SessionID" that shall be set to value of the SessionID" received in the triggering message.
Editor’s Note: Exact encoding of the session ID is for further study.
When the download server receives the request containing the SessionID, it MUST ensure that the session ID corresponds to a valid session ID that was pushed to the user as part of the URI for the Download Descriptor. In cases where the Session ID received does not match the Session ID sent the download server MUST reject the download request.
10. Download Descriptor
Editor’s Note: This section is not updated from the DLOTAv1.0 specification. This section needs to be updated.
The Download Descriptor is a collection of attributes, used to describe a Media Object. The defined attributes are specified to allow the Download Agent to identify, retrieve, and install Media Objects. It may also be used by the application that is actually processing the Media Object (the Content Handler); the Download Descriptor may contain media specific attributes.

This section defines only the semantics of the Download Descriptor. The syntax is described in a separate section.

10.6 Download Descriptor

The Download Descriptor is used by the Download Agent and by the content handler that ultimately processes the Media Object. The Download Descriptor may for example include content handler specific attributes. The Download Agent SHOULD expose the complete Download Descriptor to the content handler (at the request of the content handler. The interface may be the same as for HTTP headers).

The descriptor allows the device to verify that the desired Media Object is suitable for the device before being loaded. It also allows Media Object-specific attributes (parameters) to be supplied to the relevant content handler.

The client device MUST use the MIME media type declared by the transport or packaging mechanism to identify a Download Descriptor object. The MIME media type is defined in Section 8 “XML Syntax for Download Descriptor”.

A predefined set of attributes is specified to allow the Download Agent software to identify, retrieve, and install Media Objects. All attributes appearing in the Download Descriptor are made available to the content handler of the media type that the Download Descriptor references.

10.7 Download Descriptor attributes

The attributes in the descriptor MUST be formatted according to the syntax defined in the syntax section of this specification. If not, then an error code “Invalid Descriptor” MUST be returned in the status report. However, it will in many cases be impossible to send the error code in case of a Download Descriptor that cannot be parsed properly due to formatting errors.

Descriptors retrieved via HTTP should use the standard HTTP content negotiation mechanisms, such as the Content-Encoding header and the Content-Type charset parameter to decode the stream to the preferred character set for the actual MIME media type representation of the Download Descriptor.

Each attribute is defined using the following properties:

Name - The name of the attribute

Definition - A statement that clearly represents the concept and essential nature of the attribute

Status - Whether the attribute is Mandatory – it MUST be included in a valid Download Descriptor - or Optional - MAY be included in the Download Descriptor. The property also defines if support for the functionality is optional or mandatory in the Download Agent.

Datatype - Indicates the type of data that can be represented in the value of the attribute

Refinement - A qualifier that makes the meaning of the attribute narrower or more specific

Comment - A remark concerning the application of the attribute

The attributes are defined in the following sections.

10.7.1 type

	Name
	type

	Definition
	The MIME media type of the Media Object

	Status
	Download Descriptor: Mandatory. User Agent: Mandatory

	Datatype
	MIME Media type

	Refinement
	-

	Comment
	The type attribute indicates the media type of the object to be executed or rendered. The type attribute may occur multiple times in case the client device needs to support multiple media types in order to process a composite object or a packaging mechanism. The value of the type attribute MAY be different from the media type indicated in the HTTP header “content-type” as transport packaging MAY be used.

The type attribute(s) SHOULD be used by the client to evaluate its capabilities relative to the content to be downloaded.

The type attribute is used to indicate to the client if the Media Object to be downloaded has a media type that is supported by the client. If the type is not supported then the client SHOULD abort the download transaction.

The device MUST support multiple occurrences of the type attribute in the Download Descriptor.

10.7.2 size

	Name
	size

	Definition
	The number of bytes to be downloaded from the URI.

	Status
	 Download Descriptor: Mandatory. User Agent: Mandatory

	Datatype
	Non Negative Integer

	Refinement
	-

	Comment
	The storage size and the execution size are dependent on the environment and may be different from the value of the size attribute.
The size equals to zero “0” may be used if the size of the Media Object is unknown when the Download Descriptor is created. This may be happened when download reservation is taken place.
The transport size may also be different, if compression or some packaging format is used.

The size can be used to allocate sufficiently large data buffers for downloading in the client.

10.7.3 objectURI

	Name
	objectURI

	Definition
	The URI (usually URL) from which the Media Object can be loaded.

	Status
	Download Descriptor: Mandatory. User Agent: Mandatory

	Datatype
	URI

	Refinement
	-

	Comment
	The Download Agent MUST be able to use an HTTP GET to reference this URI in order to retrieve the Media Object.

10.7.4 msobjectURI

	Name
	msobjectURI

	Definition
	Multiple server URIs (usually URLs) from which the Media Object can be alternatively loaded. The msobjectURI attribute MAY contain more than one URL for the location of the Media Object via the server sub-attribute.

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	msobjectURIType

	Refinement
	-

	Comment
	If present, this attribute wraps one or more occurrences for the location of the Media Object.

10.7.5 server

	Name
	Server

	Definition
	The URI (usually URL) from which the Media Object can be loaded. The server attribute MAY contain more than one occurrence for the location of the Media Object.

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	URI

	Refinement
	-

	Comment
	The Download Agent MUST be able to use an HTTP GET to reference this URI in order to retrieve the Media Object.

10.7.6 updatedDDURI
	Name
	updatedDDURI

	Definition
	The URI to which the Download Agent MUST retrieve the Download Descriptor of updated Media Object(s).

	Status
	Download Descriptor: Optional. User Agent: Mandatory

	Datatype
	URI

	Refinement
	-

	Comment
	The Download Agent MUST be able to use an HTTP GET to reference this URI in order to retrieve the Download Descriptor of updated Media Objects.

10.7.7 installNotifyURI

	Name
	installNotifyURI

	Definition
	The URI (or usually URL) to which an Installation Status Report is to be sent, either in case of a successful completion of the download, or in case of a failure.

	Status
	Download Descriptor: Optional. User Agent: Mandatory

	Datatype
	URI

	Refinement
	-

	Comment
	If the installNotifyURI attribute is defined then the Download Agent MUST send an Installation Status Report both in the case of success and any kind of failure. The status code is as defined in table 1 (Section Object Installation Process).

If the attribute is missing then no Installation Status Report can be issued, neither for success nor for failure.

The Download Agent posts a status-report to this URL. The URL is used both to report errors and process aborts, as well as to verify the successful installation of the Media Object.

10.7.8 nextURL

	Name
	nextURL

	Definition
	The URL to which the client should navigate in case the end user selects to invoke a browsing action after the download transaction has completed with either a success or a failure.

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	A RFC2396 URL

	Refinement
	-

	Comment
	NextURL provides a way for the download service to express the desired terminal behaviour in scenarios where the service to user interaction is to continue with browsing actions.

This feature MAY for example be used when the Discovery Application is a Web browser.

10.7.9 DDVersion

	Name
	DDVersion

	Definition
	The version of the Download Descriptor technology.

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	String (decimal)

	Refinement
	

	Comment
	The format of the Version is “major.minor”. A Download Agent not supporting the “major” version of the Download Descriptor ersion MUST send an “Invalid DDVersion” status code to the installNotifyURI and reject the Download Descriptor.

The “minor” version is used to differentiate between backwards compatible versions of the Download Descriptor.

The version of the Download Descriptor defined in this specification is “2.0”.

The default DDVersion, when the attribute is omitted from the Download Descriptor, is “1.0”

10.7.10 name

	Name
	name

	Definition
	A user readable name of the Media Object that identifies the object to the user.

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	String

	Refinement
	Does not have any particular semantics, is intended for user interpretation.

	Comment
	The client MAY use the name as the default storage name, or as a part of it. The Download Agent MAY also use the attribute Vendor to ensure uniqueness between names.

10.7.11 description

	Name
	description

	Definition
	A short textual description of the Media Object

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	String

	Refinement
	Does not have any particular semantics, is intended for user interpretation.

	Comment
	The description attribute SHOULD be displayed to the user before the download of the Media Object is accepted by the end user.

The description attribute allows the user a last check before the transaction is completed.

10.7.12 vendor

	Name
	vendor

	Definition
	The organisation that provides the Media Object

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	String

	Refinement
	Does not have any particular semantics, is intended for user interpretation.

	Comment
	The attribute MAY be displayed to the user during installation. The attribute MAY be used by the Download Agent to create a unique name for the Media Object when it is stored in the device.

10.7.13 infoURL

	Name
	infoURL

	Definition
	A URL for further describing the Media Object

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	URL

	Refinement
	Does not have any particular semantics, is intended for user interpretation.

	Comment
	The infoURL can be used to retreive information that describes the Media Object...

10.7.14 iconURI

	Name
	iconURI

	Definition
	The URI of an icon

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	URI, URL

	Refinement
	-

	Comment
	The iconURI may be used by the client to represent the Media Object (e.g. an application) in the user interface (e.g. application manager).

10.7.15 installParam

	Name
	installParam

	Definition
	An installation parameter associated with the downloaded Media Object

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	VeryLongString

	Refinement
	-

	Comment
	The value is an opaque text string that is handed by the Download Agent to the Media Object Installer. The syntax and semantics of the opaque string is relevant only to the particular Media Object Installer. The value is fully transparent to the Download Agent.

10.7.16 downloadTime

	Name
	downloadTime

	Definition
	The time for the automatic download.

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	Date and time format defined by RFC2822 (date-time)

	Refinement
	-

	Comment
	dateTime

Values of type datetime MUST conform to a single lexical representation defined in section 3.2.7 of [XMLSchema]. This lexical representation is the extended format CCYY-MM-DDThh:mm:ssZ where CC denotes the century, YY denotes the year, MM denotes the month, DD denotes the day, T is the date/time separator, hh, mm, ss represent the hour, minute, and second respectively, and Z is the mandatory UTC indicator. For example, 2002-12-31T23:59:59Z represents December 31st, 2002, 23:59:59 UTC.

10.7.17 timestamp

	Name
	timestamp

	Definition
	The time measured by the Download Server.

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	Date and time format defined by RFC2822 (date-time)

	Refinement
	-

	Comment
	dateTime

Values of type datetime MUST conform to a single lexical representation defined in section 3.2.7 of [XMLSchema]. This lexical representation is the extended format CCYY-MM-DDThh:mm:ssZ where CC denotes the century, YY denotes the year, MM denotes the month, DD denotes the day, T is the date/time separator, hh, mm, ss represent the hour, minute, and second respectively, and Z is the mandatory UTC indicator. For example, 2002-12-31T23:59:59Z represents December 31st, 2002, 23:59:59 UTC.

10.7.18 environment
	Name
	environment

	Definition
	Container of execution environment specific metadata needed for the Media Object processing.

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	 XML schema any and its XML attribute “envtype” is an URI.

	Refinement
	

	Comment
	This attribute wraps the environment specific meta information described by namespace qualified XML elements. The “envtype” value unambiguously identifies the information set that can be included inside the “environment” element and the content handler of the Media Object. If the content handler is unknown then the client SHOULD abort the download transaction. The possible values of “envtype”, syntax and semantics of the internal meta data structures depend on separate environment specific standards.

10.7.19 Progressive Download Flag
	Name
	progressiveDownloadFlag

	Definition
	A flag that indicates if the Media Object is to be rendered as it is being downloaded.

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	Boolean

	Refinement
	“true” means that the client may render the Media Object as it is being downloaded, if the client has this capability

“false” means that the client is to download and then render the Media Object some time later. The Media Object is not to be reproduced as it is being downloaded.

	Comment
	If this attribute is missing, the Media Object is not to be reproduced as it is being downloaded.

10.7.20 mediaobject
	Name
	mediaobject

	Definition
	Container of Media Object specific information to retrieve the Media Object.

	Status
	Download Descriptor: Mandatory. User Agent: Mandatory

	Datatype
	-

	Refinement
	-

	Comment
	This attribute wraps the media object specific information to retrieve the media object. If the Download Descriptor contains.

The Download Agent MUST accept at least one mediaobject attribute in a single Download Descriptor.

10.7.21 objectID

	Name
	objectID

	Definition
	The identification of the media object

	Status
	Download Descriptor: Optional. User Agent: Mandatory

	Datatype
	String

	Refinement
	-

	Comment
	The Download Agent MUST use the object ID to identify the object.

The objectID field MUST contain a globally unique identifier for thisMedia Object. The value MUST be encoded using US-ASCII encoding. The value MUST be a unique URI according to [RFC2396]. The use of globally unique objectID’s is required for OMA DLDRMv2 and it is the responsibility of the content author to guarantee the uniqueness of the objectID within their own namespace.

10.7.22 objectVersion
	Name
	objectVersion

	Definition
	The version of the Object

	Status
	Download Descriptor: Optional. User Agent: Mandatory

	Datatype
	String (decimal)

	Refinement
	-

	Comment
	The format of the objectVersion is “major.minor”. objectVersion shall be incremented if the corresponding media object is updated.

10.7.23 downloadNotifyURI

	Name
	downloadNotifyURI

	Definition
	The URI (usually URL) to which a completion of download is to be sent.

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	URI

	Refinement
	-

	Comment
	The Download Server MAY include the downloadURI attribute into the Download Descriptor if it wants to receive the Download Completion Status Report from the Download Agent.

If the attribute is defined then the Download Agent MAY send a Download Completion Status Report in the case of download completion. The status code is as defined in table 1 (Section 5.2 Object Installation Process).

If the attribute is missing then no installation status report can be issued, neither for success nor for failure.

10.7.24 deleteNotifyURI
	Name
	deleteNotifyURI

	Definition
	The URI (usually URL) to which a delete completion is to be sent.

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	URI

	Refinement
	-

	Comment
	The Download Server MAY include the deleteNotifyURI attribute into the Download Descriptor if it wants to receive the Deletion Complete status report from the Download Agent.

If the attribute is defined then the Download Agent MAY send the Deletion Complete status report in the case where the Media Object is deleted. The status code is as defined in table 1 (Section 5.2 Object Installation Process).

If the attribute is missing then no installation status report can be issued, neither for success nor for failure.

10.7.25 interval

	Name
	interval

	Definition
	Container of time interval related information

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	-

	Refinement
	-

	Comment
	This attribute wraps the time interval related information for download reservation functionality. This attribute contains timeInterval, timeIntervalExpire attributes.

10.7.26 timeInterval

	Name
	timeInterval

	Definition
	The time interval for planned download

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	duration

Values of type duration MUST conform to a representation defined in section 3.2.6 of [XMLSchema]. The lexical representation for duration is the extended format Pn MnDTnHnM, where nM represents the number of months, nD the number of days, 'T' is the date/time separator, nH the number of hours, and nM the number of minutes. The number of years and seconds SHALL not be used. A preceding minus sign (‘-‘) is not allowed.

For example, P12H represents 12 hours interval.

	Refinement
	-

	Comment
	The Download Server MAY include timeInterval attribute into Download Descriptor if the Download Server wants to execute the download transaction with the desired time interval. The Download Server SHALL include downloadTime attribute if timeInterval attribute is presented in the Download Descriptor. The Download Agent SHOULD execute the download transaction at or after the desired time indicated by downloadTime and timeInterval attribute. The desired time can be caluculated by downloadTime + n x timeInterval (n = 0, 1, 2, …).
Adding duration to dateTime is specified in section E of [XMLSchema].

10.7.27 timeIntervalExpire
	Name
	timeIntervalExpire

	Definition
	The time limit for planned download.

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	dateTime

Values of type datetime MUST conform to a single lexical representation defined in section 3.2.7 of [XMLSchema]. This lexical representation is the extended format CCYY-MM-DDThh:mm:ssZ where CC denotes the century, YY denotes the year, MM denotes the month, DD denotes the day, T is the date/time separator, hh, mm, ss represent the hour, minute, and second respectively, and Z is the mandatory UTC indicator. For example, 2002-12-31T23:59:59Z represents December 31st, 2002, 23:59:59 UTC.

	Refinement
	-

	Comment
	The Download Server MAY include timeIntervalExpire attribute into Download Descriptor if the Download Server wants to execute the download transaction at the desired time interval. The Download Server MUST include timeIntervalExpire attribute if timeInterval attribute is presented in the Download Descriptor. The Download Agent SHALL not execute the download transaction at or after the time indicated by timeIntervalExpire attribute.

10.7.28 reservationNotifyURI
	Name
	reservationNotifyURI

	Definition
	A URL to which a reservation status report is to be sent.

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	URI

	Refinement
	-

	Comment
	The Download Server MAY include reservationNotifyURI attribute into Download Descriptor if the Download Server provide functionality to cancel planned download.

If the end user select to cancel planned reservation download, Download Agent SHOULD send a cancel status report to this URI.

10.7.29 suppressUserNotification
	Name
	suppressUserNotification

	Definition
	A flag that indicates that the Download Agent should not request user confirmation.

	Status
	Download Descriptor: Optional. User Agent: Mandatory

	Datatype
	Boolean

	Refinement
	-

	Comment
	The Download Server MAY include the suppressUserNotification attribute in Download Descriptor. When this is present and the value is ‘True’ AND the Download Server can be authorised (see section 6.4) then the Download Agent MUST NOT request user confirmation prior to downloading the Media Object i.e. step 4 (section 5.2.3) should be skipped.
When this is present and the value is ‘False’ then the Download Agent MUST request user confirmation.
When this attribute is not present the Download Agent MUST treat the Download Descriptor as if the suppressUserNotification is present and equal to ‘False’.

2.3 XML Schema

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema

 targetNamespace="http://www.openmobilealliance.org/xmlns/ddv2"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:dd="http://www.openmobilealliance.org/xmlns/ddv2"
 elementFormDefault="unqualified" >

<xsd:simpleType name="ShortString">

 <xsd:restriction base="xsd:string">

<xsd:maxLength value="40" />

 </xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="LongString">

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="160" />

 </xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="VeryLongString">

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="255" />

 </xsd:restriction>

</xsd:simpleType>
<xsd:simpleType name="URI">

 <xsd:restriction base="xsd:anyURI">

 <xsd:maxLength value="128" />

 </xsd:restriction>

</xsd:simpleType>
<xsd:complexType name="environmentType">
 <xsd:sequence>
 <xsd:any namespace="##other"
 processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name=“envtype" type="dd:URI" use="required"/>
</xsd:complexType>
<xsd:complexType name="intervalType">

 <xsd:sequence>
 <xsd:element ref="dd:timeInterval" minOccurs="1" maxOccurs="1"/>

 <xsd:element ref="dd:timeIntervalExpire" minOccurs="1" maxOccurs="1"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="reservationType">

 <xsd:sequence>

 <xsd:element ref="dd:timestamp" minOccurs="1" maxOccurs="1"/>

 <xsd:element ref="dd:downloadTime" minOccurs="1" maxOccurs="1"/>

 <xsd:element ref="dd:interval" minOccurs="0" />

 <xsd:element ref="dd:reservationNotifyURI" minOccurs="0" />

 </xsd:sequence>

</xsd:complexType>
<xsd:complexType name="msobjectURIType">

 <xsd:sequence>
 <xsd:element ref="dd:server" minOccurs="1" />

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="MediaObjectType">

 <xsd:sequence>

 <xsd:element ref="dd:objectURI"/>

 <xsd:element ref="dd:size"/>
 <xsd:element ref="dd:objectID"/>

 <xsd:element ref="dd:objectVersion"/>

 <xsd:element ref="type" maxOccurs="unbounded"/>

 </xsd:sequence>

</xsd:complexType>
<xsd:element name="name" type="dd:ShortString" />

<xsd:element name="DDVersion" type="dd:ShortString" />

<xsd:element name="objectURI" type="dd:URI" />
<xsd:element name="msobjectURI" type="dd:msobjectURIType" />

<xsd:element name="server" type="dd:URI" />
<xsd:element name="size" type="xsd:positiveInteger" />

<xsd:element name="type" type="dd:ShortString" />

<xsd:element name="vendor" type="dd:ShortString" />

<xsd:element name="description" type="dd:LongString" />

<xsd:element name="installNotifyURI" type="dd:URI" />

<xsd:element name="nextURL" type="dd:URI" />

<xsd:element name="infoURL" type="dd:URI" />

<xsd:element name="iconURI" type="dd:URI" />

<xsd:element name="installParam" type="dd:VeryLongString" />
<xsd:element name="progressiveDownloadFlag" type="dd:boolean" />
<xsd:element name="suppressUserConfirmation" type="dd:boolean" />
<xsd:element name="timestamp" type="xsd:dateTime"/>
<xsd:element name="downloadTime" type="xsd:dateTime"/>
<xsd:element name="timeInterval" type="xsd:duration"/>
<xsd:element name="timeIntervalExpire" type="xsd:dateTime"/>
<xsd:element name="interval” type="dd:intervalType"/>
<xsd:element name="reservation” type="dd:reservationType"/>
<xsd:element name="reservationNotifyURI” type="dd:URI"/>
<xsd:element name=”mediaobject” type="dd:MediaObjectType"/>
<xsd:element name="objectID" type="dd:LongString" />

<xsd:element name="objectVersion" type="dd:ShortString" />
<xsd:element name="updatedDDURI" type="dd:URI" />

<xsd:element name="media">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="dd:objectURI" />
 <xsd:element name="msobjectURI" minOccurs=”0” />
 <xsd:element ref="dd:size" />

 <xsd:element ref="dd:type" maxOccurs="unbounded"/>

 <xsd:element ref="dd:name" minOccurs="0"/>

 <xsd:element ref="dd:DDVersion" minOccurs="0"/>

 <xsd:element ref="dd:vendor" minOccurs="0" />

 <xsd:element ref="dd:description" minOccurs="0" />
<xsd:element ref="dd:updatedDDURI" minOccurs="0" />
 <xsd:element ref="dd:installNotifyURI" minOccurs="0" />

 <xsd:element ref="dd:nextURL" minOccurs="0" />

 <xsd:element ref="dd:infoURL" minOccurs="0" />

 <xsd:element ref="dd:iconURI" minOccurs="0" />

 <xsd:element ref="dd:installParam" minOccurs="0" />
 <xsd:element ref="dd:environment" minOccurs="0" />
 <xsd:element ref="dd:progressiveDownloadFlag" minOccurs="0" />
 <xsd:element ref="dd:suppressUserConfirmation" minOccurs="0" />
 <xsd:element ref="dd:reservation" minOccurs="0" />
 <xsd:element ref="dd:mediaobject"
minOccurs="1" maxOccurs="unbounded"/>
 </xsd:sequence>

 </xsd:complexType>

</xsd:element>
<xsd:element name="environment" type="dd:environmentType"/>

</xsd:schema>

�DLDRM needs further discussion on how to handle error status codes.

�This needs to be registered and a number obtained. I can do this once the input has been agreed!

�I’m not sure if this is the best place for this but as a minimum we should specify the security related features. i can then add another section elsewhere to handle the rest of the use case!

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 24)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20050101-I]

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 24)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20050101-I]

