Doc# OMA-DLDRM-2006-0051R01-CR-Update-Media-Object-Optional-DLOTAv2[image: image1.jpg]
Change Request

Doc# OMA-DLDRM-2006-0051R01-CR-Update-Media-Object-Optional-DLOTAv2
Change Request

Change Request

	Title:
	Time Reservation Clarification
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA BAC DLDRM

	Doc to Change:
	OMA-TS_DLOTA-V2_0-20060130-D (input paper) + OMA-BAC-DLDRM-2006-0018-User Confirmation and Editorial from Vodafone

	Submission Date:
	2006-02-07

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Anders Isberg, Obigo AB, anders.isberg@obigo.com

	Replaces:
	n/a

1 Reason for Change

During the meeting in Athens Obigo raised a request to make Media Update optional. The reason for this request is that there is currently no specification for how information such as object id or object version shall be stored persistently. If a Media Object is stored on a memory card or if managed from a PC there is significant risk that this information is lost. How object id and object version shall be stored is currently considered as out of scope for OMA DLOTAv2.
This CR adds a new informative statement to point out this fact to clearly define that Update Media Object might not be possible to invoke if a media object is moved between two different Downloads UA.
Furthermore, there is currently no normative text stating that if installation of a new media object fails and the new media object is discarded, the old Media Object MUST NOT be removed. This CR adds a new statement to solve this issue.
2 Impact on Backward Compatibility

N/A
3 Impact on Other Specifications

N/A
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Agree the changes proposed below.
6 Detailed Change Proposal

Section 5.2.4.2 Media Object Retrieval of Updated Media Object

DLOTAv2 includes the functionality to replace or update Media Object(s) which are available and installed on the device. There are two ways to update the Media Object. The first mechanism makes use of the objectID and objectVersion elements. The second mechanism uses HTTP ETag. Since Media Object update using HTTP ETag mechanism is OPTIONAL, the Download Agent SHALL choose one of the object retrieval mechanisms if the Download Agent supports this mechanism.

· Media Object update using objectID and objectVersion elements

This mechanism uses objectID and objectVersion elements to enable client based updating verification. The Download Agent MUST support this mechanism. The Download Server MUST support this mechanism.
When a Media Object update is started, the Download Agent MUST retrieve the Download Descriptor of the Media Object(s) to be updated as specified by the updatedDDURI element. The Download Server SHALL return the Download Descriptor. The Download Agent MUST discard the retrieved object if it is not a Download Descriptor. If updatedDDURI is not present in the Download Descriptor, the Download Agent SHALL NOT attempt to update the Media Object(s).

This request SHOULD be triggered by the user or it may be triggered as a result of a download timing reservation. This request MAY be sent without user confirmation if the server can be authorised (see section 8.2) and the suppressUserConfirmation element is present in the Download Descriptor and the value is equal to "Always". This request MAY also be sent without user confirmation if it is triggered for the download timing reservation (see section 5.2.4.1).
When performing an update the Download Agent MUST compare the value of the objectID element of existing Media Object and the value of the objectID element in the newly retrieved Download Descriptor. If the both values of the objectID elements are identical, then the Download Agent MUST compare the value of the objectVersion elements of the both. If the Download Descriptor contains the suppressUserConfirmation element with the value set to ‘Always’ and the server can be authorised (see section 8.3):

· The user MUST NOT be notified and:

· If the Media Object version is greater than that of the existing Media Object the Download Agent MUST perform the necessary tasks to update the Media Object.

· If the Media Object version is the same or less than that of the existing Media Object then the Download Agent MUST NOT download the Media Object and MUST post a 964 “Version Already Available” status report to the installNotifyURI.
In all other cases:

· The Download Agent MUST notify the user if the Media Object is a newer, older or same version of the existing objectID of the Media Object and MUST get confirmation from the user before proceeding.
· If the Download Agent gets confirmation from user to replace or update the Media Object, the Download Agent MUST retrieve the Media Object. Before retrieving the Media Object, the Download Agent MUST verify the available capabilities as defined in section 5.2.2.

To enable updating of a Media Object, the Server MUST include both objectID and objectVersion elements in mediaObject element of the Download Descriptor. The Server can choose whether to enable this functionality for each Media Object.
If the Download Descriptor contains multiple mediaObject elements, the Download Agent SHOULD compare its objectID and objectVersion one by one and SHOULD retrieve and install only updated Media Objects. This may help to reduce unnecessary download transaction to be executed.
If the Download Descriptor contains the suppressUserConfirmation element with the value set to ‘Always’ and the server can be authorised (see section 8.3) and the Download Descriptor contains multiple Media Objects that can be updated the user MUST NOT be notified, the Download Agent MUST take each Meda Object in turn and:

· If the Media Object version is greater than that of the existing Media Object the Download Agent MUST perform the necessary tasks to update the Media Object.

· If the Media Object version is the same or less than that of the existing Media Object the Download Agent MUST NOT perform the necessary tasks to update the Media Object.

In all other cases the Download Agent MAY offer the user the chance to select which Media Objects should be updated.

If the Media Object with higher objectVersion is successfully installed as defined in section 5.3, then the Download Agent MUST remove the old Media Object with lower objectVersion. The old Media Object with lower objectVersion, MUST NOT be removed until the new Media Object with higher objectVersion number has been successfully installed as defined in section 5.3.

· Media Object updating by using HTTP ETag
This OPTIONAL mechanism uses HTTP ETag header as defined by [RFC2616] to enable server based updating verification. The Download Agent MAY support this mechanism. The Download Server SHOULD support this mechanism.

The Download Server MUST expose the capability of supporting this mechanism by including the ETag header in the HTTP reply of the Download Descriptor if the Download Server supports this mechanism. If the Media Object has an objectId and an objectVersion element in the associated Download Descriptor, the ETag header in the Media Object response MUST have the value as defined in section 5.2.4.3. The Download Server MUST include updatedDDURI in the Download Descriptor if it permits to use the Media Objects updating mechanism.

The Download Agent MUST persistently store the ETag value together with the updatedDDURI if the Download Agent supports this mechanism.
The Download Agent MAY send the HTTP If-None-Match header with the persistently stored ETag value from the already retrieved Download Descriptor (i.e. the old Download Descriptor) if the Download Agent want to confirm whether it is the newest version or not. The Download Agent MUST use the updatedDDURI to send the HTTP request.

This request SHOULD be triggered by the user. This request MAY be sent without user confirmation if the server is an authorized server (see section 8.2) and the suppressUserConfirmation element is present in the DD and the value is "Always". This request MAY also be sent without user confirmation if it is triggered for the download timing reservation as specified in section 5.2.4.1.

The Download Server MUST compare the ETag value with the newest version of the Download Descriptor if the Download Server receives the HTTP If-None-Match header and the Download Server supports this mechanism. The Download Server MUST send the new Download Descriptor to the Download Agent if the comparison result shows the old Download Descriptor is updated. The Download Server MUST send the HTTP status code (304 Not Modified) to the Download Agent if the comparison result shows the old Download Descriptor is not updated.
If the Media Object with higher objectVersion is successfully installed as defined in section 5.3, then the Download Agent MUST remove the old Media Object with lower objectVersion. The old Media Object with lower objectVersion, MUST NOT be removed until the new Media Object with higher objectVersion number has been successfully installed as defined in section 5.3.

Section 5.4.4 Persistence of Download Descriptor elements

The Download Agent MAY use the elements received in the Download Descriptor in association with the Media Object at its discretion. Some of the elements MAY be stored persistently in conjunction with the installation of the Media Object.

If the Download Descriptor contains the following Download Descriptor elements and if the Download Agent support at least one of these elements, the Download Agent MUST persistently store the Download Descriptor associated with the Media Object to be able to use these elements later.

The Download Descriptor element that is used for sending deletion notification (see section 5.4.2) is as follows:

· deleteNotifyURI
The Download Descriptor elements and HTTP header that are used for updating Media Objects (see section 5.2.4.2) are as follows:

· updatedDDURI

· objectID

· objectVersion

· Etag header
For a Product that contains the elements and HTTP header listed above, the Download Agent MUST persistently store the elements and HTTP header above associated with the Download Descriptor, Product or Media Object to be able to use these elements and HTTP header later.
The Download Agent is free to store the elements above in any format and in any location, i.e. it is out of scope for this specification. If a Media Object is moved to a different Device with a portable memory card or managed from an external entity, for example a PC, the elements above may be lost and it may be impossible to invoke the procedures associated with the elements above.
Section 7.2.2.1 name

	Name
	Name

	Definition
	If defined as child element of mediaObject, a user readable name of the Media Object that identifies the object to the user. If defines as child element of vendor, a user readable name of the organisation providing the Media Objects.

	Status
	Download Descriptor: Optional. User Agent: Optional

	Datatype
	String

	Refinement
	Does not have any particular semantics, is intended for user interpretation.

	Comment
	The client MAY use the name as the default storage name, or as a part of the storage name if it is defined as a child element of the mediaObject. The Download Agent MAY also use the name element of the vendor to ensure uniqueness between names. The client MAY additionally use the text elements of the meta element for generating storage names.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 4)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 4 (of 4)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20060101-I]

