Doc# OMA-DLDRM-2005-0402-BCAST-Authenticate-BCROs.doc[image: image2.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Doc# OMA-DLDRM-2005-0402-BCAST-Authenticate-BCROs.doc
Change Request

Change Request

	Title:
	BCROs must be digitally signed by RIs
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA-BCAST-DLDRM

	Doc to Change:
	OMA-TS-DRM-XBS-V1_0-20051121-D

	Submission Date:
	02 DEC 2005

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Dondeti, Lakshminath, QUALCOMM, ldondeti@qualcomm.com

	Replaces:
	n/a

1 Reason for Change
The BCAST XBS specification lists the following primary and secondary goals for protection delivery of Broadcast Rights Objects (BCROs) in Section 7.1.1:

The primary design goal is to offer the same or equivalent cryptographic protection on Broadcast Rights Objects as is available for Rights Objects obtained via the standard ROAP protocol. This includes authentication, integrity checking and confidentiality of encryption keys.

The secondary design goal is optimisation of message size. This is motivated by the fact that these rights objects may have to be Broadcast repeatedly, as no return path is available to confirm reception. It is assumed that an out-of-band mechanism is available to perform an equivalent of a RORequest, i.e. the initiation of rights object acquisition.

In Section 7.1.2, the XBS document specifies the following:

RSA signatures on Broadcast rights objects would contribute very significantly to the size of each BCRO. Instead, each BCRO is protected with a MAC, based on an authentication key that is registered in the rights issuer context in a device. At registration, this authentication key is provided along with the subscription group addressing key material.
We note that in satisfying the secondary goal, the current version of the specification fails to satisfy the first. Specifically, a symmetric key based MAC used to authenticate the BCRO allows any of the millions of members in possession of the symmetric key to produce a valid BCRO. In the simplest form of the attack, a user program may be able to produce a BCRO to itself even if the authentication key is in the USIM/RUIM. Note that as long as a program has access to the authentication key (it needs to, to verify the MAC on the BCRO), it may be able to produce a BCRO of its choosing rather than the “authorized” BCRO.
2 Impact on Backward Compatibility

In the previous version of the XBS document, the BCROs are integrity protected using a symmetric key MAC. The current CR proposes a different mechanism – a well known source authentication mechanism to properly sign the BCROs.

3 Impact on Other Specifications

Section 5.1.2.4.5 of the OMA-TS-BCAST_SvcCntProtection-V1_0 specifies the use of HMAC-SHA1-96 for authentication and integrity protection. As noted in Section 1, a MAC is not the appropriate

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

BCROs must be signed to enforce rights. Section 6 lists the changes to be made to the BCAST XBS specification.

6 Detailed Change Proposal

The rest of this CR contains a copy of Section 7 from the OMA-TS-DRM-XBS-V1_0-20051121-D specification with changes highlighted. Note that the changes themselves might need some refinement, but the first step for this CR is for the group to debate the lack of protection for BCROs, which makes them ineffective.

7. Broadcast Rights

7.1 Broadcast Rights Objects

7.1.1 Goals and Constraints

The delivery of rights objects over a Broadcast network without return channel necessitates some changes to the current ROAP because of the following reasons:

· the XML encoding according to the ROAP schema is not optimised for size

· the current ROAP does not support a subscription group addressing mechanism

· the current ROAP uses signatures based on the RSA PKI scheme that yield large signatures.

This chapter defines a new format for the delivery of authenticated and integrity protected rights objects, in which content encryption keys are cryptographically protected with either:

· domain key

· subscription group addressing group key

· subscription group addressing subset key (derived key)

· subscription group addressing device key

The primary design goal is to offer the same or equivalent cryptographic protection on Broadcast Rights Objects as is available for Rights Objects obtained via the standard ROAP protocol. This includes authentication, integrity checking and confidentiality of encryption keys.

The secondary design goal is optimisation of message size. This is motivated by the fact that these rights objects may have to be Broadcast repeatedly, as no return path is available to confirm reception. It is assumed that an out-of-band mechanism is available to perform an equivalent of a RORequest, i.e. the initiation of rights object acquisition.

7.1.2 Design Considerations and Decisions

The Broadcast Rights Objects (BCRO) are intended to be Broadcast to receivers in a well-defined repetitive manner. The particular means of delivery is to be defined in the context of the Broadcast system. It is the intention to support devices without a return channel (next to more capable devices), which implies that Broadcast rights object will be transmitted repeatedly to increase the chance of a receiver to capture rights objects addressed to that device.

The key-wrapping technique used in standard ROAP to cryptographically bind a MAC and REK to a device or domain will not be used. Instead the domain key or subscription group key is directly used to protect the content encryption keys in the Broadcast Rights Object. The motivation for this is that a REK adds little or no extra security, but adds significant size to a Broadcast Rights Object.

Because subscription group addressing offers the possibility to address a single unique device, BCROs will offer only addressing subscription groups or domains. Addressing a device using its device ID will not be supported with a BCRO.

Integrity protection prevents un-authorized modification of the rights information within the Rights Object. The

syntax and semantics of the Rights Object is specified in the [DRMREL-v2] document, while this specification

defines the use of [XML-DSIG] to create a digital signature over the set of elements that need integrity protection.

The DRM Agent MUST verify the digital signature, when available, within the Rights Object, before the associated

content is made available to the user. Use of the digital signature provides the client the ability to verify the

authenticity & integrity of the information. The Rights Issuer MUST provide the certificate chain necessary to

validate the signature either during the BCRO delivery or by use of “out-of-band” methods.

For low-value
 content, the overhead associated with signing BCROs may be reduced by using a MAC, based on an authentication key that is registered in the rights issuer context in a device. At registration, this authentication key is provided along with the subscription group addressing key material.
The broadcast content is protected with a varying encryption key. The encryption keys associated with assets in the BCRO will be applied to decrypt the key stream messages on the key stream layer. Besides decryption, such messages should also be authenticated. To avoid using the rights issuer authentication key for these frequent messages, the BCRO also carries an authentication key to be used for authenticating key stream messages. [This is subject to specifications of the key stream layer in OMA BCAST.]

7.2 Format of the Broadcast Rights Object

7.2.1 Format of the OMADRMBroadcastRightsObject class

The OMADRMAsset, OMADRMPermission and OMADRMConstraint object correspond in their meaning to their counterparts in OMA-DRM-REL-V2_0. The OMADRMAction object corresponds to the allowed elements in the permissions element from the same specification.

align(8) class OMADRMBroadcastRightsObject

{

int i;

// MAC/signature protected part starts here

bit(8)
message_tag;

bit(4)
version;

bit(12)
bcro_length;

bit(1)
group_size_flag;

bit(1)
timestamp_flag;

bit(1)
stateful_flag;

bit(1)
refresh_time_flag;

bit(3)
address_mode;

bit(1)
rights_issuer_flag;

bit(32)
address;

if (address_mode == 0x1)

{

if (group_size_flag == 0)

{

bit(256)
bit_access_mask;

}

else

{

bit(512)
bit_access_mask;

}

}

else if (address_mode&0x6 == 0x2)

{

bit(8)
position_in_group;

}

else if (address_mode == 0x4)

{

bit(6)
domain_id_extension;

bit(10)

domain_generation;

}

if (rights_issuer_flag == 1)

{

bit(160)
rights_issuer_id;

}

if (timestamp_flag == 1)

{

bit(40)
bcro_timestamp;

}

if (refresh_time_flag == 1)

{

bit(40)
refresh_time;

}

bit(1)
permissions_flag;

bit(7)
rekeying_period_number;

bit(32)
purchase_item_id;

bit(8)
number_of_assets;

for (i=0; i<number_of_assets; i++)

{

OMADRMAsset
asset[i];

}

if (permissions_flag == 1)

{

bit(8)
number_of_permissions;

for (i=0; i<number_of_permissions; i++)

{

OMADRMPermission permission[i];

}

}

// MAC/signature protected part ends here

bit(1) protection)_flag;

If (protection_flag == 1)

{

Bit(1024)
signature;

}

else

{

bit(96)
MAC;

}
}

message_tag: Tag identifying this message as a BCRO. The value for this filed is defined in A.8.
version: 3-bit flag which indicates the version of the BCRO message format. If set to 0 the original format is used. Devices SHALL ignore BCROs with versions it does not support.
bcro_length: 12-bit field indicating the length in bytes of the BCRO starting immediately after this field (excluding locally added information). The size of an BCRO SHALL NOT exceed 4096 bytes. Note however that other restrictions, e.g. the UDP packet size can restrict the size of an BCRO even more.

Note: the fields up to and including ‘length’ are not protected by a MAC. All following fields up to but not including the MAC field will be protected by a MAC.

group_size_flag: 1-bit field indicating the group size used. 0 – a maximum group size 256 is used, 1 – a maximum group size of 512 is used

timestamp_flag: 1-bit field indicating that the BCRO is timestamped.
stateful_flag: 1-bit flag indicating that when set to 1 the BCRO contains stateful information.

refresh_time_flag: 1-bit flag indicating that a refresh_time for the BCRO is contained in this BCRO

address_mode: 3-bit field indicating the addressing mode used by this BCRO.

	Field: address_mode
	Description

	0x0
	addressing whole of unique group

	0x1
	addressing of Subscription group using a bit_mask size of 256 or 512 bit depending on group_size_flag (subset of unique group)

	0x2-0x3
	addressing of unique device

	0x4
	addressing of OMA domain. Address field concatenated with the domain_id_extension will be the domain id in this case

	0x5-0x7
	reserved for future use

rights_issuer_flag: 1-bit flag indicating that the rights issuer id is listed in this BCRO. Normally this information is given via a dedicated BCRO stream. This flag will only be set if BCROs from different rights issuers are carried in the same stream.

rights_issuer_id: The ID of the rights issuer. This is the 160-bit SHA1 hash of the DER encoded public key of the RI. See X509PKISHash in OMA.

address: 4-byte group address. Each rights issuer has its own address space. If the group_size is 512 then the group address is made of the first 31 bit of the address field. If the BCRO is addressed to a unique device in a group then the LSB of the address field is the MSB of the group position.

bit_access_mask: If the BCRO addresses a subset of a unique group (address_mode 0x1) than the bit_access_mask defines to which receivers in the group this BCRO is addressed to. Receivers not listed in the bit_access_mask cannot decrypt the key material in this BCRO as zero message Broadcast encryption is used for the encryption of the key material. The size of the bit_access_mask is given by the address mode

position_in_group: If the BCRO addresses a unique device then this field specifies the position of the unique device in the given Subscription group. If group_size_flag is 0 than the position in the group is directly given by the position_in_group field. If group_size_flag is 1 then 9 bit are used to identify the position in the group. If group_size_flag is 1then bit 0 (the LSB) from the address_mode is used as the 9th bit, the MSB. The real position in the group is then given by:

int real_position_in_group;

if(address_mode&0x6==0x2)

{

if(group_size_flag == 0)

{

//maximum size of 256 devices in group.

real_position_in_group = position_in_group;

}

else

{

//maximum size of 512 devices in group;

real_position_in_group =

((address_mode&0x1)<<8)||position_in_group;

}

}

domain_id_extension: The domain_id is given by the address field concatenated with the domain_id_extension to form a 38 bit id:

domain_id = (address<<6)|domain_id_extension

domain_generation: This 10 bit field specifies the generation of the domain.
bcro_timestamp: Field containing a timestamp at the point of issuing of the BCRO. This 40-bit field contains the time and date of the moment of issuing of the BCRO in Universal Time, Co-ordinated (UTC) and Modified Julian Date (MJD). This field is coded as 16 bits giving the 16 LSBs of MJD followed by 24 bits coded as 6 digits in 4-bit Binary Coded Decimal (BCD).

EXAMPLE 1: 93/10/13 12:45:00 is coded as "0xC079124500".

refresh_time: The refresh_time specifies the time when the terminal should acquire a new BCRO. It does not specifies when the keys in the BCRO expire. This field is a hint to a receiver to acquire a new BCRO for the content listed in the BCRO before the keys in the BCRO expires. The encoding is similar to that of the bcro_timestamp field.

permissions_flag: 1-bit flag indicating that the BCRO contains at least 1 permission.

rekeying_period_number: 7-bit counter used to differentiate between different ROs with the same purchase_item_id.
purchase_item_id: 32-bit field specifying the purchase ID this RO is associated with

number_of_assets: This field specifies the number of assets (see below) in this BCRO. Each asset listed in this BCRO has an internal id which is equal to the index of the asset in this BCRO. In other words the first asset listed in this BCRO has the internal asset id (index) of 0, the second of 1 etc. This internal id or index is used by permissions objects (see below) to identify the assets it addresses.

number_of_permissions:This field specifies the number of permissions (see below) in this BCRO.

Signature: The signature is calculated over all bytes before this field with the exception of the first two bytes in the BCRO using RSA-1024.
The RI signs the BCRO, and a DRM-compliant receiver accepts BCROs signed by the RI only.
MAC: This is the authentication code calculated over all bytes before this field with the exception of the first two bytes in the BCRO using HMAC-SHA-1-96 (see [RFC 2104]).

The MAC is used to authenticate and check the integrity of the BCRO. The key used to create the MAC is the BCRO authentication key BAK as described in A.9.3.
7.2.2 Format of the OMADRMAsset class

class OMADRMAsset

{

int i;

bit(96)
BCI;

bit(1)
key_flag;

bit(1)
key_type;

bit(2)
reserved_for_future_use;

bit(1)
inherit_flag;

bit(2)
asset_type;

bit(1) permissions_category_flag;

if (inherit_flag)

{

bit(32)
purchase_item_id;

bit(1)
reserved_for_future_use;

bit(7)
rekeying_period_number;

}

if (permissions_category_flag == 1)

{

bit(8)
permissions_category;

}

if (key_flag == 1)

{

if (asset_type == 0x0)

{

if (key_type == 0x0)

{

bit(256)
encrypted_service_encryption_authentication_key;

}

else if (key_type == 0x1)

{

bit(256)
encrypted_program_encryption_authentication_key;

}

}

else

if (asset_type == 0x1)

{

bit(128)
encrypted_content_encryption_key;

}

}

}

BCI: This 96-bit field is the Binary Content ID. [The encoding of this field might be the SHA1-96 hash of the Content ID in ‘cid’ URI form.]

reserved_for_future_use: all fields reserved_for_future_use SHALL be set to 0 for this version of the specification.

key_flag:1-bit flag indicating that the asset does contain key material.

key_type: 1-bit flag indicating the type of the key material. If set to 0 the key material contains a service encryption key (SEK), when set to 1 it contains a program encryption key (PEK).

inherit_flag: 1-bit flag indicating whether inheritance is used. If set to 1 the asset inherits the rights setting from a parent rights object.

asset_type: 2-bit flag indicating the asset type as defined in the table below. If the asset_type is set to 0 the asset MAY contain either a PEK or a SEK. If the asset_type is set to 0x1 then the asset MAY contain a content encryption key.

	Field: asset_type
	Description

	0x0
	Broadcast stream protected IPSec or SRTP as defined in this specification

	0x1
	downloaded file content as defined by OMA

	0x2-0x3
	reserved

permissions_category_flag: 1-bit flag indicating that a permissions_category field is present in this asset object.
purchase_item_id: 32-bit field specifying the purchase ID this RO is associated with.

rekeying_period_number: 7-bit field specifying the rekeying_period_number of the parent rights object. The purchase_item_id and rekeying_period_number are used together with the socID and deviceID or domainID to uniquely identify the parent rights object.

permissions_category: For programme assets, the value of this field (if present) is always zero. For service assets, the following rule applies. If the value of this field is nonzero, it indicates that the permissions (see below) linked to this asset are only to be applied for streaming content whose TKM contains the same value in its permissions_category field. If the value of this field is zero, it indicates that the permissions (see below) linked to this asset are only to be applied for streaming content whose TKM contains the value zero in its permissions_category field, or has value zero for its permissions_flag bit (indicating that there is no permissions_category field in the TKM). Note that there MAY be multiple assets with the same Service_BCI, in which case typically only one of them contains authentication and/or encryption keys in it asset object(s). TKM permissions_category field value thus selects the one with the permissions to be applied among the service assets with the same Service_BCI. The one with the authentication and/or encryption keys is found among the BCROs via inheritance, or by lookup for a BCRO with key material in its assets.

encrypted_service_encryption_authentication_key: If key_type is set to 0 then this field contains the encrypted SEAK, the service encryption key (SEK) concatenated with the Service Authentication Seed (SAS). The field itself is protected using AES-128-CBC, with fixed IV 0 and with 0 padding in the last block if needed. The key used to decrypt this field depends on the addressing mode of the BCRO.

	Field: address_mode
	Keys used

	0x0 (subscription group addressing / whole group)
	UGK (Unique Group Key)

	0x1 (subscription group addressing / derived keys)
	Deduced decryption key (based on bit_access_mask and subscription group keys)

	0x2 or 0x3 (unique device)
	UDK (Unique device key)

	0x4 (OMA Domain)
	LDK (Local Domain Key)

encrypted_program_encryption_authentication_key: If key_type is set to 1 then this field contains the encrypted PEAK, the program encryption key (PEK) concatenated with the program authentication seed (PAK). The field itself is protected using AES-128-CBC, with fixed IV 0 and with 0 padding in the last block if needed. The key used to decrypt this field is depending on the addressing mode of the BCRO.

	Field: address_mode
	Keys used

	0x0 (subscription group addressing / whole group)
	UGK (Unique Group Key)

	0x1 (subscription group addressing / derived keys)
	Deduced decryption key (based on bit_access_mask and subscription group keys)

	0x2 or 0x3 (unique device)
	UDK (Unique device key)

	0x4 (OMA Domain)
	LDK (Local Domain key)

encrypted_content_encryption_key: This field contains the encrypted content encryption key (CEK). The field is protected using AES-128-CBC, with fixed IV 0 and with 0 padding in the last block if needed. The key used to decrypt this field is depending on the addressing mode of the BCRO.

	Field: address_mode
	Keys used

	0x0 (subscription group addressing / whole group)
	UGK (Unique Group Key)

	0x1 (subscription group addressing / derived keys)
	Deduced decryption key (based on bit_access_mask and subscription group keys)

	0x2 or 0x3 (unique device)
	UDK (Unique device key)

	0x4 (OMA Domain)
	LDK (Local Domain key)

7.2.3 Format of the OMADRMPermission class

class OMADRMPermission

{

int i;

bit(6)
number_of_assets;

bit(1)
constraint_flag;

bit(1)
actions_flag;

for (i=0; i<number_of_assets; i++)

{

bit(8)
asset_index;

}

if (constraint_flag == 1)

{

OMADRMConstraint
constraint;

}

if (actions_flag == 1)

{

bit(8)
number_of_actions;

for (i=0; i<number_of_actions; i++)

{

OMADRMAction
action[i];

}

}

}

number_of_assets: The number of assets this permission object links to. Assets linked to by this permission object are bound by this permission object.

constraint_flag: 1-bit flag which indicates when set to 1 that a constraint object is present in this permissions object. The constraint object applies to all action listed in this permission object.

action_flag: 1-bit flag. When set to 1, 1 or more actions are contained in this permission object.

asset_index: A list of number_of_assets links to assets in this BCRO. Assets are linked to by using the internal asset id (the index of the asset in this BCRO).

number_of_actions: Field specifying the number of actions (see below) contained in this permission object

7.2.4 Format of the OMADRMAction class

class OMADRMAction

{

bit(7)
action_type;

bit(1)
constraint_flag;

if (constraint_flag)

{

OMADRMConstraint constraint;

}

}

action_type: 7-bit field specifying the type of action as listed in table below:

	Field: action_type
	Description

	0x00
	PLAY_ACTION

	0x01
	DISPLAY_ACTION

	0x02
	EXECUTE_ACTION

	0x03
	PRINT_ACTION

	0x04
	EXPORT_ACTION

	0x05
	ACCESS_ACTION

	0x06
	SAVE_ACTION

	0x07-0x7F
	reserved for future use

constraint_flag: 1-bit flag which indicates when set to 1 that a constraint object is present in this action object. The constraint object only applies to the action it is in.

7.2.5 Format of the OMADRMConstraint class

abstract class OMADRMConstraintDescriptor : bit(8) constraint_id = 0

{

bit(8) length;

}

class OMADRMConstraint

{

int i;

int j;

bit(4)
number_of_constraints;

bit(12)
constraint_descriptor_length;

for (i=0; i<number_of_constraint; i++)

{

OMADRMConstraintDescriptor constraint[i];

}

}

number_of_constraints: 4-bit number specifying the number of constraint descriptors (see below)

constraints_descriptor_length: length of all constraint descriptors in bytes which follow this field.

constraint_tag: Tag identifying the specific constraint_descriptor as listed below:

	Field: constraint_tag
	Description

	0x00
	count constraint

	0x01
	timed-count constraint

	0x02
	date time constraint

	0x03
	interval constraint

	0x04
	accumulated constraint

	0x05
	individual constraint

	0x06
	system constraint

	0x07-0xFF
	reserved for future use

5.2.1.1 Count constraint descriptor

class OMADRMCountConstraintDescriptor extends OMADRMConstraintDescriptor

: bit(8) constraint_id = 0x00

{

bit(8*length)

count;

}

length: The number of bytes used for the count field. Length SHALL NOT exceed 4, hence the maximum size of the count field can be 32 bits.

count: The number of times the content can be played. The field can be of size 8, 16, 24 and 32 bits.
5.2.1.2 Timed count constraint descriptor

class OMADRMTimedCountConstraintDescriptor extends OMADRMConstraintDescriptor

: bit(8) constraint_id = 0x01

{

bit(16)

timer;

bit(8*(length-2))
count;

}

length: The number of bytes following this field. The count field is length-2 bytes long and SHOULD NOT exceed 32 bits.

timer: Specifies the number of seconds after which the count state is reduced starting from beginning to render the content.

count: The number of times the content can be played. The field can be of size 8, 16, 24 and 32 bits.
5.2.1.3 Date-time constraint descriptor

class OMADRMDateTimeConstraintDescriptor extends OMADRMConstraintDescriptor

: bit(8) constraint_id = 0x02

{

bit(1)

start_flag;

bit(1)

end_flag;

bit(6)

reserved;

if (start_flag)

{

bit(40)

start_date;

}

if (end_flag)

{

bit(40)

end_date;

}

}

length: The number of bytes of the descriptor immediately following this field.

start_flag: 1-bit field. When set the descriptor contains a start time.

end_flag: 1-bit field. When set the descriptor contains a end time.

start_time: Time field with the semantics of ‘not before’ time for a permission. The start_time must be before the end_time if present.

end_time: Time field with the semantics of ‘not after’ time for a permission. The end_time must be after the start_time if present.

5.2.1.4 Interval constraint descriptor

class OMADRMIntervalConstraintDescriptor extends OMADRMConstraintDescriptor

: bit(8) constraint_id = 0x03

{

bit(8*length)

time_interval;

}

length: The number of bytes following this field. Length specifies the size of the time_interval field.

time_interval: Specifies the number of seconds starting from first receiving this BCRO that the permission is valid. The length of the field is given by the length field and SHOULD NOT exceed 32 bit.

5.2.1.5 Accumulated constraint descriptor

The accumulated_constraint_descriptor specifies the maximum period of metered usage time during which the rights can be exercised over the DRM content.

class OMADRMAccumulatedConstraintDescriptor extends OMADRMConstraintDescriptor

: bit(8) constraint_id = 0x04

{

bit(8*length)

accumulated_time;

}

length: The number of bytes following this field. Length specifies the size of the accumulated_time field.

accumulated_time: Specifies the maximum period of metered usage time during which the rights can be excercised. The period is given in seconds. The length of the field is given by the length field and SHOULD NOT exceed 32 bit.

5.2.1.6 Individual constraint descriptor

Constraint used to bind content to individuals. If the content should be bound to more than one individual multiple individual_constraint_descriptor(s) can be carried in one constraint object.

class OMADRMIndividualConstraintDescriptor extends OMADRMConstraintDescriptor

: bit(8) constraint_id = 0x05

{

bit(4)

reserved;

bit(4)

id_type;

bit(8*(length-1))
individual_id;

}

length: The number of bytes following this field. Length-1 specifies the size of the individual_id field.

id_type: Tag identifying format of the individual_id as listed below:

	Field: id_type
	Description

	0x0
	The individual_id field contains the IMSI number coded as 16 digit 4-bit BCD. The first digit SHALL be 0 and SHALL be ignored. The length of the individual_id field is 64 bit.

	0x1
	The individual_id field contains the PKC id of the WIM to which the content is bound.

	0x2-0xF
	reserved for future use

individual_id: Individual ID. The format and length of this field is identified by the identifier_type and length field see the table above.

5.2.1.7 System constraint descriptor

Constraint used identify systems to which the content and rights objects are allowed to be exported to.

class OMADRMSystemConstraintDescriptor extends OMADRMConstraintDescriptor

: bit(8) constraint_id = 0x06

{

bit(8)

constraint_tag;

bit(8)

length;

bit(64)

system_id;

}

length: The number of bytes following this field.

system_id: The system id of the system the content and RO can be exported to. This is the SHA1-64 encoded hash of the system name as registered with OMNA. [The values are registered with OMNA (currently only strings), we either use SHA1-64 to hash the strings or OMNA registers numbers for that as well]

7.3 Interaction Channel Rights Objects

Terminals can acquire rights to access broadcast content by retrieving and processing binary Broadcast Rights Objects. In addition, terminals that support an interaction channel next to the broadcast interface can also acquire rights to access broadcast content via the ROAP protocol or the exchange of Domain RO’s.

The ROAP protocol via the interaction channel ensures an authenticated delivery of one or more <protectedRO> elements. The exchange of Domain RO’s also consists of the exchange of one or more <protectedRO> elements.

If a <protectedRO> is to convey rights to access broadcast content, then the following applies for all assets that encode rights for broadcast content:

· The <o-dd:uid> element in the <o-ex:context> element in the <o-ex:asset> element MUST hold the BCI (binary content identifier) for the broadcast content referred to by this asset.

· The <o-ex:digest> element in the <o-ex:asset> SHALL NOT be present.

· The <xenc:CipherValue> element contained in the <ds:KeyInfo> element MUST hold the wrapped concatenation of the encryption key (SEK or PEK) and the authentication key (SAK or PAK). The concatenation method is equal to that of the MAC key and the RO encryption key REK in the <roap:ROPayload> element of the <roap:ROResponse> message where the SEK or PEK takes the place of the MAC and the SAK or PAK takes the place of the REK.

7.4 Save Permission

The normative statements in this section 7.4 only apply to the concept of creating super-distributable OMA assets containing a recording of broadcast content, that is suitable for standard OMA DRM v2 devices.

A rights issuer can allow a device to make super-distributable recordings of a broadcast asset by including a save permission in a rights object for that asset. The save permission explicitly allows creating new assets containing a rendering of the broadcast content in permanent storage. The device MUST also have access permission for that broadcast asset in order to create this permanent copy.

The super-distributable recorded assets MUST be in a DCF or PDCF format, and are super-distributable to other devices. The recording device MUST create a new CommonHeaders box for use in each new asset file. The ContentID and RightsIssuerURL are generated from information that is retrieved from the service guide, and the secure DRM time of the device.

If the device does not support secure DRM time, it MUST not allow save permissions.

The context of the broadcast asset (service guide, session description protocol or key stream messages) SHOULD provide at least the Content Identifier, RightsIssuerURL and Content Encryption Key to use when creating the CommonHeaders box and the protected content in each created asset file.

7.4.1 Element <save>

	Element
	<!ELEMENT o-dd:save (o-ex:constraint?)>

	Semantics
	The <save> element grants the permission to create a permanent representation of some broadcast asset. It contains an optional <constraint> element. This <constraint> element, if present MUST be combined with any top-level constraint, and both constraints should be satisfied in order for the save permission to be enabled.

A rights issuer MUST only include a save permission for broadcast assets. A device MUST ignore save permissions for non-broadcast assets.

The save permission only allows creation of OMA DRM v2 compatible DCF or PDCF files. The device SHOULD get from context information (o.a. original assets CommonHeaders box, service guide, session description protocol) relevant information about the broadcast asset to create a CommonHeaders box for use in either a DCF or a PDCF file.

7.4.2 Construction of the Asset, CommonHeaders and Recording Key

All broadcast content accessed via a service/program rights object, and thus identified with a service_BCI/program_BCI, can be viewed as a continuum of content that belongs to the same OMA group. All content recorded by the device using a combined access+save permission for an asset identified by service_BCI/program_BCI must be accessible to that same device through a play permission associated with the same asset (identified by the service_BCI/program_BCI).

To enable this, and still create uniquely identifiable assets, the OMA group feature is used.

The way the new asset is created depends on whether the recording device has access to the broadcast content using a service rights object (containing a SEK, associated with a service_BCI) or a program rights object (containing a PEK, associated with a program_BCI).

5.2.1.8 Recording Broadcast Content

The device makes a recording of broadcast content that is accessed through an asset, that identifies the Broadcast Content Identifier (service_bci or program_bci), and which is associated with either a Service Encryption Key or a Program Encryption Key. In the following sections, BCI refers to the broadcast content identifier of that asset, and KEY refers to either the SEK or the PEK, whichever is associated with that asset.

	
	Asset contains program_bci and PEK
	Asset contains service_bci and SEK

	BCIservice/program
	program_bci
	service_bci

	KEYsek/pek
	PEK
	SEK

The device MUST include a GroupID box in the new asset that is to hold the recorded content. The GroupID in that box MUST equal BCIservice/program.

The content of the created asset MUST be encrypted with a key CIEK. The GroupKey stored in the box MUST be the key CIEK that is encrypted with KEYsek/pek.

The EncryptionAlgorithm field in the GroupID box MUST identify the AES-CBC mode algorithm. The recording device MUST either choose the CIEK to equal KEYsek/pek, or generate a suitable key value at random. The initialisation vector MUST be randomly generated by the device:

CIEK
:=
random 128-bit AES key or KEYsek/pek
IV
:=
random 128 bit number

GroupKey
:=
IV + AES-CBC{SEK}(CIEK)

Table 31: Fields in the GroupID box

	Field
	Contents

	GKEncryptionMethod
	MUST be AES-CBC.

	GroupID
	MUST equal BCIservice/program

	GroupKey
	Contains the result of applying the encryption algorithm defined by GKEncryptionMethod to the CIEK key as plaintext, using KEYsek/pek as encryption key and a randomly selected initialization vector. This initialization vector MUST be prefixed to the resulting ciphertext.

The CommonHeaders box MUST contain a unique ContentID, as well as a proper RightsIssuerURL.

Table 32: CommonHeaders box fields

	Field
	Contents

	EncryptionMethod
	Determined by the recording device.

	PaddingScheme
	Determined by the recording device.

	PlaintextLength
	Determined by the length of the recorded asset, calculated by the recording device.

	ContentIDLength ContentID[]
	MUST equal:

base64Binary(BCIservice/program) + base64(recording timestamp)

	RightsIssuerURLLength RightsIssuerURL[]
	MUST equal:

RightsIssuerURL + “?rib=” + base64(recording information block)

Where the RightsIssuerURL is retrieved from the service guide, using its association with the service_CID (in case the asset holds a service_BCI) or the program_CID (in case the asset holds a program_BCI).

The recording information block holds the BCIservice/program, the recording timestamp, KEYsek/pek (but salted and encrypted) and an integrity protection.

	TextualHeadersLength TextualHeaders[]
	Determined by context information (original asset, service guide, session description protocol).

	ExtendedHeaders[]
	Empty.

In the definition of these fields, the base64() operation is defined by [RFC2045], the ‘+’ denotes concatenation, the recording timestamp is defined by section 7.4.2.2 and the recording information block is defined in section 7.4.2.3.

Based on the values of the ‘rib’, the rights issuer can determine and verify the integrity of the recording information, including the CIEK. This then allows the rights issuer to issue rights objects to the saved asset or to the whole group of recorded content (that share the same GroupId).

5.2.1.9 Recording Timestamp

The representation with which the device should represent the date and time of the start or the end of the recording is defined by two timestamps that are NTP timestamps as specified by [RFC1305], but with the fractional seconds part truncated to leave only the 4 most significant bits.

The first timestamp indicates the date and time of the start of the recording, whereas the second timestamp indicates the end of the recording.

align(8) class OMADRMRecordingTimestamp

{

bit(36)
startDateAndTime;

bit(36)
endDateAndTime;

}

Example:

The recording timestamp:
(msb)
11000110100110011101010001010110 0001

11000110100110100000000101011100 0111 (lsb)

corresponds to the recording start time and date NTP timestamp:

11000110100110011101010001010110 00010000000000000000000000000000

which equals 3331970134.0625 seconds after January 1st, 1900, 00:00 UTC, or Jan 8th, 2005, 11:15:34.0625 UTC

and the recording end time and date NTP timestamp:

11000110100110100000000101011100 01110000000000000000000000000000

which equals 3331981660.4375 after January 1st, 1900, 00:00 UTC, or Jan 8th, 2005, 14:27:40.4375 UTC

Note that the whole seconds part of the NTP timestamp format is 32 bits, and will roll-over on February 6, 2036 06:28:16 UTC. For that reason, devices and rights issuers SHALL interpret NTP timestamps of which the whole seconds part has a most significant bit of 0, as signalling a date and time in the epoch 2036-2172.

5.2.1.10 Recording Information Block

The RightsIssuerURL holds a ‘rib’ parameter, which equals the base64 encoded recording information block defined in this section.

align(8) class OMADRMRecordingInformationBlock

{

// start of MAC/signature protected part

bit(96)

bci;

OMADRMRecordingTimestamp
timestamp;

bit(128)

salt;

bit(128)

salted_key;

// end of MAC/signature protected part

bit(1) protection)_flag;

If (protection_flag == 1)

{

bit(1024)
signature;

}

else

{

bit(96)
mac;

}

}

bci: Contains the BCIservice/program (service_bci or program_bci, depending on the asset to which the save permission is applied).

timestamp: This contains the recording start date and time and the recording end date and time.

salt: This is a random 128 bit number, generated by the recording device which is used to salt the CIEK before it is encrypted.

salted_key: This field contains the result of encrypting the salted C IEK with KEYsek/pek:

salted_key
:=
AES-ECB{ KEYsek/pek } (CIEK xor salt)

mac: This is the authentication code calculated over all bytes before this field in the OMADRMRecordingInformationBlock using HMAC-SHA-1-96 (see [RFC 2104]). The MAC is used check the integrity of the recording information. The key used to create the MAC is KEYsek/pek, depending on the asset to which the save permission is applied.
5.2.1.11 Access to Recorded Assets

Recorded assets have a GroupID box that defines them as being part of a group of assets that are protected with the same key, and that share a common GroupId. By making sure that the recording device uses its access permission content id as the GroupId of all the recorded assets recorded using that access permission, play permissions can be issued with the same content id as the access permission; and it will apply to all recorded material that was recorded using that access permission.

On the other hand, the ContentIDs of the generated assets are unique (by qualifying the base content id with the recording timestamp) as required by the OMA DCF specification, and other devices can use the RightsIssuerURL to contact the original rights issuer to acquire play rights for that content. The rights issuer is free to provide group rights or individual asset rights. A group right would contain the GroupId, whereas an individual right would refer to the exact ContentID (as can be retrieved from the RightsIssuerURL).

7.4.3 Recording Concept

The concept of controlled recording is illustrated in the following figure. A rights issuer has issued a rights object to device A. This gives device A the right to access a certain broadcast asset, as well as the right to create a super-distributable copy of (part) of that broadcast asset in a new asset. Another device B may receive a copy of this new content file and contacts the rights issuer to acquire (play) rights for this content.

[image: image1.wmf]

(P)DCF

Rights

Issuer

Device

A

Device

B

access, save and play permission

Broadcast asset

(P)DCF

rights acquisition request

play permission for device B

all assets created from the

same joined access+save

permission are part of t

he

same group that is identified

by a GroupId that is equal to

the asset id of the access

permission.

Figure 9: recording and super-distributing the recorded asset

� Note that MAC-protected BCROs can be produced by any of the authorized recipients and such BCROs are indistinguishable from BCROs generated by the RI. Thus, MAC-protected BCRO delivery does not meet the digital rights’ protection goals.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 20)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20050824-I]

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 20 (of 20)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20050824-I]

_1191914694.doc

Rights Issuer

Device A

Device B

access, save and play permission

Broadcast asset

(P)DCF

rights acquisition request

play permission for device B

(P)DCF

all assets created from the same joined access+save permission are part of the same group that is identified by a GroupId that is equal to the asset id of the access permission.

