Doc# OMA-DRM-2007-0086-CR_SRM_Secure_Authenticated_Channel.doc[image: image5.jpg]
Change Request

Doc# OMA-DRM-2007-0086-CR_SRM_Secure_Authenticated_Channel.doc
Change Request

Change Request

	Title:
	SRM Secure Authenticated Channel
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	DRM

	Doc to Change:
	OMA-TS-SRM-V1_0-20070202-D.doc

	Submission Date:
	01 Mar 2007

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Aram Perez, QUALCOMM, Inc., aramp@qualcomm.com

	Replaces:
	n/a

1 Reason for Change

The current TS does not fully address the Secure Authenticated Channel (SAC) and the MAKE process (used to establish a SAC) does not match what was agreed to in document 0474.
2 Impact on Backward Compatibility

None.

3 Impact on Other Specifications

None.

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

That the DRM group approve this Change Request.

6 Detailed Change Proposal

Change 1: Add the following definitions to section 3.2

	Trust Authority
	An entity that manages the trust relations for the OMA DRM entities such as Rights Issuers, DRM Agents, SRM Agents. An OMA DRM entity MUST support at least one Trust Authority and MAY support multiple Trust Authorities. A Trust Authority may set compliance and robustness rules.

Change 2: Add the following abbreviations to section 3.3

	IV
	Initial Vector

	KDF
	Key Derivation Function

	MK
	Message Integrity (HMAC) Key

	PuKeyD
	The Device’s public key

	PuKeyS
	The SRM’s public key

	RanD
	A random number generated by a DRM Agent

	RanS
	A random number generated by an SRM Agent

	SAC
	Secure Authenticated Channel

	SK
	Session Key

	TA
	Trust Authority

	TAID
	Trust Authority Identifier

Change 3: Add the following new section 5.2.3

5.2.3
Security Algorithms

The following security algorithms are used in this enabler. Both the DRM Agents and the SRM Agents MUST support these algorithms.

Hash algorithms:
SHA-1: http://www.w3.org/2000/09/xmldsig#sha1
MAC algorithms:

HMAC-SHA-1: http://www.w3.org/2000/09/xmldsig#hmac-sha1
Symmetric encryption algorithms:

AES-128-CBC: http://www.w3.org/2001/04/xmlenc#aes128-cbc
AES-128-CTR: http://
Asymmetric encryption algorithms:

RSA-OAEP (v2.1): http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-1
Signature algorithms:

RSA-PSS (v2.1): http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-1
Change 4: Replace sections 5.5 through 5.5.6 with the following sections

5.5 DRM Agent to SRM Agent Communications

A DRM Agent communicates to an SRM Agent over a communication channel. How this communication channel is established is beyond the scope of this document. It is presumed that the DRM Agent can use the services of the underlying operating system to establish the channel. Once this channel has been established, one or more logical channels will be established, depending on what kind of information needs to be exchanged and how many Trust Authorities are supported by the SRM Agent.

5.5.1 Client – Server Model

The model used for the communications between the DRM Agent and the SRM Agent is a client – server model. The DRM Agent is always the client and the SRM Agent is always the server. The SRM Agent does not act by itself. It only acts when it receives a request from a client (a DRM Agent) and then responds to that request.

In addition, it is always the DRM Agent that establishes the physical and logical communication channels.

5.5.2 Messaging

All messages between the DRM Agent and SRM Agent have the following generic format:

A2AMessage(){

 protectedFlag
1
bslbf

 encryptedFlag
1
bslbf

 msgType
6
uimsbf

 if(protectedFlag){

 ctrS
16
uimsbf

 }

 if(encryptedFlag){

 EncryptedMessage()

 }else{

 PlainMessage()

 }

 if(protectedFlag){

 hmacSha1Value
160
bslbf

 }

}

The fields are defined as follows:

· protectedFlag – if ‘1’ then the message has integrity protection, otherwise, the message has not integrity protection. This flag can only be set after a Secure Authenticated Channel has been established (see section 5.5.3).

· encryptedFlag – if ‘1’ then the message has been encrypted, otherwise the message is in plaintext. If protectedFlag = ‘0’ and encryptedFlag = ‘1’, the message should be rejected. This flag can only be set after a Secure Authenticated Channel has been established (see section 5.5.3).

· msgType – this field defines the type of message being communicated. The message types are defined below in Table x.

· ctrS – this field is present only if protectedFlag = ‘1’ and contains a counter that is used for replay protection. More details are provided below in section x.x.x.x.

· EncryptedMessage – this field is present only if encryptedFlag = ‘1’ and depends on the type of message being communicated. This field contains the encrypted message. More details are provided below in section x.x.x.x. Not all message types support this field.

· PlainMessage – this field is present only if encryptedFlag = ‘0’ and depends on the type of message being communicated. This field contains the plaintext message. Not all message types will support this field.

· hmacSha1Value – this field is present only if protectedFlag = ‘1’ and contains the HMAC-SHA1 value calculated over the concatenation of the ctrS field with the EncrytedMessage field or the concatenation of the ctrS field with the PlainMessage field.

The following table list the message types.

Table 1: Message Types
	Value
	Description

	0
	RFU

	1
	RFU

	2
	AuthRequest

	3
	AuthResponse

	4
	KeyExchangeRequest

	5
	KeyExchangeResponse

	6
	CRLUpdateRequest

	7
	CRLUpdateResponse

	8
	CRLRetrievalRequest

	9
	CRLRetrievalResponse

	10
	NonceRequest

	11
	NonceResponse

	12
	Editor: fill in with remaining functions

	13
	

	14
	

	15
	

	16
	

	17
	

	18
	

	19
	

	20
	

	21
	

	22
	

	23
	

	24
	

	25
	

	26
	

	27
	

	28
	

	29
	

	30
	

	31
	

	32 – 63
	Reserved for Future Use

5.5.3 Secure Authenticated Channel

Whenever sensitive information, such as cryptographic keys, needs to be transferred, a Secure Authenticated Channel (SAC) needs to be used. A SAC is a logical channel that provides message integrity and optionally message confidentiality. A SAC needs to be established using credentials from the Trust Authority under which the sensitive information was created.

5.5.3.1 Mutual Authentication and Key Exchange Process
To establish a SAC, a Mutual Authentication and Key Exchange (MAKE) process needs to be initiated by the DRM Agent. This process allows both Agents to mutually authenticate themselves and to exchange secret information that is used to generate cryptographic keys and other security related data. The following sequence diagram illustrates the process.

[image: image1.emf]
Figure 1: Sequence Diagram – MAKE Process

The four messages are exchanged with the protectedFlag and encryptedFlag both set to ‘0’.
5.5.3.1.1 AuthRequest

The DRM Agent sends the AuthRequest message to initiate the MAKE Process. The parameters of the request are defined in Table 2.

Table 2: Parameters of AuthRequest
	Parameters
	Protection Requirement
	Description

	Trust Authority ID (TAID)
	No
	The hash of the Trust Authority’s root public key in the TA Certificate (i.e. the hash of the complete DER-encoded subjectPublicKeyInfo component in the TA’s Certificate). The default hash algorithm is SHA-1.

	Device Certificate Chain
	No
	A certificate chain including the Device Certificate (CertD). The chain MUST NOT include the root certificate. The Device Certificate MUST come first in the list. Each following certificate MUST directly certify the one preceding it. Refer to Error! Reference source not found.

	Control Options
	No
	A list of MAKE protocol versions and supported algorithms supported by the DRM Agent.

Upon receiving the AuthRequest, the SRM Agent verifies the Device’s certificate chain. If the verification succeeds, the SRM Agent generates a random number. The SRM Agent then picks a protocol version and algorithm. The SRM Agent then concatenates the random number (RanS), the Control Options and the Chosen Options and encrypts them with the Device’s public key from the Device certificate. All these are put into an AuthResponse message and sent to the DRM Agent. The parameters of the response are defined in Table 3.

Table 3: Parameters of AuthResponse
	Parameters
	Protection Requirement
	Description

	Status
	No
	An error code with the result of processing the AuthRequest. Refer to Table 4.

	SRM Certificate Chain
	No
	A certificate chain including the SRM Certificate (CertS). The chain MUST NOT include the root certificate. The SRM Certificate MUST come first in the list. Each following certificate MUST directly certify the one preceding it. Refer to Error! Reference source not found.

	Encrypted AuthResponseData
	No
	E(PuKeyD, AuthResponseData), where AuthReponseData = RanS | ControlOptions | ChosenOption.

The Status parameter of the AuthResponse contains the error cases in Table 4.
Table 4: Status of AuthResponse
	Status
	Description

	Success
	The device certificate chain and the device ID were verified successfully.

	Generating Parameters in Response Failed
	The SRM Agent failed to generate the parameters in Table 3. (i.e. SRM ID or SRM Certificate Chain)

	Device Certificate Chain Verification Failed
	The SRM Agent fails to verify the device certificate chain.

	Integrity of Device ID verification Failed
	The device ID and the hash of the device’s public key in the device certificate chain are not identical.

On receiving the AuthResponse, the DRM Agent check the Status parameter. If an error is indicated, the DRM Agent aborts the MAKE Process. If Status indicates success, the DRM Agent verifies the SRM’s certificate chain. If the verification succeeds, the DRM Agent decrypts the AuthResponseData. It compares the Chosen Options to the Chosen Options it sent in the AuthRequest. If the same, the DRM Agent checks that the chosen protocol version and algorithm are from the Control Options. If yes, the DRM Agent proceeds with step 2 below.
5.5.3.1.2 Key Exchange Message

The DRM Agent generates a random number (RanD). It concatenates the random number generated by the SRM Agent (RanS) and encrypts it with the SRM’s public key (PuKeyS). This is sent in the KeyExchangeRequest. The parameters of the request are defined in Table 5.

Table 5: Parameters of KeyExchangeRequest
	Parameters
	Protection Requirement
	Description

	E(PuKeyS , KeyExchangeData)
	No
	Encrypted KeyExhangeData where KeyExchangeData = RanD | RanS.

On receiving the KeyExchangeRequest, the SRM Agent decrypts the KeyExchangeData. It compares the RanS in the KeyExchangeData to the RanS it sent in the AuthResponse. If the same, then the SRM sets Status to Success, computes the digest of the decrypted KeyExchangeData and sends the KeyExchangeResponse to the DRM Agent. The parameters of the response are defined in Table 6.

Table 6: Parameters of KeyExchangeResponse
	Parameters
	Protection Requirement
	Description

	Status
	No
	Refer to Table 7

	H(KeyExchangeData)
	No
	The SHA-1 hash of the decrypted KeyExchangeData.

The Status parameter of the KeyExchangeResponse contains the error cases in Table 7.
Table 7: Status of KeyExchangeResponse
	Status
	Description

	Success
	Processing the KeyExchangeRequest was successful.

	Random Number Decryption Failed
	The SRM Agent fails to decrypt random numbers.

	SRM Random Number Mismatched
	The SRM Random Number from device is not identical to its original value in SRM.

If the SRM Agent set Status to Success, it can then start creating the keys and parameters used for the SAC as described below.

On receiving the KeyExchangeResponse, the DRM Agent checks the Status parameter. If an error is indicated, the DRM Agent aborts the MAKE Process. If Status indicates success, the DRM Agent compares the hash of the KeyExchangeData from the KeyExchangeResponse to a hash it calculates. If the same, the DRM Agent proceeds to create the keys and parameters needed for the SAC as described below. Otherwise, it aborts the MAKE process.

5.5.3.1.3 Keys and Parameters

After the four messages of Figure 1 above have been exchanged, both the DRM Agent and the SRM Agent have mutually authenticated each other and have exchanged secret random numbers that will be used in the SAC. These keys and parameters are stored in a SAC Context, which is defined as follows:

SacContext(){

 ctr
16
uimsbf //Replay protection counter

 mk
160
bslbf //Message Integrity Key

 sk
128
bslbf //Session Key

 algorithm
8
uimsbf

 if(algorithm == AES128-CTR){

 ctrA
96
bslbf //MSB for AES counter

 }

}

If multiple Trust Authorities are supported, there will be on SAC Context per Trust Authority.

As soon as the SRM Agent sends the KeyExchangeResponse (and Status is Success), it sets the ctr field of its SAC Context to 1. As soon as the DRM Agent successfully matches the hash of the KeyExchangeData, it sets the ctr field of its SAC Context to 1. This field is used to provide replay protection as described below in section 5.5.3.1.5.

To create the Message Integrity Key (MK), the Session Key (SK) and the most significant 96 bits of the counter for AES128-CTR mode, the Key Derivation Function (KDF) defined in section 7.1.2 of [OMADRMv2] is used. When using the KDF, Z is set to RanD|RanS and otherInfo is set to ControlOptions|ChosenOptions. If algorithm AES128-CBC is picked, then the KDF needs to provide 288 bits. The first 160 bits become the MK and the next 128 bits become the SK. If the AES128-CTR algorithm is picked, then the KDF needs to provide 384 bits. MK and SK are like for AES128-CBC. The last 96 bits become the most significant 96 bits of the counter used in AES128-CTR.

After the SK, MK and ctrA (if needed) are created, the MAKE process is complete.

5.5.3.1.4 Secure Messages

Once the SAC has been established, secure messages can be sent. Two types of security are provided. The first type is integrity protection. This is done by setting protectedFlag in the A2AMessage as described above in section 5.5.2. The other type of security is encryption. This is done by setting the encryptedFlag in the A2AMessage. Note the if the encryptionFlag is set, then the protectedFlag MUST be set also.

5.5.3.1.5 Replay Protection

Replay protection is provided by including the ctrS field under the integrity protection of an A2AMessage. The use of this counter is as follows:

· The sender puts its ctr value from its SAC Context in the message as the ctrS field. The message is put together and the HMAC-SHA1 is calculated over the ctrS field and either the EncryptedMessage or PlainMessage. After the message is sent, the sender increments its ctr value by 1.

· When a message is received, the integrity of the message is checked. If valid, the receiver checks the ctrS value in the message against its ctr value in the receiver’s SAC Context. If ctrS < ctr, the receiver sends back a message with a Status of “Invalid Message Counter”. Otherwise, the receiver sets the ctr value in the SAC Context to (ctrS + 1) and continues processing the message.

· In all cases, when ctr value in the SAC Context rolls over to 0, then a new MAKE process SHALL be performed. This allows 65535 messages to be exchanged. Note that a Trust Authority may set a lower limit value to cause the MAKE process to take place.

The HMAC-SHA1 provides integrity protection and doesn’t allow a new entity to substitute as either the sender or receiver because it will not know the MK. Since the ctrS field is protected by the HMAC, it protects against replay attacks but does allow recovery from missed messages.

5.5.4 Revocation Status Checking
The revocation status checking is performed based on the following principles.
· During mutual authentication between the DRM Agent and SRM Agent, revocation status checking is performed locally by using a cached Certificate Revocation List (CRL).
· The functions defined in chapter Error! Reference source not found. are allowed until a particular threshold is reached.
· Trust model sets thresholds.
· Once a threshold is reached, one or more of the functions in chapter Error! Reference source not found. can be blocked.
· When the entity (DRM Agent or SRM Agent) receives a fresh CRL, then it resets its threshold counters. Once the threshold counters are reset, the blocked functions of chapter Error! Reference source not found. are unblocked.
Editor’s Note:

Mutual authentication will be defined

Protocol to realize the certificate revocation status checking will be defined

Unblocking procedures, including receiving fresh CRL, will be defined.

Types of thresholds will be defined

For the DRM Agent and SRM Agent to replace old CRL with new CRL, this document specifies protocols for the following purposes:

CRL Delivery from Device to SRM (Refer to 5.5.4.1)

· The DRM Agent sends its CRL to the SRM Agent. The SRM Agent replaces the CRL in itself with the received CRL.

CRL Delivery from SRM to Device (Refer to 5.5.4.2)

· The DRM Agent retrieves CRL in SRM, and replaces its CRL with the retrieved CRL.

5.5.4.1 CRL Delivery from Device to SRM
A DRM Agent may update the CRL(s) an SRM Agent has as illustrated in the following figure.

[image: image2.emf]
Figure 2: Sequence Diagram – CRL Delivery from Device to SRM
The DRM Agent sends the CRLUpdateRequest to replace the current CRL in the SRM with the CRL in the device. The parameters of the request are defined in Table 8.
Table 8: Parameters of CRLUpdateRequest
	Parameters
	Protection Requirement
	Description

	CRL
	No
	Certificate Revocation List (CRL) contains revocation status information for Device Certificates or SRM Certificates. Refer to Error! Reference source not found.

	OCSP Response
	No
	This optional field contains an OCSP response that includes a nonce generated by the SRM Agent.

On receiving the CRLUpdateRequest, the SRM Agent validates the CRL. If valid and the received CRL is newer than the CRL of the SRM, then the SRM Agent replaces the current CRL in the SRM with the received CRL. The CRL numbers are compared to determine if the received CRL supersedes the CRL stored in the SRM.
If an OCSP Response was included, the SRM Agent validates the OCSP Response. If valid, the SRM Agent checks that the nonce in the OCSP Response matches the latest nonce it handed out. If the nonce matches, then the SRM Agent checks if the producedAt field of the OCSP Response falls within the thisUpdate and nextUpdate fields of the CRL. If Yes, then all the threshold counter can be reset. More information is available below in section 5.5.4.3.

By referring to the authorityKeyIdentifier component in the CRL, the SRM Agent recognizes the issuer of the CRL.

After the action, the SRM Agent sends the CRLUpdateResponse to carry the result of the action. The parameters of the response are defined in Table 9.

Table 9: Parameters of CRLUpdateResponse
	Parameters
	Protection Requirement
	Description

	Status
	No
	Refer to Table 10

If any error occurs during this action, the error SHOULD be reported to the DRM Agent. The Status parameter of the CRLUpdateResponse contains the error cases in Table 10.

Table 10: Status of CRLUpdateResponse
	Status
	Description

	Success
	CRL is updated in SRM successfully

	Old CRL
	CRL in the request is older than the CRL in SRM

	CRL Verification Failed
	The verification of the signature over CRL is failed.

	Unknown Error
	Other errors

5.5.4.2 CRL Delivery from SRM to Device
A DRM Agent may also update its CRLs by getting CRLs from an SRM Agent as illustrated in the following figure.

[image: image3.emf]
Figure 4: Sequence Diagram – CRL Delivery from SRM to Device

The DRM Agent sends the CRLRetrievalRequest to retrieve the CRL in the SRM. The parameters of the request are defined in Table 11.
Table 11: Parameters of CRLRetrievalRequest
	Parameters
	Protection Requirement
	Description

	CRL Issuer ID
	No
	The 160-bit SHA-1 hash of the public key corresponding to the private key used to sign the CRL (i.e. the keyIdentifier field of the authorityKeyIdentifier component in the CRL).

On receiving the CRLRetrievalRequest, the SRM Agent retrieves the CRL stored in the SRM. The retrieved CRL includes the CRL Issuer ID in its extension (authorityKeyIdentifier).

After the action, the SRM Agent sends the CRLRetrievalResponse to carry the result of the action. The parameters of the response are defined in Table 12.

Table 12: Parameters of CRLRetrievalResponse
	Parameters
	Protection Requirement
	Description

	Status
	No
	Refer to Table 13

	CRL
	No
	Certificate Revocation List (CRL) contains revocation status information for Device Certificates or SRM Certificates. Refer to Error! Reference source not found.

On receiving the CRLRetrievalResponse, the DRM Agent verifies the signature over the CRL. If the signature of the CRL is valid, and the retrieved CRL is newer than the CRL of the device, then the DRM Agent replaces the current CRL in the device with the retrieved CRL. The CRL numbers are compared to determine if the received CRL supersedes the CRL stored in the device.

The Status parameter of the CRLRetrievalResponse contains the error cases in Table 13.
Table 13: Status of CRLRetrievalResponse
	Status
	Description

	Success
	CRL is retrieved from SRM successfully

	CRL Not Found
	There is no CRL including matched CRL Issuer ID.

	Unknown Error
	Other errors

5.5.4.3 Nonce Delivery from SRM to Device
In order to reset its threshold counters, an SRM Agent needs to receive a fresh CRL. However, because an SRM does not have a real-time clock, a nonce based mechanism is used to ensure that the SRM Agent receives a “fresh” CRL. This is performed by the SRM Agent providing a nonce to a DRM Agent and receiving an OCSP Response that contains that nonce from the DRM Agent.

[image: image4.emf]
Figure 5: Sequence Diagram – CRL Delivery from SRM to Device

The DRM Agent sends the NonceRequest to receive a nonce from the SRM Agent. The parameters of the request are defined in Table 11.
Table 14: Parameters of NonceRequest
	Parameters
	Protection Requirement
	Description

On receiving the NonceRequest, the SRM Agent generates a random nonce, stores it in non-volatile memory (so it can be compared against) and sends it to the DRM Agent.

After the action, the SRM Agent sends the NonceResponse to carry the result of the action. The parameters of the response are defined in Table 12.

Table 15: Parameters of CRLRetrievalResponse
	Parameters
	Protection Requirement
	Description

	Status
	No
	Refer to Table 13

	Nonce
	Yes
	A random number generated by the SRM Agent

On receiving the NonceResponse, if the Status is Success, the DRM Agent uses it to request a OCSP Response.

The Status parameter of the NonceResponse contains the error cases in Table 13.
Table 16: Status of CRLRetrievalResponse
	Status
	Description

	Success
	The nonce was successfully generated

	Unknown Error
	Other errors

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2007 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 12)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20070101-I]

© 2007 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 12)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20070101-I]

_1229242415.vsd
�

�

CRLRetrievalRequest

DRM Agent

SRM Agent

CRLRetrievalResponse

1

_1234091380.vsd
�

�

DRM Agent

SRM Agent

AuthRequest

1

AuthResponse

2

KeyExchangeRequest

KeyExchangeResponse

_1234264370.vsd
�

�

DRM Agent

SRM Agent

NonceRequest

1

NonceResponse

_1229242395.vsd
�

�

CRLUpdateResponse

DRM Agent

SRM Agent

CRLUpdateRequest

1

