OMA-TS-SRM-V1_0-20070320-D
Page 34  V(81)


	[image: image1.jpg]
	

	OMA Secure Removable Media Specification

	Draft Version 1.0 – 20 March 2007

	Open Mobile Alliance

	OMA-TS-SRM-V1_0-20070320-D

	
	

	

	
	


Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner.  Information contained in this document may be used, at your sole risk, for any purposes.  You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance.  The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms.  This copyright permission does not constitute an endorsement of the products or services.  The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification.  However, the members do not have an obligation to conduct IPR searches.  The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html.  The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights.  This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions.  Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2007 Open Mobile Alliance Ltd.  All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

81.
Scope

2.
References
9
2.1
Normative References
9
2.2
Informative References
9
3.
Terminology and Conventions
10
3.1
Conventions
10
3.2
Definitions
10
3.3
Abbreviations
10
3.4
Notations
11
3.5
Binary Structures
11
4.
Introduction
12
4.1
Component and Interface Deployment
12
5.
Secure Removable Media Overview
14
5.1
Information Structure
14
5.1.1
Rights
14
5.1.2
RI Certificate Chain
15
5.1.3
Other Information
15
5.2
Security Algorithms
16
5.3
DRM Agent – SRM Agent Communications
16
5.4
Client – Server Model
16
5.5
Notations of Messages
16
5.5.1
Messages
16
5.5.2
Actions
17
5.5.3
Parameters
17
5.5.4
Message Format
18
5.6
DRM Agent – SRM Agent Protocol
19
5.6.1
Device – SRM Hello
19
5.6.2
MAKE (Mutual Authentication and Key Exchange) Process
22
5.6.3
Secure Authenticated Channel
29
5.6.4
Revocation Status Checking
30
5.6.5
Movement of Rights from Device to SRM
35
5.6.6
Movement of Rights from SRM to Device
37
5.6.7
Initiation of Local Rights Consumption
40
5.6.8
Update of Rights in SRM for Local Consumption
43
5.6.9
LROID Retrieval
47
5.6.10
SRM Utilities
49
5.7
Function Recovery
52
6.
Transport Mappings
53
6.1
SRM Communication Layer Model
53
6.1.1
Application Layer
53
6.1.2
Other Layers (Informative)
53
Appendix A.
Method for Describing Binary Structures
55
A.1
Mnemonics (Data Types)
55
A.2
Comments
55
A.3
Syntax Description
55
A.4
Padding
56
A.5
Arrays
56
A.6
Optional Variables or Data Structures
57
Appendix B.
Data Format (Normative)
58
B.1
Common Data Structure
58
B.2
ROID
58
B.3
ContentID
58
B.4
Rights
59
B.4.1
Rights Meta Data
59
B.4.2
Rights Object Container
59
B.4.3
State Information
59
B.4.4
REK
59
B.5
LCID (List of Content Identifier)
59
B.6
LROID (List of Rights Object Identifier)
59
Appendix C.
SRM Transport Protocol
61
C.1
HTTP Mapping
61
C.1.1
HTTP Headers
61
C.1.2
SRM Requests
61
C.1.3
SRM Responses
61
C.1.4
HTTP Response Codes
62
Appendix D.
SRM-API (Secure Removable Media – Application Programming Interface) (Informative)
63
D.1
Definition Structures
63
D.2
API List
63
D.2.1
Initialize_Message
64
D.2.2
CRL_Update_Message
64
D.2.3
CRL_Retrieval_Message
65
D.2.4
LRID_Retrieval_Message
66
D.2.5
Rights_Installation_Message
67
D.2.6
Rights_Retrieval_Message
68
D.2.7
Rights_Update_Message
69
D.2.8
Rights_Removal_Message
70
D.2.9
Rights_Lock_Message
71
D.2.10
Rights_Release_Message
72
D.3
Status Codes
73
Appendix E.
Certificates and CRL
75
E.1
Certificate Profiles and Requirements
75
E.2
CRL Profiles and Requirements
76
Appendix F.
Move Permission in Rights Object (Normative)
78
F.1
Extension of Permission Model in REL
78
F.1.1
Element <permission>
78
F.1.2
Element <move>
78
Appendix G.
Change History (Informative)
79
G.1
Approved Version History
79
G.2
Draft/Candidate Version <current version> History
79
Appendix H.
Static Conformance Requirements (Normative)
81
H.1
SCR for XYZ Client
81
H.2
SCR for XYZ Server
81





























































































Figures

12Figure 1: Secure Removable Media System - Component and Interface


17Figure 2: Notation of Message


17Figure 3: Notation of Action


19Figure 4: Sequence Diagram - Device - SRM Hello


22Figure 5: Sequence Diagram – MAKE Process


31Figure 6: Sequence Diagram – CRL Delivery from Device to SRM


33Figure 7: Sequence Diagram – CRL Delivery from SRM to Device


35Figure 8: Sequence Diagram – Movement of Rights from Device to SRM


38Figure 9: Sequence Diagram – Movement of Rights from SRM to Device


41Figure 10: Sequence Diagram - Initiation of Local Rights Consumption


44Figure 11: Sequence Diagram - Rights Update


45Figure 12: Sequence Diagram – Rights Release


47Figure 13: Sequence Diagram - LROID Retrieval


49Figure 14: Sequence Diagram – Store RI Certificate Chain


50Figure 15: Sequence Diagram – Get RI Certificate Chain


51Figure 16: Sequence Diagram – Remove RI Certificate Chain


53Figure 17: SRM Communication Layer




















Tables

18Table 1: Notation of Parameters


18Table 2: Message Identifier


19Table 3: Parameters of HelloRequest (Device Hello)


19Table 4: Parameters of HelloResponse (SRM Hello)


20Table 5: Status of HelloResponse


22Table 6: Parameters of AuthenticationRequest


23Table 7: Parameters of AuthenticationResponse


23Table 8: Status of Authentication Message


26Table 9: Parameters of KeyExchangeRequest


26Table 10: Parameters of KeyExchangeResponse


27Table 11: Status of Key Exchange Message


29Table 12: Key Materials


31Table 13: Parameters of CRLUpdateRequest


31Table 14: Parameters of CRLUpdateResponse


31Table 15: Status of CRL Update Message


33Table 16: Parameters of CRLRetrievalRequest


33Table 17: Parameters of CRLRetrievalResponse


33Table 18: Status of CRL Retrieval Message


35Table 19: Parameters of RightsInstallationRequest


36Table 20: Parameters of RightsInstallationResponse


36Table 21: Status of Rights Installation Message


36Table 22: Parameters of RightsUnsealRequest


37Table 23: Parameters of RightsUnsealResponse


37Table 24: Status of Rights Unseal Message


38Table 25: Parameters of RightsRetrievalRequest


39Table 26: Parameters of RightsRetrievalResponse


39Table 27: Status of Rights Retrieval Message


40Table 28: Parameters of RightsRemovalRequest


40Table 29: Parameters of RightsRemovalResponse


40Table 30: Status of Rights Removal Message


41Table 31: Parameters of RightsRetrievalRequest


42Table 32: Parameters of RightsRetrievalResponse


42Table 33: Status of Rights Retrieval Message


42Table 34: Parameters of RightsLockRequest


43Table 35: Parameters of RightsLockResponse


43Table 36: Status of Rights Lock Message


44Table 37: Rule of Rights Update


45Table 38: Parameters of RightsUpdateRequest


45Table 39: Parameters of RightsUpdateResponse


45Table 40: Status of Rights Update Message


46Table 41: Parameters of RightsReleaseRequest


46Table 42: Parameters of RightsReleaseResponse


46Table 43: Status of Rights Release Message


47Table 44: Parameters of LROIDRetrievalRequest


48Table 45: Parameters of LROIDRetrievalResponse


48Table 46: Status of LROID Retrieval Message


49Table 47: Parameters of RICertificateStoreRequest


49Table 48: Parameters of RICertificateStoreResponse


49Table 49: Status of RI Certificate Store Message


50Table 50: Parameters of RICertificateQueryRequest


50Table 51: Parameters of RICertificateQueryResponse


51Table 52: Status of RI Certificate Query Message


51Table 53: Parameters of RICertificateRemovalRequest


51Table 54: Parameters of RICertificateRemovalResponse


52Table 55: Status of RI Certificate Removal Message


55Table 56: Data Types


57Table 57: Ranges


58Table 58: Elements of OctetString16


58Table 59: Elements of ROID


59Table 60: Elements of ContentID


60Table 61: Elements of LROID


63Table 62: API List


73Table 63: Status Codes


75Table 64: SRM Certificate Profile


76Table 65: CRL Profile


77Table 66: RevokedCertificates Entry fields in CRL Profile



































































1. Scope

The scope of OMA “Secure Removable Media” is to enable the use of the Secure Removable Media based on the OMA DRM version 2.0. This specification defines mechanisms and protocols necessary to implement the Secure Removable Media and the extended part of the OMA DRM version 2.0 system to enable the use of the Secure Removable Media.
2. References

2.1 Normative References

	[CertProf]
	“Certificate and CRL Profiles”, OMA-Security-CertProf-v1_1, Open Mobile Alliance, http://www.openmobilealliance.org

	[IOPPROC]
	“OMA Interoperability Policy and Process”, Version 1.1, Open Mobile Alliance™, OMA-IOP-Process-V1_1, URL:http://www.openmobilealliance.org/

	[OMADRMv2]
	“Digital Rights Management”, Open Mobile Alliance(, OMA-DRM-DRM-V2_0, URL:http://www.openmobilealliance.org/

	[PKCS-1]
	“PKCS #1 v2.1: RSA Cryptography Standard”, RSA Laboratories, June 2002, http://www.rsasecurity.com/rsalabs

	[RFC2104]
	HMAC: Keyed-Hashing for Message Authentication. H. Krawczyk, M. Bellare, and R. Canetti. Informational, February 1997.  http://www.ietf.org/rfc/rfc2104.txt 

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. November 1997, URL:http://www.ietf.org/rfc/rfc2234.txt

	[RFC3280]
	"Internet Public Key Infrastructure - Certificate and Certificate Revocation List (CRL) Profile", Housley, R., Polk, W., Ford, W. and D. Solo, April 2002. http://www.ietf.org/rfc/rfc3280.txt

	
	


2.2 Informative References

	[SRM-AD]
	“OMA Secure Removable Media Architecture”, Open Mobile Alliance(, OMA-AD-SRM-V1_0, URL:http://www.openmobilealliance.org/

	[SRM-RD]
	“OMA Secure Removable Media Requirements”, Open Mobile Alliance(, OMA-RD-SRM-V1_0, URL:http://www.openmobilealliance.org/


3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	Composite Object
	A content object that contains one or more Media Objects by means of inclusion (From [OMADRMv2])

	Media Object
	A digital work e.g. a ringing tone, a screen saver, a Java game or a Composite Object (From [OMADRMv2])

	Handle
	A context derived by the SRM Agent from the Handle ID and the ROID of the Rights that the DRM Agent intends to access for the Move or Local Consumption operation

	Handle ID
	A random number generated by the DRM Agent, which is stored in the SRM and in the Operation Log (kept in the Device) used for associating the DRM Agent to specific Rights for the Move or Local Consumption operation

	Permission
	Actual usages or activities allowed (by the Rights Issuer) over Protected Content (From [OMADRMv2])

	Protected Content
	Media Objects that are consumed  according to a set of Permissions in a Rights Object (From [OMADRMv2])

	Rights
	A Rights Object and its associated states.

	Rights Issuer
	An entity that issues Rights Objects to OMA DRM conformant devices (From [OMADRMv2])

	Rights Object
	A collection of Permissions and other attributes which are linked  to Protected Content (From [OMADRMv2])

	Secure Removable Media
	A removable media that implements means to protect against unauthorized access to its internal data and includes an SRM Agent. (e.g. secure memory card, smart card)

	
	

	
	


3.3 Abbreviations

	AES
	Advanced Encryption Standard

	CEK
	Content Encryption Key

	CRL
	Certificate Revocation List

	DRM
	Digital Rights Management

	ESF
	Extended State Format

	GUID
	Globally Unique Identifier

	HMAC
	Keyed-Hash Message Authentication Code

	LCID
	List of Content Identifier

	LROID
	List of Rights Object Identifier

	MAKE
	Mutual Authentication and Key Exchange

	OMA
	Open Mobile Alliance

	PKCS
	Public Key Cryptography Standards

	ROID
	Rights Object Identifier

	RITS
	Rights Issuer Time Stamp

	RO
	Rights Object

	ROAP
	Rights Object Acquisition Protocol

	RSA
	Rivest-Shamir-Adelman public key algorithm

	RSA-OAEP
	RSA encryption scheme - Optimal Asymmetric Encryption Padding

	RSA-PSS
	RSA Probabilistic Signature Scheme

	R-UIM
	Removable User Identity Module

	SD
	Secure Digital

	SHA1
	Secure Hash Algorithm

	S-MMC
	Secure MultiMediaCard

	SIM
	Subscriber Identity Module

	SRM
	Secure Removable Media

	SRM-AP
	Secure Removable Media - Access Protocol

	SRM-DP
	Secure Removable Media - Detection Protocol

	USIM
	UMTS Subscriber Identity Module

	
	


3.4 Notations

The following notation is used in this specification:
	X | Y
	Concatenation of X and Y

	E (K , M)
	The result of encrypting message M using the RSA key K

	H (X)
	The result of computing a hash on X

	HMAC (K , X)
	The result of computing an HMAC on X using the key K


The following typographical conventions are used in the body of the text: BinaryDataStructureVariables, Message Parameters, <XML Elements>
3.5 Binary Structures

This document uses a “C” like language to describe the binary data structures used. The details are provided in Appendix A.
4. Introduction

Secure Removable Media is a removable media that implements means to protect against unauthorized access to its internal data and includes an SRM Agent. Example of Secure Removable Media (referred to as SRM hereinafter) may be the secure memory card and the smart card.

The secure memory card has an embedded microprocessor and is capable of storing Rights or contents in a secure manner (e.g. S-MMC, SD). The smart card also has an embedded microprocessor and is capable of storing access codes, user subscription information, secret keys, contents, Rights etc (e.g. SIM, USIM, R-UIM). If a user uses devices with a physical interface to connect SRM, the user can use the SRM as a mean of increasing storage space for contents and portability of Rights. Differently from the secure memory card, the smart card enables users to make a telephone call by using the devices and is issued by a mobile network operator.

OMA DRM with SRM can provide a mechanism to write, read, delete and update Rights in SRM in a secure manner to realize the use cases defined in the OMA SRM requirements document [SRM-RD]. The architecture of the OMA SRM is specified in the OMA SRM architecture document [SRM-AD]. 
While the OMA DRM version 2.0 [OMADRMv2] defines an end-to-end system for Protected Content and Rights Object distribution among the device, the rights issuer and the content issuer, this specification defines mechanisms and protocols of the SRM to extend the OMA DRM version 2.0 to allow users to move Rights between the device and the SRM and to consume Rights stored in the SRM.
4.1 Component and Interface Deployment


[image: image2.emf]DRM AgentSRM Agent

DeviceSecure Removable Media

Trusted EntityUser Equipment

Rights Issuer

ROAP (OMA DRM V2.0)

SRM-DP

SRM-AP

Operating System

Secure 

Storage

Mass 

Storage

Out of Scope


Figure 1: Secure Removable Media System - Component and Interface
The Secure Removable Media system is a set of three entities: Rights Issuer, DRM Agent and SRM Agent. The three entities communicate each other using the following protocols:

· Rights Issuer and DRM Agent: ROAP (Rights Object Acquisition Protocol)

· DRM Agent and SRM Agent: SRM-DP (Secure Removable Media – Detection Protocol) and SRM-AP (Secure Removable Media – Access Protocol)

The Rights Issuer and DRM Agent communicate each other by the ROAP as defined in [OMADRMv2]. 
The DRM Agent and the SRM Agent detects each other using the SRM-DP in section 5.6. After the detection, the DRM Agent and SRM Agent exchange messages using the SRM-AP to realize functions in section 1.1.1.
The SRM Agent has an internal secure communication with the Secure Storage. The implementation of the communication is out of scope of this specification. For the completeness of the security in the Secure Removable Media system, this specification assumes the follows:

· Only the SRM Agent can access the Secure Storage (i.e. the DRM Agent cannot directly access the Secure Storage).

· To perform an action on information in the Secure Storage, the DRM Agent requests the action to the SRM Agent. After performing the action, the SRM Agent passes the result of the action to the DRM Agent (i.e. the DRM Agent cannot receive information from the Secure Storage, if the information is not produced by the SRM Agent.).
5. Secure Removable Media Overview
This specification defines actions and interfaces of the Rights Issuer, DRM Agent, and SRM Agent.
5.1 Information Structure
5.1.1 Rights
This section specifies Rights stored in SRM(s). Rights may be stored in SRM(s) by being preloaded or moved from a Device by the Move Permission granted by Rights Issuers. Rights consist of Rights Meta Data, Rights Object Container, State Information and REK. XML elements and attributes referred to in this section are specified in [OMADRMv2].
The Rights MUST be securely stored in the SRM.
5.1.1.1 Rights Meta Data

Rights Meta Data consists of following information:

· Rights Object Version

· RO Alias

· RI Identifier

· RI URL

· RI Alias

Appendix B.4.1 specifies the data structure of the Rights Meta Data.
5.1.1.2 Rights Object Container
A Rights Object is a collection of Permissions and other attributes which are linked to DRM Content(s). The Rights Object is stored in an SRM in the format of the Rights Object Container. The SRM Agent treats the Rights Object Container as an opaque object.

In case a DRM 2.0 or 2.1 Rights Object is stored in the SRM, the Rights Object Container consists of the <rights> element and the <signature> element in the RO payload (i.e. <ro> element of the <protectedRO> element in the RO Response of ROAP). The RI-signature (i.e. <signature> element in the RO payload) MUST be present in the Rights Object Container. The RI-signature is created by a Rights Issuer that is identified by the <riID> element in the RO payload. The SRM Agent doesn’t verify the RI-signature.
It is RECOMMENDED that the Rights Issuer not generate a Rights Object (in XML format) larger than 4096 bytes if the Rights Object may be installed in an SRM. Appendix B.4.2 specifies the data structure of the Rights Object Container.

Note: The SRM version 1.0 doesn’t support domain Rights Objects. (i.e. Domain Rights Objects SHALL NOT be stored in the SRM.)
5.1.1.3 State Information
State Information is the current state of stateful Rights Objects. This is present in Rights if the Rights Object is stateful.  Appendix B.4.3 specifies the data structure of the State Information in detail.
5.1.1.4 REK

REK is Rights Object Encryption Key (REK) in binary form, i.e. no base64 encoding. When the REK is transferred between the Device and SRM, the confidentiality of the REK MUST be protected by a Secure Authenticated Channel. The REK MUST also be securely stored in the SRM.

Appendix B.4.4 specifies the data structure of the REK Container.
5.1.2 RI Certificate Chain
The Device makes RI certificate chains available to SRMs with which it communicates. The SRM MAY store RI certificate chains. The SRM Agent may make such certificate chains available to DRM Agents with which it communicates. The DRM Agent uses the appropriate RI certificate chain when verifying the RI-signature of a Rights Object.
Trust authorities may decide whether the verification of the RI-signature is necessary or not when the Rights is installed in the Device as a part of the Rights Move (Refer to section 5.6.5 and 5.6.6). The default behaviour is that the DRM Agent MUST verify the RI-signature and its RI certificate chain.

When Rights in the SRM are used for the Local Rights Consumption (refer to section 5.6.7 and 5.6.8), the DRM Agent SHOULD verify the RI-signature.

If RI-signature verification is required and the SRM does not provide the RI certificate chain, the Device MUST get the certificate chain (if it does not have it already). The DRM Agent can acquire the RI certificate chain via a DRM v2.0 RI Registration or via other methods specified by a trust authority. The DRM Agent is not required to check the RI revocation status and RI certification chain expiration during RI-signature verification.
5.1.3 Other Information

This section specifies information that is used by SRM Agents. XML elements and attributes referred to in this section are specified in [OMADRMv2].

5.1.3.1 Rights Object Identifier
Rights Object Identifier uniquely identifies Rights. This is the value of the <uid> element in the <context> element that is a child of the <rights> element in the Rights Object. This value MUST be identical to the id attribute of the <ro> element in the <protectedRO> element which is included in the RO Response of ROAP.
The Rights Object Identifier is referred to as ROID hereinafter in this specification.
Devices and SRMs MUST support ROIDs of at least 256 bytes. It is RECOMMENDED that the Rights Issuer set the ROID to no more than 256 bytes if the Rights may be installed in an SRM.
5.1.3.2 Content Identifier

Content Identifier is included in a Rights Object and identifies a DRM Content. It is defined in [OMADRMv2]. The identification may be equivalent to a subscription identifier or a Group ID for a corresponding group of DRM Contents. These terms (subscription identifier and Group ID) are defined in [OMADRMv2]. The Content Identifier is referred to as ContentID hereinafter in this specification.
Devices and SRMs MUST support ContentIDs of at least 256 bytes. It is RECOMMENDED that a content author not use a ContentID larger than 256 bytes if the Rights may be installed in an SRM.
5.1.3.3 List of Content Identifier
A Rights Object may be associated with one DRM Content or with multiple DRM Contents. List of Content Identifier is a list that identifies DRM Contents which are associated with the Rights Object. Appendix B.5 specifies the data structure of the List of Content Identifier.
The List of Content Identifier is referred to as LCID hereinafter in this specification.
5.1.3.4 List of Rights Object Identifier
List of Rights Object Identifier consists of the ROIDs of the Rights which are associated with a specific DRM Content. Appendix B.6 specifies the data structure of the List of Rights Object Identifier. The List of Rights Object Identifier is referred to as LROID hereinafter in this specification.
Security Algorithms
For the MAKE process and Secure Authenticated Channel, the following cryptographic algorithms are used in this specification. The following algorithms and associated URIs MUST be supported by all DRM Agents and SRM Agents.
Hash algorithms:

SHA-1: http://www.w3.org/2000/09/xmldsig#sha1
MAC algorithms:

HMAC-SHA-1: http://www.w3.org/2000/09/xmldsig#hmac-sha1
Symmetric encryption algorithms:

AES-128-CBC: http://www.w3.org/2001/04/xmlenc#aes128-cbc
Asymmetric encryption algorithms:

RSA-OAEP (v2.1): http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-1
Signature algorithms:

RSA-PSS (v2.1): http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-1
DRM Agent – SRM Agent Communications
A DRM Agent communicates to an SRM Agent over a communication channel. How this communication channel is established is beyond the scope of this document. It is presumed that the DRM Agent can use the services of the underlying layers to establish the channel. Once this channel has been established, one or more logical channels are established, depending on what kind of information needs to be exchanged and how many trust authorities are supported by the SRM Agent.
Client – Server Model

The model used for the communications between the DRM Agent and the SRM Agent is a client – server model. The DRM Agent is always the client and the SRM Agent is always the server. The SRM Agent does not act by itself. It only acts when it receives a request from a client (a DRM Agent) and then responds to that request.

In addition, it is always the DRM Agent that establishes the physical and logical communication channels.
5.2 Notations of Messages
This section presents notations used in this specification.
5.2.1 Messages
A message is data communication between the DRM Agent and the SRM Agent in this specification. The communication is based on a request-response mechanism. A message consists of a request and a response. For all messages between the DRM Agent and the SRM Agent, the DRM Agent sends a request to the SRM Agent to perform a specific action, and then the SRM Agent sends a response back to the DRM Agent for the request.

[image: image3.emf]Entity AEntity B

{message name}Request

{message name}Response


Figure 2: Notation of Message
In Figure 2, the solid line from the Entity A to the Entity B denotes a request and the solid line from the Entity B to the Entity A denotes a response. The Entity A sends the request to the Entity B to perform a specific action. After this, the Entity B sends the response back to the Entity A. 

Names of requests and responses are ended with the string “Request” and “Response” (e.g. RightsInstallationRequest and RightsInstallationResponse).

This notation is used for all messages in this specification.
5.2.2 Actions
An action is a specific operation of the DRM Agent or the SRM Agent. The DRM Agent performs a specific action independently, but the SRM Agent performs a specific action by a request from the DRM Agent. For each action in the SRM, the SRM Agent sends a response to the DRM Agent.


[image: image4.emf]Entity C

{action name}


Figure 3: Notation of Action
In Figure 3, the curved line denotes an action. The Entity C performs an action. Each action has a name (e.g. RightsInstallationInSRM). All action names are ended with the string “In{Place}”, in case that the action is performed in the “Place”.
5.2.3 Parameters
A parameter is a data unit which is passed from an entity to the other entity to make the recipient entity perform an action by using the parameter.

Messages in this specification carry a set of parameters from the DRM Agent to the SRM Agent or vice versa. The parameters are denoted by using a table as Table 1 below. A request and response have their own parameter tables (i.e. one parameter table for the request and one parameter table for the response).
Table 1: Notation of Parameters
	Parameters
	Protection Requirement
	Description

	A
	Integrity
	

	B
	Confidentiality
	

	C
	Integrity & Confidentiality
	

	D
	No
	


The Table 1 shows that a message carries 4 parameters – A, B, C, and D. The “Protection Requirement” column denotes the minimum security requirement that MUST be protected by a Secure Authenticated Channel. (i.e. the integrity of the parameter A MUST be guaranteed, the confidentiality of the parameter B MUST be guaranteed , both of the integrity and confidentiality of the parameter C MUST be guaranteed, and the parameter D is not needed to be protected.) The “Description” column shows detail of parameters.

Message Format

All messages between the DRM Agent and SRM Agent have the following generic format:
MessageFormat ()

    messageType
1
bslbf

    protectedFlag
1
bslbf

    messageIdentifier
6
bslbf

    MessageBody()
}

The fields are defined as follows:

· messageType - This flag is set to ‘0’ if this is a request from the DRM Agent to SRM Agent. In case of a response, it’s set to 01h.

· protectedFlag - This flag is set to ‘1’ if the message is protected by a Secure Authenticated Channel.

· messageIdentifier - This field defines the identifier of messages being communicated. This is defined in Table 2
· MessageBody - This field contains parameters of a message.

Table 2: Message Identifier
	Identifier Value
	Description

	00h
	Reserved For Future Use

	01h
	Reserved For Future Use

	02h
	HelloRequest, HelloResponse

	03h
	AuthenticationRequest, AuthenticationResponse

	04h
	KeyExchangeRequest, KeyExchangeResponse

	05h
	CRLUpdateRequest, CRLUpdateResponse

	06h
	CRLRetrievalRequest, CRLRetrievalResponse

	
	TBD


5.3 DRM Agent – SRM Agent Protocol
5.3.1 Device – SRM Hello
This is the first setup of the DRM Agent – SRM Agent communications. The DRM Agent negotiates the protocol version with the SRM Agent, and receives a list of trust authorithes supported by the SRM Agent.
Hello Message


[image: image5.emf]HelloRequest (Device Hello)

HelloResponse (SRM Hello)

DRM AgentSRM Agent


Figure 4: Sequence Diagram - Device - SRM Hello
Message Description

The DRM Agent sends the HelloRequest (Device Hello message) to initiate a logical channel with the SRM Agent. The parameters of the request are defined in Table 3.

Table 3: Parameters of HelloRequest (Device Hello)
	Parameters
	Protection Requirement
	Description

	Version
	No
	Version is a <major.minor> representation of the highest SRM protocol version number supported by the DRM Agent. DRM Agents MUST support all versions prior to the one they suggest. 
For this version of the protocol, Version SHALL be set to "1.0" without quotes. Minor version upgrades MUST always be backwards compatible.

	Device ID
	No
	Device ID identifies the DRM Agent to the SRM Agent. The identifier is the hash of the Device’s public key in the Device Certificate (i.e. the hash of the complete DER-encoded subjectPublicKeyInfo component in the Device Certificate). The default hash algorithm is SHA-1.


Upon receiving the HelloRequest, the SRM Agent selects a protocol version supported by the SRM.
After this completing this step, the SRM Agent sends the HelloResponse (SRM Hello message) to the DRM Agent. The parameters of the response are defined in Table 4. If any error occurs during this action, the error MUST be reported to the DRM Agent. The Status parameter of the HelloResponse contains the error cases as specified in Table 5.
Table 4: Parameters of HelloResponse (SRM Hello)
	Parameters
	Protection Requirement
	Description

	Status
	No
	This indicates if the HelloRequest is successfully handled or not. The Status value is specified in Table 5.

If the Status contains any error, only this parameter is present in the HelloResponse.

	Selected Version
	No
	The protocol version selected by the SRM Agent. The Selected Version will be min(DRM Agent suggested version, highest version supported by the SRM Agent). The min(A,B) = A where A <= B.

	Trusted Authorithes
	No
	The list of trust anchors supported by the SRM Agent. The trust anchor is the hash of the public key of the root certificate in the Device Certificate Chain (i.e. the hash of the complete DER-encoded subjectPublicKeyInfo component in the root certificate). The default hash algorithm is SHA-1.

	Peer Key Identifier
	No
	An identifier for a Device’s public key stored by the SRM. If the identifier matches the Device ID in the preceeding HelloRequest, it means the SRM has already stored that Device ID and the corresponding Device Certificate Chain, and the DRM Agent need not send that certificate chain in a later message. Keys are identified in the same way as DRM Agents are (a hash of the DER-encoded subjectPublicKeyInfo component of the Device Certificate). If the SRM has stored the Device’s public key (corresponding certificate chain), then the SRM Agent MUST include this parameter in the HelloResponse.


Table 5: Status of HelloResponse
	Status Value
	Description

	Success
	The request is successfully handled

	Unknown Error
	Other errors


Upon receiving the HelloResponse and Status is Success, the DRM Agent continues with the MAKE process in section 5.6.2.
Message Format

The message format  (MessageBody) of the HelloRequest is specified as follows. The messageType and protectedFlag are set to ‘0’.
Version() {

    VersionString()

}

DeviceId()

{

    HashedPukeyString()

}
MessageBody() {
    Version()

    DeviceId()

}
The fields are defined as follows:

Version - Version parameter in Table 3
DeviceId – Device ID parameter in Table 3
The message format (MessageBody) of the HelloResponse is specified as follows. The messageType is set to ‘1’ and the protectedFlag is set to ‘0’.
SelectedVersion() {

    VersionString()

}

TrustedAuthorities() {

    numOfTrustedAuthorithes

8
uimsbf
    for ( i = 0 ; i < numOfTrustedAuthorithes ; i++ ) {

        HashedPukeyString()
    }
}

PeerKeyIdentifier() {

    HashedPukeyString()
}

MessageBody() {
    status

16
uimsbf

    if ( status == 0 ) {
        peerKeyIdentifierPresent
1
bslbf
        rfu

7
bslbf
        SelectedVersion()

        TrustedAuthorities()
        if ( peerKeyIdentifierPresent ) {
            PeerKeyIdentifier()
        }
    }
}

The fields are defined as follows:

· status - This field contains the request handling status. If the request is handled successfully in the SRM, then this field contains Success (0) value.
· peerKeyIdentifierPresent – if ‘1’, then PeerKeyIdentifier is present in this message
· SelectedVersion - Selected Version parameter in Table 4
· TrustedAuthorities – Trusted Authorities parameter in Table 4
· PeerKeyIdentifier – PeerKeyIdentifier parameter in Table 4
Exception Handling

There may be an unexpected exception during the Hello Message processing as specified in section XXXX. [Section 5.6.1 of CR-0088R01 will be referred to.] If the DRM Agent fails to receive the response or finds an error by referring to the Status, then the DRM Agent regards it as an exception and terminates communication with the SRM Agent. The user may be informed of this exception.



· 
· 
5.3.1.1 

· 

· 

5.3.2 


· 
· 
· 
· 
· 
· 
5.3.2.1 












5.3.2.2 


	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	




	
	
	

	
	
	

	
	
	

	
	
	


5.3.3 MAKE (Mutual Authentication and Key Exchange) Process

[image: image6.emf]DRM AgentSRM Agent

AuthenticationRequest

KeyExchangeRequest

AuthenticationResponse

KeyExchangeResponse



Figure 5: Sequence Diagram – MAKE Process
5.3.3.1 Authentication Message
5.3.3.2 The DRM Agent sends the AuthenticationRequest to the SRM Agent, in order to select one of the trust anchors, and negotiate security algorithms used by the DRM Agent and SRM Agent. This request expresses Device information and preferences. The AuthenticationResponse expresses SRM information and preferences. The DRM Agent and SRM Agent also exchange their certificate chains and verify them.
Message Description

The DRM Agent sends the AuthenticationRequest to initiate a MAKE process. The parameters of the request are defined in Table 6.
Table 6: Parameters of AuthenticationRequest
	Parameters
	Protection Requirement
	Description

	Trust Anchor
	No
	Trust Anchor preferred by the DRM Agent. This is selected from Trusted Authorities in Table 4.
Trust anchors are identified as the hash of the public key of the root certificate in the Device Certificate Chain (i.e. the hash of the complete DER-encoded subjectPublicKeyInfo component in the root certificate). The default hash algorithm is SHA-1.

	Device Certificate Chain
	No
	A certificate chain including the Device Certificate. The chain MUST NOT include the root certificate. The Device Certificate MUST come first in the list. Each following certificate MUST directly certify the one preceding it. Refer to Appendix E.1
If the Peer Key Identifier parameter is present in the HelloResponse, then this parameter need not be sent in the AuthenticationRequest.

	Supported Algorithms
	No
	Supported Algorithms identifies the cryptographic algorithms (hash algorithms, MAC algorithms, signature algorithms, asymmetric encryption algorithms, symmetric encryption algorithm, and key derivation functions) that are supported by the DRM Agent. Algorithms are identified using common URIs as specified in section 5.2. The algorithms and associated identifiers MUST be supported by all DRM Agents and SRM Agents.

Use of other algorithms is optional. Since all DRM Agents and all SRM Agents must support the default algorithms, they need not be sent in this parameter. Only identifiers for algorithms that are not one of the defaults needs to be sent in the AuthenticationRequest.


Upon receiving the AuthenticationRequest, the SRM Agent verifies the Device Certificate Chain if present. When the Device Certificate Chain is not present even if the HelloResponse doesn’t include Peer Key Identifier, the SRM Agent returns Device Certificate Chain Verification Failed in the Status of the response.

After this action, the SRM Agent sends the AuthenticationResponse to carry the result of the action. The parameters of the response are defined in Table 7. If any error occurs during the action, the error MUST be reported to the DRM Agent. The Status parameter of the AuthenticationResponse contains the error cases as specified in Table 8.
Table 7: Parameters of AuthenticationResponse
	Parameters
	Protection Requirement
	Description

	Status
	No
	This indicates if the AuthenticationRequest is successfully handled or not. The Status value is specified in Table 8.

	
	
	

	SRM Certificate Chain
	No
	A certificate chain including the SRM Certificate. The chain MUST NOT include the root certificate. The SRM Certificate MUST come first in the list. Each following certificate MUST directly certify the one preceding it. Refer to Appendix E.1

	Encrypted AuthResp Data
	No
	E (PuKeyD , M) where M = RNS | Version | Supported Algorithms | Selected Algorithms
RNS: A random number generated by the SRM Agent
Version is identical to Version received by the SRM Agent in the HelloRequest.
Supported Algorithms is identical to Supported Algorhtms received by the SRM Agent in the AuthenticationRequest
Selected Algorithms specify the cryptographic algorithms selected by the SRM Agent. If the DRM Agent indicated support of only mandatory algorithms (i.e. left out the Supported Algorithm parameter in the AuthenticationRequest, or the DRM Agent only supports the mandatory algorithms), then the SRM Agent need not include this parameter. Otherwise, the SRM Agent MUST provide this parameter and MUST identify one algorithm of each type. 
M is encrypted with the Device’s public key (PuKeyD).





Table 8: Status of Authentication Message
	Status Value
	Description

	Success
	The request is successfully handled.

	Trust Anchor Not Supported
	Trust Anchor in the request is not supported by the SRM Agent

	
	

	Device Certificate Chain Verification Failed
	The SRM Agent fails to verify the Device Certificate Chain.

	
	

	Unknown Error
	Other errors


Upon receiving the AuthenticationResponse and Status is Success, the DRM Agent verifies the SRM Certificate Chain. After the verification, the DRM Agent decrypts RNS, Version, Supported Algorithms and Selected Algorithms with the Device’s private key (PrKeyD).
Then the DRM Agent compares Version to the Version parameter sent in the HelloRequest, and also compares Supported Algorithms to the Supported Algorithms sent in the AuthenticationRequest. If both are identical and it is sure that the Selected Algorithms are from the Supported Algorithms, the DRM Agent continues with section 5.6.2.2.
Message Format

The message format (MessageBody) of the AuthenticationRequest is specified as follows. The messageType and protectedFlag are set to ‘0’.
TrustAnchor() {

    HashedPukeyString()

}

DeviceCertificateChain() {

    CertificateChainString()

}
SupportedAlgorithms() {

    Algorithms()

}
MessageBody() {
    deviceCertificateChainPresent
1
bslbf
    supportedAlgorithmsPresent
1
bslbf
    rfu

6
bslbf
    TrustAnchor()
    if ( deviceCertificateChainPresent ) {

        DeviceCertificateChain()

    }

    if ( supportedAlgorithmsPresent ) {

        SupportedAlgorithms()

    }
}

The fields are defined as follows:

· deviceCertificateChainPresent - if ‘1’, then DeviceCertificateChain is present in this message
· supportedAlgorithmsPresent - if ‘1’, then SupportedAlgorithms is present in this message
· TrustAnchor – Trust Anchor parameter in Table 6
· DeviceCertificateChain – Device Certificate Chain parameter in Table 6
· SupportedAlgorithms – Supported Algorithms parameter in Table 6
The message format (MessageBody) of the AuthenticationResponse is specified as follows. The messageType is set to ‘1’ and the protectedFlag is set to ‘0’.
RandomNumber() {

    RandomNumberString()
}

Version() {

    VersionString()

}

SupportedAlgorithms() {

    Algorithms()

}
SelectedAlgorithms() {

    Algorithms()

}

SrmCertificateChain() {

    CertificateChainString()
}
AuthRespData() {
    supportedAlgorithmsPresent
1
bslbf
    selectedAlgorithmsPresent

1
bslbf
    rfu

6
bslbf
    RandomNumber()
    Version()
    if ( supportedAlgorithmsPresent ) {

        SupportedAlgorithms()
    }

    if ( selectedAlgorithmsPresent ) {

        SelectedAlgorithms()

    }

}
EncryptAuthRespData() {

    EncryptedString()

}
MessageBody() {

    status

16
uimsbf

    if ( status == 0 ) {

        SrmCertificateChain()
        EncryptAuthRespData()
    }

}

The fields are defined as follows:

· AuthRespData – M value of Encrypted AuthResp Data parameter in Table 7
· supportedAlgorithmsPresent – if ‘1’, then SupportedAlgorithms is present in AuthRespData
· selectedAlgorithmsPresent – if ‘1’, then SelectedAlgorithms is present in AuthRespData
· RandomNumber – RNS value of Encrypted AuthResp Data parameter in Table 7
· Version –Version value of Encrypted AuthResp Data parameter in Table 7
· SupportedAlgorithms – Supported Algorithms value of Encrypted AuthResp Data parameter in Table 7
· SelectedAlgorithms – Selected Algorithms value of Encrypted AuthResp Data parameter in Table 7
· status - This field contains the request handling status. If the request is handled successfully in the SRM, then this field contains Success (0) value.
· SrmCertificateChain – SRM Certificate Chain parameter in Table 7
· EncryptedAuthRespData –  Encrypted AuthRespData with the Device’s public key

Exception Handling
There may be an unexpected exception during the Authentication Message processing as specified in section XXXX. [Section 5.6.1 of CR-0088R01 will be referred to.] If the DRM Agent fails to receive the response, finds an error by referring to the Status, fails to verify the SRM Certificate Chain, or fails to decrypt the Encrypted AuthResp Data, then the DRM Agent regards it as an exception and terminates communication with the SRM Agent. The user may be informed of this exception.
In case Version is not matched with the Version parameter sent in the HelloRequest, or Supported Algorithms is not matched with the Supported Algorithms sent in the AuthenticationRequest, then the DRM Agent regards it as an exception and terminates communication with the SRM Agent.
5.3.3.3 Key Exchange Message

This step performs key exchange and key confirmation.

Message Desciption


The DRM Agent generates a random number (RND), and encrypts it with the SRM’s public key. 
At this step, the DRM Agent also encrypts the hash of the SRM Random Number (RNS) received in the AuthenticationResponse.
Then the DRM Agent sends the KeyExchangeRequest to exchange keys with the SRM Agent. The parameters of the request are defined in Table 9.
Table 9: Parameters of KeyExchangeRequest
	Parameters
	Protection Requirement
	Description

	Encrypted KeyEx Data
	No
	E (PuKeyS , M) where M = RND | H(RNS) | Selected Version
Selected Version is identical to the Selected Version received by the DRM Agent in the HelloResponse
M is encrypted with SRM’s public key (PuKeyS).


Upon receiving the KeyExchangeRequest, the SRM Agent decrypts Encrypted KeyExData with the SRM’s private key. 
The SRM Agent compares the decrypted H(RNS) to the hash of the random number (RNS) that the SRM Agent has sent in the AuthenticationResponse. The SRM Agent also compares the decrypted Selected Version to the Selected Version parameter sent in the HelloResponse.

After this action, the SRM Agent sends the KeyExchangeResponse to carry the result of the action. The parameters of the response are defined in Table 10. If any error occurs during the action, the error MUST be reported to the DRM Agent. The Status parameter of the KeyExchangeResponse contains the error cases as specified in Table 11.
Table 10: Parameters of KeyExchangeResponse
	Parameters
	Protection Requirement
	Description

	Status
	No
	This indicates if the KeyExchangeRequest is successfully handled or not. The Status value is specified in Table 11.
If the Status contains any error, only this parameter is present in the KeyExchangeResponse.

	Hashed RanNum Data
	No
	H(M) where M = RND | RNS. M is hashed by using SHA-1.




Table 11: Status of Key Exchange Message
	Status Value
	Description

	Success
	The request is successfully handled.

	Parameter Decryption Failed
	The SRM Agent fails to decrypt the encrypted parameters.

	SRM Random Number Mismatched
	The SRM Random Number from the DRM Agent is not identical to its original value in the SRM.

	Version Mismatched
	The Selected Version received in KeyExchagenRequest is not matched with the original value sent in the HelloResponse.

	Unknown Error
	Other errors


Upon receiving the KeyExchangeResponse and Status is Success, the DRM Agent confirms whether the hashed Device Random Number (RND) and SRM Random Number (RNS) are matched with the random numbers exchanged in the AuthenticationResponse and KeyExchangeRequest.


After the key exchange and key confirmation are successfully finished, the DRM Agent and SRM Agent generate security elements by REF _Ref142967782 \h 
 using the Key Derivation Function as specified in section 5.6.3.1.
Message Format

The message format (MessageBody) of the KeyExchangeRequest is specified as follows. The messageType and protectedFlag are set to ‘0’.
DeviceRandomNumber() {

    RandomNumberString()

}
SrmRandomNumber() {

    RandomNumberString()

}

HashedSrmRandomNumber() {

    HashedString()

}

KeyExData() {

    DeviceRandomNumber()
    HashedSrmRandomNumber()
    SelectedVersion()

}

EncryptedKeyExData() {

    EncryptedString()

}

MessageBody() {

    EncryptedKeyExData()

}

The fields are defined as follows:

· KeyExData – M value of Encrypted KeyEx Data parameter in Table 9
· DeviceRandomNumber – RNH value of Encrypted KeyEx Data parameter in Table 9
· SrmRandomNumber – RNS value of Encrypted KeyEx Data parameter in Table 9
· Selected Version – Selected Version value of Encrypted KeyEx Data parameter in Table 9
· HashedSrmRandomNumber – Hashed SrmRandomNumber
· EncryptedKeyExData –  Encrypted KeyExData with the SRM’s public key
The message format (MessageBody) of the KeyExchangeResponse is specified as follows. The messageType is set to ‘1’ and the protectedFlag is set to ‘0’.
DeviceRandomNumber() {

    RandomNumberString()

}

SrmRandomNumber() {

    RandomNumberString()

}

RanNumData() {

    DeviceRandomNumber()
    SrmRandomNumber()
}

HashedRanNumData() {

    HashedString()

}

MessageBody() {

    status

16
uimsbf

    if ( status == 0 ) {

        HashedRanNumData()

    }

}

The fields are defined as follows:

· RanNumData – M value of Hashed RanNum Data parameter in Table 10
· DeviceRandomNumber – RND value of Hashed RanNum Data parameter in Table 10
· SrmRandomNumber – RNS value of Hashed RanNum Data parameter in Table 10
· status - This field contains the request handling status. If the request is handled successfully in the SRM, then this field contains Success (0) value.
· HashedRanNumData –  Hashed RanNumData
Exception Handling

There may be an unexpected exception during the Key Exchange Message processing as specified in section XXXX. [Section 5.6.1 of CR-0088R01 will be referred to.] If the DRM Agent fails to receive the response, finds an error by referring to the Status, or fails to verify the random numbers, then the DRM Agent regards it as an exception and terminates communication with the SRM Agent. The user may be informed of this exception.
Secure Authenticated Channel
Whenever sensitive information, such as cryptographic keys, needs to be transferred between the DRM Agent and SRM Agent, a Secure Authenticated Channel (SAC) needs to be used. A SAC is a logical channel that provides message integrity and optionally message confidentiality. A SAC needs to be established using credentials from a trust authority under which the sensitive information was created.
5.3.4 Key Derivation Function
After the MAKE process is completed, both the DRM Agent and the SRM Agent have mutually authenticated each other and have exchanged secret random numbers that are used in generating key materials (Session Key and MAC Key). The keys are used in the SAC.
The Key Derivation Function (KDF) is equivalent to the KDF specified in section 7.1.2 of the OMA DRM v2.0 specification [OMADRMv2]. A trust authority may use a different KDF. The following keys in Table 12 are derived from the KDF. When using the KDF, Z = RND | RNS, otherInfo = Supported Algorithms | Selected Algorithms, and kLen is the total size of the key materials in Table 12.

Table 12: Key Materials
	Parameters
	Size
	Description
	Nomenclature

	MAC Key
	160 bit
	HMAC-SHA1 Key: The first 20 octets of T as the derived key
	MK

	Session Key
	128 bit
	AES Key: The next 16 octets of T as the derived key
	SK


By default, the DRM Agent and SRM Agent support the AES128-CBC mode. If the default algorithm is used, then both of the agents generate the 16byte initial vector (IV) with 00h for all octets. The padding is performed as specified in [RFC2630]. The kLen = 36 bytes.

Secure Message

Once the SAC has been established, two types of security are provided. The first type is integrity protection and the other type is confidentiality protection. The integrity protection is performed by generating HMAC over parameters using the MAC Key (MK). The confidentiality protection is performed by encrypting parameters using the Session Key (SK).
Message Counter

The DRM Agent and SRM Agent maintain a 16 bit Message Counter, called Ctr. Ctr is set to 0 just after the MAKE process concludes. 
If either request or response in a message pair includes the protectedFlag set by 1, then Ctr is incremented by one after a request-response message pair is exchanged. When Ctr is incremented, a new MAC Key (MK) is generated as specified in section 5.6.3.4.

When Ctr rolls over to 0, then a new MAKE process SHALL be performed. This allows 65535 request–response message pairs to be exchanged. A trust authority may set a lower or higher limit value to cause the MAKE process to take place.
Message Replay Protection

Replay protection is provided by using a different MAC Key for every protected request-response message pair either a request or response includes the protectedFlag set by 1. Once a MAC Key is used, then the key is invalidated and a new MAC Key is generated. One MAC Key is used for one request and response message pair.

It’s assumed that the MK(k) is kth MAC Key after the MAKE process concludes. Then the k+1th MAC Key (MK(k+1)) is generated as follows:

MK(k+1) = H(MK(k))
5.3.5 Revocation Status Checking
The revocation status checking is performed based on the following principles.
· During mutual authentication between the DRM Agent and SRM Agent, revocation status checking is performed locally by using a cached Certificate Revocation List (CRL).
· The functions defined in section 1.1.1 are allowed until a particular threshold is reached.
· Trust model sets thresholds.
· Once a threshold is reached, one or more of the functions in section 1.1.1 can be blocked.
· When the entity (DRM Agent or SRM Agent) receives a fresh CRL, then it resets its threshold counters. Once the threshold counters are reset, the blocked functions of section 1.1.1 are unblocked.
Editor’s Note:

Mutual authentication will be defined

Protocol to realize the certificate revocation status checking will be defined

Unblocking procedures, including receiving fresh CRL, will be defined.

Types of thresholds will be defined

For the DRM Agent and SRM Agent to replace old CRL with new CRL, this document specifies protocols for the following purposes:

· CRL Delivery from Device to SRM (Refer to 5.6.4.1)

The DRM Agent sends its CRL to the SRM Agent. The SRM Agent replaces the CRL in itself with the received CRL.

· CRL Delivery from SRM to Device (Refer to 5.6.4.2)

The DRM Agent retrieves CRL in SRM, and replaces its CRL with the retrieved CRL.

5.3.5.1 CRL Delivery from Device to SRM

[image: image8.emf]DRM AgentSRM Agent

1

CRLUpdateResponse

CRLUpdateRequest


Figure 6: Sequence Diagram – CRL Delivery from Device to SRM
Message Description

The DRM Agent sends the CRLUpdateRequest to replace the current CRL in the SRM with the CRL in the device. The parameters of the request are defined in Table 13.
Table 13: Parameters of CRLUpdateRequest
	Parameters
	Protection Requirement
	Description

	CRL
	No
	Certificate Revocation List (CRL) contains revocation status information for Device Certificates or SRM Certificates. Refer to Appendix E.2


On receiving the CRLUpdateRequest, the SRM Agent verifies the signature over the CRL. If the signature of the CRL is valid, and the received CRL is newer than the CRL of the SRM, then the SRM Agent replaces the current CRL in the SRM with the received CRL. The CRL numbers are compared to determine if the received CRL supersedes the CRL stored in the SRM.
By referring to the authorityKeyIdentifier component in the CRL, the SRM Agent recognizes the issuer of the CRL.
After the action, the SRM Agent sends the CRLUpdateResponse to carry the result of the action. The parameters of the response are defined in Table 14. If any error occurs during this action, the error MUST be reported to the DRM Agent. The Status parameter of the CRLUpdateResponse contains the error cases as specified in Table 15.
Table 14: Parameters of CRLUpdateResponse
	Parameters
	Protection Requirement
	Description

	Status
	No
	This indicates if the request is successfully handled or not. The Status value is specified in Table 15



Table 15: Status of CRL Update Message
	Status Value
	Description

	Success
	The request is successfully handled.

	Old CRL
	CRL in the request is older than the CRL in SRM

	CRL Verification Failed
	The verification of the signature over CRL is failed.

	Unknown Error
	Other errors


Message Format
The message format  (MessageBody) of the CRLUpdateRequest is specified as follows. The messageType and protectedFlag are set to ‘0’.
Crl()

{

    CrlString()

}

MessageBody() {

    Crl()
}

The field is defined as follows:

· Crl - CRL parameter in Table 13
The message format (MessageBody) of the CRLUpdateResponse is specified as follows. The messageType is set to ‘1’ and the protectedFlag is set to ‘0’.
MessageBody() {

    status
16
uimsbf

}

The field is defined as follows:

· status - This field contains the request handling status. If the request is handled successfully in the SRM, then this field contains Success (0) value.
Exception Handling
There may be an unexpected exception during the CRL Update Message processing as specified in section XXXX. [Section 5.6.1 of CR-0088R01 will be referred to.] If the DRM Agent fails to receive the response or finds an error by referring to the Status, then the DRM Agent regards it as an exception and terminates communication with the SRM Agent. The user may be informed of this exception.
5.3.5.2 CRL Delivery from SRM to Device

[image: image9.emf]DRM AgentSRM Agent

1

CRLRetrievalRequest

CRLRetrievalResponse


Figure 7: Sequence Diagram – CRL Delivery from SRM to Device

Message Description

The DRM Agent sends the CRLRetrievalRequest to retrieve the CRL in the SRM. The parameters of the request are defined in Table 16.
Table 16: Parameters of CRLRetrievalRequest
	Parameters
	Protection Requirement
	Description

	CRL Issuer ID
	No
	The 160-bit SHA-1 hash of the public key corresponding to the private key used to sign the CRL (i.e. the keyIdentifier field of the authorityKeyIdentifier component in the CRL).


On receiving the CRLRetrievalRequest, the SRM Agent retrieves the CRL stored in the SRM. The retrieved CRL includes the CRL Issuer ID in its extension (authorityKeyIdentifier).
After the action, the SRM Agent sends the CRLRetrievalResponse to carry the result of the action. The parameters of the response are defined in Table 17. If any error occurs during this action, the error MUST be reported to the DRM Agent. The Status parameter of the CRLRetrievalResponse contains the error cases as specified in Table 18.
Table 17: Parameters of CRLRetrievalResponse
	Parameters
	Protection Requirement
	Description

	Status
	No
	This indicates if the request is successfully handled or not. The Status value is specified in Table 18.

	CRL
	No
	Certificate Revocation List (CRL) contains revocation status information for Device Certificates or SRM Certificates. Refer to Appendix E.2




Table 18: Status of CRL Retrieval Message
	Status Value
	Description

	Success
	The request is successfully handled.

	CRL Not Found
	There is no CRL including matched CRL Issuer ID.

	Unknown Error
	Other errors


Upon receiving the CRLRetrievalResponse, the DRM Agent verifies the signature over the CRL. If the signature of the CRL is valid, and the retrieved CRL is newer than the CRL of the device, then the DRM Agent replaces the current CRL in the device with the retrieved CRL. The CRL numbers are compared to determine if the received CRL supersedes the CRL stored in the device.
Message Format

The message format  (MessageBody) of the CRLRetrievalRequest is specified as follows. The messageType and protectedFlag are set to ‘0’.
CrlIssuerId() {

    HashedString()

}

MessageBody() {

    CrlIssuerId()

}

The field is defined as follows:

· Crl – CRL Issuer ID parameter in Table 16
The message format (MessageBody) of the CRLRetrievalResponse is specified as follows. The messageType is set to ‘1’ and the protectedFlag is set to ‘0’.
Crl()

{

    CrlString()

}

MessageBody() {

    status
16
uimsbf

    if ( status == 0 ) {

        Crl()
    }

}

The fields are defined as follows:

· status - This field contains the request handling status. If the request is handled successfully in the SRM, then this field contains Success (0) value.
· Crl - CRL parameter in Table 17
Exception Handling
5.3.6 There may be an unexpected exception during the CRL Retrieval Message processing as specified in section XXXX. [Section 5.6.1 of CR-0088R01 will be referred to.] If the DRM Agent fails to receive the response, finds an error by referring to the Status or fails the CRL verification, then the DRM Agent regards it as an exception and terminates communication with the SRM Agent. The user may be informed of this exception.


· 


· 



5.4 


5.4.1 Movement of Rights from Device to SRM
A Rights is moved from a device to an SRM by this function. The DRM Agent requests the SRM Agent to install the Rights (i.e. RO, ESF, ROID and LCID) in the SRM. (Refer to section 5.6.5.1) The installed Rights is sealed by the DRM Agent just before the installation in the SRM. If the Rights is installed in the SRM successfully, the DRM Agent SHOULD remove the Rights from the originated device. (Refer to section 5.6.5.2)
 
[image: image10.emf]DRM AgentSRM Agent

1

2

3

RightsInstallationResponse

SealedRightsInstallationInSRM

RightsRemovalInDevice

RightsInstallationRequest

RightsUnsealRequest

RightsUnsealResponse

RightsUnsealInSRM


Figure 8: Sequence Diagram – Movement of Rights from Device to SRM
5.4.1.1 Rights Installation Message
The DRM Agent sends the RightsInstallationRequest to install the sealed Rights in the SRM. Here, sealed Rights are Rights that are not usable (because the CEK is encrypted) and requires a key to unseal the Rights so they are usable (so the CEK can be decrypted). Sealed Rights cannot be moved. The parameters of the request are defined in Table 19.
Table 19: Parameters of RightsInstallationRequest
	Parameters
	Protection Requirement
	Description

	RO
	Integrity & Confidentiality
	Refer to 5.1.1.2

	ESF
	Integrity
	Refer to 오류! 참조 원본을 찾을 수 없습니다.

	ROID
	Integrity
	Refer to 5.1.3.1

	LCID
	Integrity
	Refer to 5.1.3.3


Upon receiving the RightsInstallationRequest, the SRM Agent installs the Rights in the SRM. For the installation, the SRM Agent performs the following actions:

· Decrypt the RO
· Verify the integrity of the request parameters

· Allocate an empty Rights Slot

· Store the RO, ESF, ROID, and LCID (i.e. sealed Rights) at the allocated Rights Slot
After the action, the SRM Agent sends the RightsInstallationResponse to carry the result of the action. The parameters of the response are defined in Table 20. If any error occurs during the action, the error MUST be reported to the DRM Agent. The Status parameter of the RightsInstallationResponse contains the error cases as specified in Table 21.
Table 20: Parameters of RightsInstallationResponse
	Parameters
	Protection Requirement
	Description

	Status
	Integrity
	This indicates if the request is successfully handled or not. The Status value is specified in Table 21.


Table 21: Status of Rights Installation Message
	Status Value
	Description

	Success
	The request is successfully handled.

	No Enough Space
	The SRM doesn’t have enough space to store the Rights.

	Parameter Integrity Verification Failed
	The HMAC value of parameters in the request is not matched with the HMAC value of the parameters generated by the SRM Agent.

	Parameter Decryption Failed
	The SRM Agent fails to decrypt the encrypted parameters.


Upon receiving the response, the DRM Agent verifies the integrity of parameters in the response.
If the DRM Agent fails to receive the response, finds an error by referring to the Status, or fails to verify the integrity of parameters, then the DRM Agent MUST perform the following actions:

· The DRM Agent sends the recovery message to the SRM Agent. Refer to section 5.7.

· The Move function is terminated. 
If the SRM Agent receives a properly formulated recovery message from the DRM Agent, then the SRM Agent MUST perform the following actions:

· The SRM Agent aborts Rights installation if begun, or removes the Rights if already installed.       

· The SRM Agent sends the recovery response message to the DRM Agent. Refer to section 5.7.
5.4.1.2 Rights Removal in Device
If the sealed Rights is installed successfully in the SRM (i.e. Success in the Status parameter of the RightsInstallationResponse), the DRM Agent removes the Rights from the originated device permanently.
5.4.1.3 Rights Unseal Message

If the Rights is removed from the device by the DRM Agent, the DRM Agent sends the RightsUnsealRequest to unseal the sealed Rights in the SRM.
The parameters of the RightsUnsealRequest are defined in Table 22.
Table 22: Parameters of RightsUnsealRequest
	Parameters
	Protection Requirement
	Description

	ROID
	Integrity
	Refer to 5.1.3.1

	Sealing Key
	Integrity & Confidentiality
	The key to unseal the sealed Rights


Upon receiving the RightsUnsealRequest, the SRM Agent verifies the integrity of parameters in the request and decrypts the sealing key. Then, the SRM Agent unseals the Rights in the SRM with the sealing key.
The unsealed Rights can be consumed to use its associated DRM contents.
After this action, the SRM Agent sends the RightsUnsealResponse to the DRM Agent to carry the result of the action. The parameters of the response are defined in Table 23. If any error occurs during the action, the error MUST be reported to the DRM Agent. The Status parameter of the RightsUnsealResponse contains the error cases as specified in Table 24.
Table 23: Parameters of RightsUnsealResponse
	Parameters
	Protection Requirement
	Description

	Status
	Integrity
	This indicates if the request is successfully handled or not. The Status value is specified in Table 24.


Table 24: Status of Rights Unseal Message
	Status Value
	Description

	Success
	The request is successfully handled.

	Invalid ROID
	There is no Rights indicated by the ROID in RightsUnsealRequest

	Invalid Sealing Key
	The sealed Rights cannot be unsealed with the SealingKey indicated in the RightsUnsealRequest.


Upon receiving the response, the DRM Agent verifies the integrity of parameters in the response. If the DRM Agent recognizes the successful unsealing, then the sealing key in the device can be discarded.
If the DRM Agent fails to receive the response, finds an error by referring to the Status, or fails to verify the integrity of parameters, then the DRM Agent MUST repeat the RightsUnsealRequest to unseal the sealed Rights in the SRM until timeout.
5.4.2 Movement of Rights from SRM to Device
A Rights is moved from an SRM to a device by this function. The DRM Agent in the device requests the SRM Agent to retrieve the Rights from the SRM. On receiving the retrieval request, the SRM Agent retrieves the Rights from its Secure Storage and sends the retrieved Rights to the DRM Agent. (Refer to section 5.6.6.1) Even after the SRM Agent sends the retrieved Rights, the retrieved Rights still remains in the SRM, but it is in disabled state. The DRM Agent installs the received Rights in the device. (Refer to section 5.6.6.2) If the installation is successful, the disabled Rights in the originated SRM is removed. (Refer to section 5.6.6.3)
Before the movement of Rights, the DRM Agent SHOULD get the latest LROID from the SRM Agent by using the LROID retrieval function in section 5.6.9.

[image: image11.emf]DRM AgentSRM Agent

1

2

3

RightsRetrievalInSRM

RightsInstallationInDevice

RightsRemovalInSRM

RightsRetrievalRequest

RightsRemovalRequest

RightsDisablementInSRM

RightsRetrievalResponse

RightsRemovalResponse


Figure 9: Sequence Diagram – Movement of Rights from SRM to Device
5.4.2.1 Rights Retrieval Message
The DRM Agent sends the RightsRetrievalRequest to retrieve the Rights in the SRM. The parameters of the request are defined in Table 25.
Table 25: Parameters of RightsRetrievalRequest
	Parameters
	Protection Requirement
	Description

	ROID
	Integrity
	Refer to 5.1.3.1

	Read Data Flag
	Integrity
	00h: The Rights is disabled after retrieval.
01h: The Rights stays in enabled state after retrieval.
For the move function, the “Read Data Flag” has the value 00h.


Upon receiving the RightsRetrievalRequest, the SRM Agent performs the following actions:

· Verify the integrity of the request parameters

· Find a Rights Slot where the Rights with the matched ROID is installed

· Retrieve the RO and ESF of the Rights from the found Rights Slot
The “Read Data Flag” of the RightsRetrievalRequest in this section has the value of 00h. Therefore, after the RO and ESF are retrieved, the original Rights in the Rights Slot MUST be disabled and satisfy the following conditions:

· The Rights can be enabled only by the request of the DRM Agent that has disabled the Rights.

· The Rights cannot be retrieved by other DRM Agents.

· The Rights cannot be disabled by other DRM Agents.
· The Rights cannot be locked to use its associated DRM contents.

· The Rights can be removed only by the request of the DRM Agent that has disabled the Rights.

· If the Rights is enabled, the state of the Rights MUST be identical to the original state of the Rights before the disablement.
After the action, the SRM Agent sends the RightsRetrievalResponse to carry the result of the action. The parameters of the response are defined in Table 26. If any error occurs during the action, the error MUST be reported to the DRM Agent. The Status parameter of the RightsRetrievalResponse contains the error cases as specified in Table 27.
Table 26: Parameters of RightsRetrievalResponse
	Parameters
	Protection Requirement
	Description

	Status
	Integrity
	This indicates if the request is successfully handled or not. The Status value is specified in Table 27.

	RO
	Integrity & Confidentiality
	Refer to 5.1.1.2

	ESF
	Integrity 
	Refer to 오류! 참조 원본을 찾을 수 없습니다.


Table 27: Status of Rights Retrieval Message
	Status Value
	Description

	Success
	The request is successfully handled.

	No Rights Found
	The SRM Agent cannot find the matched Rights.

	Parameter Integrity Verification Failed
	The HMAC value of parameters in the request is not matched with the HMAC value of the parameters generated by the SRM Agent.

	Rights Already Disabled or Locked
	The Rights has already been disabled or locked.


Upon receiving the response, the DRM Agent performs the following actions:

· Decrypt the RO
· Verify the integrity of parameters in the response

If the DRM Agent fails to receive the response, finds an error by referring to the Status, or fails to verify the integrity of parameters, then the DRM Agent MUST perform the following actions:

· The DRM Agent sends the recovery message to the SRM Agent. Refer to section 5.7.

· The Move function is terminated.
5.4.2.2 Rights Installation in Device
If the RO and ESF of the Rights is retrieved from the SRM successfully (i.e. Success in the Status parameter of the RightsInstallationResponse), the DRM Agent installs the RO in the device. The installed RO can be consumed to use its associated DRM contents.

If the RO is stateful, the DRM Agent converts the ESF of the Rights, retrieved from the SRM in section 5.6.6.1, to the device’s local state information format and removes the ESF.
If the installation is aborted, the Rights MUST be removed from the device and the Rights stored in the SRM MUST be enabled by the request of the DRM Agent that has disabled the Rights. After this, the Move function is terminated.
Rights received by a DRM Agent via the Move protocol, SHALL NOT be rejected based on the content of the replay cache.
5.4.2.3 Rights Removal Message
After the Rights is installed in the device, the DRM Agent sends the RightsRemovalRequest to remove the original Rights in the SRM. The parameters of the request are defined in Table 28.
Table 28: Parameters of RightsRemovalRequest
	Parameters
	Protection Requirement
	Description

	ROID
	Integrity
	Refer to 5.1.3.1


Upon receiving the RightsRemovalRequest, the SRM Agent finds a Rights Slot of the ROID and removes the Rights in the Rights Slot permanently. After the Rights removal, the Rights Slot is released. The SRM Agent removes only disabled Rights.
After the action, the SRM Agent sends the RightsRemovalResponse to carry the result of the action. The parameters of the response are defined in Table 29. If any error occurs during the action, the error MUST be reported to the DRM Agent. The Status parameter of the RightsRemovalResponse contains the error cases as specified in Table 30.
Table 29: Parameters of RightsRemovalResponse
	Parameters
	Protection Requirement
	Description

	Status
	Integrity
	This indicates if the request is successfully handled or not. The Status value is specified in Table 30.


Table 30: Status of Rights Removal Message
	Status Value
	Description

	Success
	The request is successfully handled.

	Parameter Integrity Verification Failed
	The HMAC value of parameters in the request is not matched with the HMAC value of the parameters generated by the SRM Agent.

	Invalid ROID
	There is no Rights Slot indicated by the ROID.

	Invalid DRM Agent
	The RightsRemovalRequest is from a DRM Agent that hasn’t disabled the Rights.

	Rights in Enabled State
	The Rights cannot be removed, because it is in enabled state.


Upon receiving the response, the DRM Agent verifies the integrity of parameters in the response.
If the DRM Agent fails to receive the response, finds an error by referring to the Status, or fails to verify the integrity of parameters, then the DRM Agent MUST repeat this message to remove the Rights from the SRM.
5.4.3 Initiation of Local Rights Consumption

To use a DRM content by consuming its associated Rights, the DRM Agent collects Rights associated with the DRM content from the SRM. To perform the collection, the DRM Agent requests a retrieval of the Rights to the SRM Agent. On receiving the retrieval request, the SRM Agent retrieves the Rights from its Secure Storage and sends it to the DRM Agent. (Refer to section 5.6.7.1) If there are more than one Rights in the SRM associated with the DRM content, the DRM Agent can perform multiple Rights retrievals. The DRM Agent selects associated Rights for consumption. (Refer to section 5.6.7.2) After the DRM Agent selects the Rights, the DRM Agent locks the original Rights that remains in the SRM, in order to prohibit consumption of the Rights by other DRM Agents. (Refer to section 5.6.7.3)
Before the Local Rights Consumption, the DRM Agent SHOULD get the latest LROID from the SRM Agent by using the LROID retrieval function in section 5.6.9.

[image: image12.emf]DRM AgentSRM Agent

RightsRetrievalRequest

RightsRetrievalInSRM

RightsLockRequest

RightsLockInSRM

1

2

RightsSelectionInDevice

3

RightsRetrievalResponse

RightsLockResponse


Figure 10: Sequence Diagram - Initiation of Local Rights Consumption
5.4.3.1 Rights Retrieval Message
The DRM Agent sends the RightsRetrievalRequest to retrieve the Rights from the SRM. The parameters of the request are defined in Table 31.
Table 31: Parameters of RightsRetrievalRequest
	Parameters
	Protection Requirement
	Description

	ROID
	Integrity
	Refer to 5.1.3.1

	Read Data Flag
	Integrity
	00h: The Rights is disabled after retrieval.
01h: The Rights stays in enabled state after retrieval.

For the initiation function, the “Read Data Flag” has the value 01h.


Upon receiving the RightsRetrievalRequest, the SRM Agent performs the following actions:

· Verify the integrity of the request parameters

· Find a Rights Slot where the Rights with the matched ROID is installed

· Retrieve the RO and ESF of the Rights from the found Rights Slot

The “Read Data Flag” of the RightsRetrievalRequest in this section has the value of 01h. Therefore, after the RO and ESF are retrieved, the original Rights in the Rights Slot is not disabled.
After the action, the SRM Agent sends the RightsRetrievalResponse to carry the result of the action. The parameters of the response are defined in Table 32. If any error occurs during the action, the error MUST be reported to the DRM Agent. The Status parameter of the RightsRetrievalResponse contains the error cases as specified in Table 33.
Table 32: Parameters of RightsRetrievalResponse
	Parameters
	Protection Requirement
	Description

	Status
	Integrity
	This indicates if the request is successfully handled or not. The Status value is specified in Table 33.

	RO
	Integrity & Confidentiality
	Refer to 5.1.1.2

	ESF
	Integrity 
	Refer to 오류! 참조 원본을 찾을 수 없습니다.


Table 33: Status of Rights Retrieval Message
	Status Value
	Description

	Success
	The request is successfully handled.

	No Rights Found
	The SRM Agent cannot find the matched Rights.

	Parameter Integrity Verification Failed
	The HMAC value of parameters in the request is not matched with the HMAC value of the parameters generated by the SRM Agent.

	Rights Already Disabled or Locked
	The Rights has already been disabled or locked.


Upon receiving the response, the DRM Agent performs the following actions:

· Decrypt the RO
· Verify the integrity of parameters in the response

If the DRM Agent fails to receive the response, finds an error by referring to the Status, or fails to verify the integrity of parameters, then the DRM Agent MUST perform the following actions:

· The DRM Agent sends the recovery message to the SRM Agent. Refer to section 5.7.

· The Initiation of Local Rights Consumption function is terminated.
5.4.3.2 Rights Selection in Device
If there are more than one associated Rights in the SRM or in the device, the DRM Agent selects one Rights in the device or in the SRM.

If a Rights in the device is selected, the consumption of the Rights is performed as specified in [OMADRMv2]. The DRM Agent can also select an associated Rights in the SRM by referring to the Rights retrieved as specified in section 5.6.7.1. If there are more than one Rights from the SRM (i.e. the Rights Retrieval message step of section 5.6.7.1 is performed multiple times), the DRM Agent selects one of them.
5.4.3.3 Rights Lock Message
If the DRM Agent selects a Rights from an SRM in order to consume it, the DRM Agent sends the RightsLockRequest to lock the original Rights in the SRM. The parameters of the request are defined in Table 34.
Table 34: Parameters of RightsLockRequest
	Parameters
	Protection Requirement
	Description

	ROID
	Integrity
	Refer to 5.1.3.1


Upon receiving the RightsLockRequest, the SRM Agent locks the Rights in the SRM. The locked Rights MUST satisfy the following conditions:

· The ESF of Rights can be updated only by the DRM Agent that has locked the Rights.

· Only the ESF part of the Rights can be updated.

· Even the DRM Agent, that has requested to lock the Rights, cannot modify the RO part.

· The locked Rights can only be released by the DRM Agent that has locked the Rights.

· The locked Rights cannot be disabled.
· The SRM Agent allows only one RightsLockRequest concurrently (i.e. A Rights cannot be locked by multiple RightsLockRequests.)
After the action, the SRM Agent sends the RightsLockResponse to carry the result of the action. The parameters of the response are defined in Table 35. If any error occurs during the action, the error MUST be reported to the DRM Agent. The Status parameter of the RightsLockResponse contains the error cases as specified in Table 36.
Table 35: Parameters of RightsLockResponse
	Parameters
	Protection Requirement
	Description

	Status
	Integrity
	This indicates if the request is successfully handled or not. The Status value is specified in Table 36.


Table 36: Status of Rights Lock Message
	Status Value
	Description

	Success
	The request is successfully handled.

	Parameter Integrity Verification Failed
	The HMAC value of parameters in the request is not matched with the HMAC value of the parameters generated by the SRM Agent.

	Invalid ROID
	There is no Rights Slot indicated by the ROID.

	Rights Already Disabled or Locked
	The Rights has already been disabled or locked.


Upon receiving the response, the DRM Agent verifies the integrity of parameters in the response.
If the DRM Agent fails to receive the response, finds an error by referring to the Status, or fails to verify the integrity of parameters, then the DRM Agent MUST perform the following actions:

· The DRM Agent sends the recovery message to the SRM Agent. Refer to section 5.7.

· If the DRM Agent receives the successful recovery response, the DRM Agent removes the retrieved Rights in section 5.6.7.1 from the device.
· The Initiation of Local Rights Consumption function is terminated.
5.4.4 Update of Rights in SRM for Local Consumption
The DRM Agent consumes the selected Rights in order to use the DRM content. The consumption is performed as specified below:
· Stateless Rights:
If the selected Rights is stateless (i.e. the Rights has unlimited constraint or date/time constraint without interval, count, timed-count, and accumulated constraints), the DRM Agent uses the DRM content based on the constraints of the Rights without updating original Rights stored in the SRM.
· Stateful Rights:
If the Rights is stateful (i.e. the Rights has at least one the following constraints: interval, count, timed-count or accumulated constraints.), the DRM Agent uses the DRM content based on the constraints of the Rights while updating the ESF of the original Rights stored in the SRM. (Refer to section 5.6.8.1) The update action is performed as defined in Table 37:
Table 37: Rule of Rights Update
	Constraints
	Update Action

	Count
	Update Rights in SRM at the very beginning of DRM content use

	Timed-count
	Update Rights in SRM after the specified duration of DRM content use. The duration is specified by the timer attribute of <timed-count> element

	Interval
	Update Rights in SRM at the very beginning of DRM content use. The Rights is updated only once at the first consumption of the constraint

	Accumulated
	Update Rights in SRM repeatedly until the end of DRM content use

	Date/time
	No need to update

	Unlimited
	No need to update


The details of the constraints (count, timed-count, interval, accumulated, date/time, and unlimited constraint) are in [OMADRMv2].

[image: image13.emf]DRM AgentSRM Agent

RightsUpdateRequest

RightsUpdateInSRM1

RightsUpdateResponse


Figure 11: Sequence Diagram - Rights Update
If use of the DRM content is finished or aborted by users, the DRM Agent requests the SRM Agent to release the locked Rights. (Refer to 5.6.8.2) The DRM Agent cannot request the SRM Agent to update the released Rights.

[image: image14.emf]DRM AgentSRM Agent

RightsReleaseRequest

RightsReleaseInSRM1

RightsReleaseResponse


Figure 12: Sequence Diagram – Rights Release
5.4.4.1 Rights Update Message
Before the DRM Agent requests the SRM Agent to update the ESFof the Rights, the DRM Agent generates a new ESF that replaces the original ESF.

The DRM Agent sends the RightsUpdateRequest to update the ESF of the Rights in the SRM. The parameters of the request are defined in Table 38.
Table 38: Parameters of RightsUpdateRequest
	Parameters
	Protection Requirement
	Description

	ROID
	Integrity
	From the parameter of RightsLockRequest in section 5.6.7.3

	New ESF
	Integrity
	A new ESF that replaces the original ESF


Upon receiving the RightsUpdateRequest, the SRM Agent performs the following actions:

· Verify the integrity of the request parameters

· Find an Rights Slot by the ROID in Table 38
· Replace the New ESF with the ESF of the found Rights
After the action, the SRM Agent sends the RightsUpdateResponse to carry the result of the action. The parameters of the response are defined in Table 39. If any error occurs during the action, the error MUST be reported to the DRM Agent. The Status parameter of the RightsUpdateResponse contains the error cases as specified in Table 40.
Table 39: Parameters of RightsUpdateResponse
	Parameters
	Protection Requirement
	Description

	Status
	Integrity
	This indicates if the request is successfully handled or not. The Status value is specified in Table 40.


Table 40: Status of Rights Update Message
	Status Value
	Description

	Success
	The request is successfully handled.

	Parameter Integrity Verification Failed
	The HMAC value of parameters in the request is not matched with the HMAC value of the parameters generated by the SRM Agent.

	Invalid ROID
	There is no Rights Slot indicated by the ROID.

	Invalid DRM Agent
	The RightsUpdateRequest is from a DRM Agent that hasn’t locked the Rights.

	Rights Not Locked
	The Rights cannot be updated, because it is not locked.

	Update Failure
	The SRM Agent fails to update Rights.


Upon receiving the response, the DRM Agent verifies the integrity of parameters in the response
If the DRM Agent fails to receive the response, finds an error by referring to the Status, or fails to verify the integrity of parameters, then the DRM Agent MUST perform the following actions:

· The DRM Agent sends the recovery message to the SRM Agent. Refer to section 5.7.

· The Update of Rights in SRM for Local Consumption function is terminated.
After the successful update action, the DRM Agent also updates the copy of the ESF in the device to synchronize with the ESF that is updated in the SRM.
5.4.4.2 Rights Release Message
When the use of the DRM content is finished, the DRM Agent sends the RightsReleaseRequest to release the locked Rights. The parameters of the request are defined in Table 41.
Table 41: Parameters of RightsReleaseRequest
	Parameters
	Protection Requirement
	Description

	ROID
	Integrity
	From the parameter of RightsLockRequest in section 5.6.7.3


Upon receiving the RightsReleaseRequest, the SRM Agent releases the locked Rights in the SRM. 

The released Rights MUST satisfy the following conditions:

· The Rights can be locked by requests from DRM Agents.

· The Rights can be retrieved by requests from DRM Agents.

· The Rights can be disabled by requests from DRM Agents.
After the action, the SRM Agent sends the RightsReleaseResponse to carry the result of the action. The parameters of the response are defined in Table 42. If any error occurs during the action, the error MUST be reported to the DRM Agent. The Status parameter of the RightsReleaseResponse contains the error cases as specified in Table 43.
Table 42: Parameters of RightsReleaseResponse
	Parameters
	Protection Requirement
	Description

	Status
	Integrity
	This indicates if the request is successfully handled or not. The Status value is specified in Table 43.


Table 43: Status of Rights Release Message
	Status Value
	Description

	Success
	The request is successfully handled.

	Parameter Integrity Verification Failed
	The HMAC value of parameters in the request is not matched with the HMAC value of the parameters generated by the SRM Agent.

	Invalid ROID
	There is no Rights Slot indicated by the ROID.

	Invalid DRM Agent
	The RightsUpdateRequest is from a DRM Agent that hasn’t locked the Rights.

	Rights Not Locked
	The Rights cannot be released, because it is not locked.

	Release
	The SRM Agent fails to release Rights.


Upon receiving the response, the DRM Agent performs the following actions:

· Verify the integrity of parameters in the response

· Remove the image of the Rights from the device

If the DRM Agent fails to receive the response, finds an error by referring to the Status, or fails to verify the integrity of parameters, then the DRM Agent MUST perform the following actions:

· The DRM Agent sends the recovery message to the SRM Agent. Refer to section 5.7.

· If the SRM Agent receives the recovery message, it releases the Rights that has been locked as described in section 5.6.7.3.
· The Update of Rights in SRM for Local Consumption function is terminated.

5.4.5 LROID Retrieval
To retrieve Rights from an SRM, the DRM Agent has to be aware of the identifier of the Rights (ROID). The LROID retrieval function is used to read lists of Rights Object identifiers (LROID) from the SRM. By using this message, the DRM Agent SHOULD get the latest LROID from the SRM Agent before the Movement of Rights or local Rights consumption.

[image: image15.emf]DRM AgentSRM Agent

LROIDRetrievalRequest

1LROIDRetrievalInSRM

LROIDRetrievalResponse


Figure 13: Sequence Diagram - LROID Retrieval
The DRM Agent sends the LROIDRetrievalRequest to retrieve the LROID (List of Rights Object Identifier) from the SRM. The parameter of the request is defined in Table 44.
Table 44: Parameters of LROIDRetrievalRequest
	Parameters
	Protection Requirement
	Description

	ContentID
	No
	Content identification. This conforms to [RFC2396] and is present in the <uid> element when its parent <context> element is included in the <asset>element of the <ro> element of a Rights Object. The elements (<uid>, <context>, <asset> and <ro>) are defined in [OMADRMv2].

	LROID Length
	No
	Maximum LROID length in Kbyte that the DRM Agent can process. If this value is present, the SRM Agent MUST send an LROID shorter than or equal to the LROID Length value.

If an LROID for a specific ContentID is longer than the LROID Length, the SRM Agent divides the LROID into several chunks.


The ContentID in the LROIDRetrievalRequest is the identification of a content. The content can be associated with one or multiple Rights. The SRM Agent generates and returns a list of Rights Identifiers (LROID) that are associated with the content.

Upon receiving the LROIDRetrievalRequest, the SRM Agent performs the following actions:

· In case of absence of ContentID in the request (i.e. the length of ContentID is 0), the SRM Agent generates an LROID of all Rights in the SRM.
· In case the ContentID is included in the request (i.e. the length of ContentID is not 0), the SRM Agent generates an LROID of Rights in the SRM that are associated with a specific content. The content is identified by the ContentID in the request.
After the action, the SRM Agent sends the LROIDRetrievalResponse to carry the result of the action. The parameters of the response are defined in Table 45. If any error occurs during the action, the error MUST be reported to the DRM Agent. The Status parameter of the LROIDRetrievalResponse contains the error cases as specified in Table 46.
Table 45: Parameters of LROIDRetrievalResponse
	Parameters
	Protection Requirement
	Description

	Status
	No
	This indicates if the request is successfully handled or not. The Status value is specified in Table 46.

	LROID
	No
	Refer to 5.1.3.4
This parameter contains an LROID or a chunk of an LROID if the LROID has been divided into several chunks.

	Continuation Flag
	No
	It is assumed that an LROID is divided into several chunks.

00h: The LROID in this response is the last chunk of the whole LROID, or the LROID hasn’t been divided into chunks (i.e. the LROID is shorter than or equal to the LROID Length in the request, or the LROID Length field is not present in the request). 

01h: An LROID has been divided into several chunks. The LROID in this response is a chunk of the whole LROID, and there are other chunks that are subsequent to the chunk. 

	LROID Length
	No
	This is the KByte length of a chunk, and is present when the length of the chunk is not equal to the LROID Length in the request.


Table 46: Status of LROID Retrieval Message
	Status Value
	Description

	Success
	The request is successfully handled.

	No Rights Found
	There is no Rights in SRM associated with a specific content that is identified by the ContentID.

	Unknown Error
	Other errors


If the Continuation Flag contains the value 01h, the DRM Agent SHOULD send the LROIDRetrievalRequest again in order to retrieve the next chunk. The DRM Agent repeats the LROIDRetrievalRequest until the response contains the value 00h in the Continuation Flag parameter. 

If the DRM Agent sends a different message or sends the LROIDRetrievalRequest with different parameter values than the previous values, then the SRM Agent resets the operation (i.e. the SRM Agent returns the LROID from the first chunk again).

If an LROID is divided into several chunks, a chunk may not maintain the complete data structure in section B.6. The DRM Agent MUST concatenate all chunks in sequence from the SRM Agent in order to complete the LROID data structure.

5.4.6 SRM Utilities

The protocols specified in this section provide necessary functions that are used for the Rights movement and local Rights consumption.
5.4.6.1 Store RI Certificate Chain
The DRM Agent may store Rights Issuer’s certificate chains in the SRM using this function.


[image: image16.emf]DRM AgentSRM Agent

RICertificateStoreRequest

1

RICertificateStoreResponse


Figure 14: Sequence Diagram – Store RI Certificate Chain
The DRM Agent sends the RICertificateStoreRequest to store an RI certificate chain in the SRM. The parameters of the request are defined in Table 47.
Table 47: Parameters of RICertificateStoreRequest
	Parameters
	Protection Requirement
	Description

	RI ID
	No
	The hash of the Rights Issuer’s public key in the RI Certificate (i.e. the hash of the complete DER-encoded subjectPublicKeyInfo component in the RI Certificate). The default hash algorithm is SHA-1.

	RI Certificate Chain
	No
	Rights Issuer’s certificate chain


On receiving the RICertificateStoreRequest, the SRM Agent stores the RI ID and certificate chain. If there already exists the RI certificate chain, this is overwritten with the certificate chain in the request.

After the action, the SRM Agent sends the RICertificateStoreResponse to carry the result of the action. The parameters of the response are defined in Table 48. If any error occurs during this action, the error SHOULD be reported to the DRM Agent. The Status parameter of the RICertificateStoreResponse contains the error cases as specified in Table 49.
Table 48: Parameters of RICertificateStoreResponse
	Parameters
	Protection Requirement
	Description

	Status
	No
	This indicates if the request is successfully handled or not. The Status value is specified in Table 49


Table 49: Status of RI Certificate Store Message
	Status Value
	Description

	Success
	The request is successfully handled.

	No Enough Space
	The SRM doesn’t have enough space to store the certificate chain.

	Function Not Supported
	RI Certificate Chain cannot be stored in the SRM.

	Unknown Error
	Other errors


If the DRM Agent fails to receive the response, or finds an error by referring to the Status, then the DRM Agent aborts this function. The user MAY be informed of this exception.

5.4.6.2 Get RI Certificate Chain
The DRM Agent may read Rights Issuer’s certificate chains from the SRM using this function.


[image: image17.emf]DRM AgentSRM Agent

RICertificateQueryRequest

1

RICertificateQueryResponse


Figure 15: Sequence Diagram – Get RI Certificate Chain
The DRM Agent sends the RICertificateQueryRequest to read an RI certificate chain from the SRM. The parameters of the request are defined in Table 50.
Table 50: Parameters of RICertificateQueryRequest
	Parameters
	Protection Requirement
	Description

	RI ID
	No
	The hash of the Rights Issuer’s public key in the RI Certificate (i.e. the hash of the complete DER-encoded subjectPublicKeyInfo component in the RI Certificate). The default hash algorithm is SHA-1.


On receiving theRICertificateQueryRequest, the SRM Agent reads the RI certificate chain identified by the RI ID from the SRM.

After the action, the SRM Agent sends the RICertificateQueryResponse to carry the result of the action. The parameters of the response are defined in Table 51. If any error occurs during the action, the error SHOULD be reported to the DRM Agent. The Status parameter of the RICertificateQueryResponse contains the error cases as specified in Table 52.
Table 51: Parameters of RICertificateQueryResponse
	Parameters
	Protection Requirement
	Description

	Status
	No
	This indicates if the request is successfully handled or not. The Status value is specified in Table 52

	RI Certificate Chain
	No
	Rights Issuer’s certificate chain


Table 52: Status of RI Certificate Query Message
	Status Value
	Description

	Success
	The request is successfully handled.

	RI Certificuate Chain Not Found
	The SRM Agent cannot find the matched RI certificate chain.

	Unknown Error
	Other errors


If the DRM Agent fails to receive the response, or finds an error by referring to the Status, then the DRM Agent aborts this function. The user MAY be informed of this exception.

5.4.6.3 Remove RI Certificate Chain
The DRM Agent may remove an RI certificate chain from the SRM using this function.


[image: image18.emf]DRM AgentSRM Agent

RICertificateRemovalRequest

1

RICertificateRemovalResponse


Figure 16: Sequence Diagram – Remove RI Certificate Chain
The DRM Agent sends the RICertificateRemovalRequest to remove the RI certificate chain from the SRM. The parameters of the request are defined in Table 53.
Table 53: Parameters of RICertificateRemovalRequest
	Parameters
	Protection Requirement
	Description

	RI ID
	No
	The hash of the Rights Issuer’s public key in the RI Certificate (i.e. the hash of the complete DER-encoded subjectPublicKeyInfo component in the RI Certificate). The default hash algorithm is SHA-1.


Upon receiving the RICertificateRemovalRequest, the SRM Agent finds the RI certificate chain identified by the RI ID and removes it.
After the action, the SRM Agent sends the RICertificateRemovalResponse to carry the result of the action. The parameters of the response are defined in Table 54. If any error occurs during the action, the error SHOULD be reported to the DRM Agent. The Status parameter of the RICertificateRemovalResponse contains the error cases as specified in Table 55.
Table 54: Parameters of RICertificateRemovalResponse

	Parameters
	Protection Requirement
	Description

	Status
	No
	This indicates if the request is successfully handled or not. The Status value is specified in Table 55


Table 55: Status of RI Certificate Removal Message
	Status Value
	Description

	Success
	The request is successfully handled.

	RI Certificuate Chain Not Found
	The SRM Agent cannot find the matched RI certificate chain.

	Unknown Error
	Other errors


If the DRM Agent fails to receive the response, or finds an error by referring to the Status, then the DRM Agent aborts this function. The user MAY be informed of this exception.
5.5 Function Recovery
TBD 
6. Transport Mappings
This section shows SRM communication layer model and includes explanation of each layer. This section clarifies the scope of OMA SRM enabler and the work-scope of external organizations related to each type of SRM.
6.1 SRM Communication Layer Model

The SRM communication layer model divides the functions of a protocol into a series of layers. Each layer has the property that it only uses the functions of the layer below, and only exports functionality to the layer above. This section briefly dictates the specifications on how one layer interacts with another. 


[image: image19.emf]Application Layer

Middle Layer

Transformation Layer

SRM Access Layer


Figure 17: SRM Communication Layer
The SRM communication layer model consists of 4 layers: SRM access layer, transformation layer, middle layer and application layer. SRM access layer, transformation layer and middle layer have different property depending on each SRM type. However the application layer defines a common function of a protocol between devices and SRM regardless of the layers below.

6.1.1 Application Layer

The application layer defines services that facilitate communication between DRM Agents and SRM Agents. This layer is independent of lower layers so that this layer is common to all SRM types.

OMA Secure Removable Media enabler specifies this layer.
6.1.2 Other Layers (Informative)

OMA Secure Removable Media enabler doesn’t specify these layers, and these layers are defined by external organizations related to each type of SRM.
6.1.2.1 Middle Layer

The middle layer relieves the application layer of concern regarding syntactical differences in a message's data representation between device and SRM. This layer provides functional interface defined by OMA SRM enabler for DRM agents and SRM Agents in the application layer. The implementation of this layer depends on each type of SRM.
6.1.2.2 Transformation Layer

The transformation layer defines fragmentation and de-fragmentation of the representation of digital data in devices and SRM(s) and data blocks over a data line
6.1.2.3 SRM Access Layer

The SRM access layer defines all the electrical and physical specifications for device and SRM. This includes bus width, data rate, clock frequencies, and SRM form factor. The major functions and services performed by the SRM access layer are:
· Establishment and termination of a connection to a communications medium

· Modulation or conversion between data blocks and the corresponding signals transmitted over a communications channel

· Format of command line and data line
· SRM states and transition between each state
This layer also detects and corrects errors that may occur physically.
Appendix A. Method for Describing Binary Structures
A.1 Mnemonics (Data Types)
Section 2.2.6 of ISO/IEC 13818-1 lists several data types supported by that standard. Most are not needed for SRM. The following table lists the mnemonics and data types that are needed for SRM.
Table 56: Data Types

	Mnemonic
	Data Type
	Equivalent C Type

	bslbf
	Bit string, left bit first, where "left" is the order in which bit strings are written in this document. Bit strings are written as a string of 1s and 0s within single quote marks, e.g. '1000 0001'. Blanks within a bit string are for ease of reading and have no significance.
	None

	tcimsbf
	Two’s complement integer, msb (sign) bit first.
	int

	uimsbf
	Unsigned integer, most significant bit first.
	unsigned int


As seen above, the data types are all big-endian.
A.2 Comments
Comments may be interspersed in the description. Comments follow a C++ style, being preceded by two forward slashes, i.e. “//”. It is suggested that they appear before the data structure or variable needing the comment. Comments are illustrated in the examples provided below.
A.3 Syntax Description
A data structure description starts with a name for the data structure. The name is begins with an upper case letter, followed by one or more upper and lower case letters (A-Z, a-z) and numbers (0-9) and finally ending with “()” (open and close parenthesis). The length of the name should be kept to a reasonable length. This document suggests that only the first letter of words be capitalized. The name of the data structure is followed by a “{“ (open brace) and a newline. Next comes a list of one or more field names (one per line) and followed a “}” (close brace). The following is an example description of a data structure called DsName():

DsName(){

   fieldName1

       .

       .

   fieldNamen
}

A field name represents either another data structure or a variable. If another data structure, the data structure is defined elsewhere. If a variable, then the field name is followed by two elements. Variable names follows the same rules as the name of a data structure except that it MUST begin with a lower case letter and is not followed by “()”. On the same line following variable name, the next element, nbrBits, indicates the size of the variable in bits. The next element is the dataType of the variable, taken from Table 56 above.

The following example is for a data structure that contains an additional data structure and a 16 bit unsigned integer. The inner data structure contains a bit flag and a 32 bit signed integer.
Example(){

   InnerDataStructure()

   //A 16 bit unsigned integer

   uint16Var
16
uimsbf

}

InnerDataStructure(){

   //A 1 bit Boolean flag

   bitFlag
1
bslbf

   //A 32 bit signed integer
   int32Var
32
tcimsbf
}
A.4 Padding
Although it is strictly not required, it is highly recommended that all integer variables and data structures start on byte boundaries. Therefore, when defining bit variables, it is up to the person defining the syntax to ensure that padding bits are defined to align the next variable or data structure on a byte boundary. The InnerDataStructure() example above should be rewritten as follows:

InnerDataStructure(){

   //A 1 bit Boolean flag

   bitFlag
1
bslbf

   //Padding bits, reserved for future use

   rfu
7
bslbf

   //A 32 bit signed integer
   int32Var
32
tcimsbf
}

A.5 Arrays
For describing an array, a  C “for loop” is used. For example, the following data structure describes an array of 10 bytes:

FixedArrayExample(){

   for( i=0; i < 10; i++ ){

      byte
8
uimsbf

   }

}

A more complex example is a variable length (0 – 255) array of signed 16 bit integers.

VariableArrayExample(){

   nbrOfElements
8
uimsbf
   for( i=0; i < nbrOfElements; i++ ){

      int16
16
tcimsbf

   }

}

For variable sized arrays, there should be a size field (of type uimsbf) that is large enough to hold the maximum number of entries in the array. The following table lists a few of the possible ranges:

Table 57: Ranges
	Number of bits
	Range

	8
	0 - 255

	16
	0 - 65,535

	24
	0 - 16,777,215

	32
	0 - 4,294,967,295


A.6 Optional Variables or Data Structures
Many times there is a need for a variable or a data structure to be optional. In order to indicate whether the variable or data structure is present, a bit flag should be defined to indicate the presence. If multiple fields are optional, the indicator bit flags should be combined to minimize padding. The following example illustrates a data structure with a 16 bit integer, an optional data structure (which will not be defined), an 8 bit variable, an optional 64 bit integer and an optional fixed sized array.
OptionalExample(){

   int16
16
tcimsbf

   dsPresent
1
bslbf

   int64Present
1
bslbf

   arrayPresent
1
bslbf

   //Pad to 8 bit boundary

   rfu
5
bslbf

   if( dsPresent ){

      DataStructure()

   }

   uint8
8
uimsbf

   if( int64Present ){

      int64
64
tcimsbf

   }

   if( arrayPresent ){

      for( i=0; i<10; i++ ){

         byte
8
uimsbf

      }

   }
}

For variable sized arrays, it is recommended that an optional array be indicated by the size field. So if the size field has a value of 0 (zero), then the array is not present.

Optional variables or data structures may also be indicated by the value of a previous variable as illustrated in the following example:
OptionalExample2(){

   status
16
uimsbf

   if( status == 0 ){

      DataStructure()

   }

}
Appendix B. Data Format (Normative)
B.1 Common Data Structure

The OctetString16() describes an octet string. The data structure is globally referred by other data structures in this specification.
OctetString16(){

    length
16
uimsbf

    for( i = 0; i < length; i++ ){

        byte
8
uimsbf

    }

}

Table 58 specifies each variable in the data structure.
Table 58: Elements of OctetString16
	Elements
	Variables
	Description
	Value

	Octet String Length
	length
	Length of an octet string
	Unsigned integer from 0000h to FFFFh

	Octet String
	byte
	Each byte comprising an octet string
	Octet value


B.2 ROID

A data structure for ROID is described as follows:

Roid () {

    OctetString16()
}

Table 59 specifies each variable in the data structure.

Table 59: Elements of ROID
	Elements
	Variables
	Description
	Value

	ROID with its length
	OctetString16()
	Globally unique Rights Object Identification
	This is the “id” attribute of the <ro> element in the <protectedRO> element which is included in the RO Response of ROAP.


B.3 ContentID

A data structure for content identifier is described as follows:

ContentId () {

    OctetString16()
}

Table 60 specifies each variable in the data structure.

Table 60: Elements of ContentID
	Elements
	Variables
	Description
	Value

	ContentID with its length
	OctetString16()
	Content Identifier
	This contains the ContentURI value of a DCF. This conforms to [RFC2396] and is present in the <uid> element when its parent <context> element is included in the <asset>element of the <ro> element.


B.4 Rights

B.4.1 Rights Meta Data

B.4.2 Rights Object Container
B.4.3 State Information
B.4.4 REK
B.5 LCID (List of Content Identifier)
TBD

B.6 LROID (List of Rights Object Identifier)
A data structure for LROID is described as follows:

Lroid () {

    contentIdNumber
16
uimsbf
    for ( i = 0 ; i < contentIdNumber ; i++ ) {
        ContentId()

        roidNumber
16
uimsbf
        for ( j = 0 ; j < roidNumber ; j++ ) {
            Roid()

        }
    }

}

Table 61 specifies each variable in the data structure.

Table 61: Elements of LROID
	Elements
	Variables
	Description
	Value

	ContentID Number
	contentIdNumber
	Number of ContentIDs in the LROID. If the LROIDRequestRequest in section 5.6.9 sends a content identification, then this contains the value of integer 01h. If not (i.e. the LROIDRetrievalRequest doesn’t include a content identification), then this element has the number of all contents that are associated with Rights in SRM.
	Unsigned integer from 0000h to FFFFh

	ContentID with its length
	ContentId()
	Content Identification. A content identified by this ContentID is associated with Rights in SRM identified by subsequent ROID(s).
	Refer to B.3

	ROID Number
	roidNumber
	This is the number of Rights in SRM that are associated with the content identified by the ContentID
	Unsigned integer from 0000h to FFFFh

	ROID with its length
	Roid()
	This identifies Rights in SRM that are associated with the content identified by the ContentID
	Refer to B.2


Appendix C. SRM Transport Protocol
C.1 HTTP Mapping
An SRM MAY support an HTTP transport layer (as middle layer) to communicate with the DRM agent if it can implement a local HTTP server. In this case the DRM Agent can connect to the SRM as an HTTP client. The data are then transported and exchanged between the two entities over HTTP. This appendix defines this HTTP mapping. 

The following sections describe how the data are delivered using the HTTP 1.1 protocol.
C.1.1 HTTP Headers
The HTTP Content-Type header MUST be supported. This header describes the media type that is present in the body part of the HTTP Request/Response.

The DRM Agent MUST include an HTTP Accept header when sending a request over HTTP. The Accept header specifies the media types that the DRM Agent will accept in response to the request.

Implementations MAY support other HTTP headers than those specified herein. The presence of HTTP headers other than those specified here when a message is received over HTTP SHOULD NOT by itself cause termination of the session.
C.1.2 SRM Requests
· The DRM Agent SHALL send SRM requests as the body of HTTP POST requests. Example:

POST /SRM  HTTP/1.1

Host: 127.0.0.1:3516

Content-Type: application/vnd.oma.drm.srm-pdu

... [Application Data] ...

In the above example the DRM Agent is using the Request-URI field for specifying the path component. The absolute URI of the SRM is specified using the HTTP Host header.
· The DRM Agent SHALL use the absolute path “/SRM” (without the quotes) to address the SRM Agent
· If the SRM has its own IP address then the DRM agent SHALL address the SRM agent via this IP address and the standard HTTP port number 80 (e.g. 192.168.0.1:80) otherwise the DRM agent SHALL use port 3516 with the local IP address 127.0.0.1 for SRM Requests (i.e. 127.0.0.1:3516)
· The DRM Agent SHOULD use persistent connections when sending requests over HTTP.

· The DRM Agent SHALL support chunk as mandated in [HTTP]

· The DRM Agent SHALL indicate to the SRM that the message is a SRM message using the HTTP Content-Type header with value application/vnd.oma.drm.srm-pdu. The following is an example of such a header field:

Content-Type: application/vnd.oma.drm.srm-pdu
· The DRM Agent SHALL use the HTTP Accept header to indicate acceptable media types in response to SRM requests sent over HTTP. The DRM Agent MUST accept at least the following media types:

· application/vnd.oma.drm.srm-pdu

Example:

· Accept: application/vnd.oma.drm.srm-pdu

· HTTP requests from the DRM Agent MUST contain one, and only one, SRM request message.
C.1.3 SRM Responses
· The SRM SHALL send SRM responses as the body of HTTP responses.

· The HTTP Content-Type header MUST be set to application/vnd.oma.drm.srm-pdu when a SRM message constitutes the message-body of a response. Example:

Content-Type: application/vnd.oma.drm.srm-pdu
If the HTTP Content-Type header value in the Response does not match the above Content-Type, the DRM Agent SHALL terminate the session.
· The SRM MUST NOT include multipart responses in an HTTP response.

· The SRM MUST include an HTTP Cache-Control header with the value no-transform when sending an integrity-protected SRM message. The no-transform directive prohibits network caches from doing any content transformations. The no-cache option must also be set in order to prevent caching of responses.

The following is an example:

Cache-Control: no-transform; no-cache
C.1.4 HTTP Response Codes
An SRM that refuses to perform a SRM message exchange with a DRM Agent SHOULD return a 403 (Forbidden) response.  In the case of an error while processing an HTTP request, the SRM MUST return a 500 (Internal Server Error) response. This type of error SHOULD be returned for HTTP-related errors detected before control is passed to the SRM engine, or when the SRM engine reports an internal error (for example, the SRM schema cannot be located). If the type of a SRM request cannot be determined, the SRM MUST return a 500 (Internal Error) response code.

In these cases (i.e. when the HTTP response code is 4xx or 5xx), the content of the HTTP body is not significant. 

In all other cases, the SRM MUST respond with 200 (OK) and a suitable SRM message (possibly with SRM-related error information) in the HTTP body.

DRM Agents MUST be able to handle HTTP response codes specified here (200, 400, 403, 404, and 500).
Appendix D. SRM-API (Secure Removable Media – Application Programming Interface) (Informative)
The various SRM platforms may support different transport protocols for communication with Devices.  This section defines a common set of APIs that may be used between DRM Agents and SRM Agents to support the different SRM platforms. The APIs specify the parameter format of message requests and responses.  They are applied as follows:
· Message Request: API call with input parameters
· Message Response: Result of API with output parameters
D.1 Definition Structures
	/***********************  To input Input/Output data  **********************/

typedef struct {

    unsigned long
len;

/* length of input */
    unsigned char*
buf;

/* buffer pointer  */
} f_bytes;
/************************  To input Content ID list ****** ******************/

typedef struct {

    unsigned int
num;
/* number of Content ID  */
    void*
contentid;
/* pointer to *contentid[num]  */
} ContentID;
/* contentid is LV format : The first 2 bytes the indicates the length of the ContentID data that follows */

/************************  To Error Code List *******************************/

typedef unsigned short STATUS_CODE; 



D.2 API List
Table 62: API List

	API
	Function

	Initialize_Message
CRL_Update_Message
CRL_Retrieval_Message
	Initialize API processing layer
Request to replace the current CRL in the SRM
Request to retrieve the CRL in the SRM

	LRID_Retrieval_Message
	Get Rights list stored in SRM

	Rights_Installation_Message
	Write Rights to SRM

	Rights_Retrieval_Message
	Read SRM RO stored in SRM

	Rights_Update_Message
	Update State Information stored in SRM

	Rights_Removal_Message
	Delete Rights stored in SRM

	Rights_Lock_Message
	Lock Rights stored in SRM

	Rights_Release_Message
	Release locked Rights


D.2.1 Initialize_Message
	Declaration：
STATUS_CODE API_SRMP_Initialize (void* arg);

Input：
arg

Data for initializing library depends on the specific SRM 

Output：
None

Return value：
SUCCESS
INVALID_PARAMETER_ERROR

MEMORY_ERROR

INTERNAL_ERROR

Function:
Initialize API processing layer

Prior condition：

None
Post condition：

None

Notice：

The processing in this API is depends on the type of SRM. Each SRM provides specific functions to initialize processing with this API. 



D.2.2 CRL_Update_Message
	Declaration：
STATUS_CODE CRL_Update_Message (f_bytes* crlSRMData, f_bytes* crlDeviceData);
Input：
crlSRMData

SRM listed CRL data
crlDeviceData

Device listed CRL data
Output：
None

Return value：
SUCCESS
OLD_CRL

CRL_VERIFICATION_FAILED

UNKNOWN_ERROR
Function:

SRM Agent replaces the current CRL in the SRM with the received CRL, if it is newer
Prior condition：

None
Post condition：

None

Notice：

Either crlSRMData or crlDeviceData can be 0 (i.e. the length of crlSRMData is 0 ) 



D.2.3 CRL_Retrieval_Message
	Declaration：
STATUS_CODE CRL_Retrieval_Message (f_bytes* crlSRMData, f_bytes* crlDeviceData);
Input：
None
Output：
crlSRMData

SRM listed CRL data

crlDeviceData

Device listed CRL data
Return value：
SUCCESS
UNKNOWN_ERROR
Function:

Get CRLs  stored in SRM
Prior condition：

None
Post condition：

None

Notice：



D.2.4 LRID_Retrieval_Message
	Declaration：
STATUS_CODE LRID_Retrieval_Message (unsigned long offset, unsigned long length ,
 

f_bytes* encData, unsigned char* remainFlag);
Input：
offset

Offset of Rights List ( BLOCK union)

length

Length of Rights List ( Number of BLOCKs) 

Output：
encData

Rights List data encrypted by Session Key
remainFlag

Remain Data Flag ( 0: No more data   1: More data remains )

Return value：
SUCCESS
INVALID_PARAMETER_ERROR

MUTUAL_AUTH_NOT_COMPLETED_ERROR

NO_CARD_ERROR

MEMORY_ERROR

INVALID_HMAC_ERROR

HMAC_ERROR_IN_RESPONSE

INTERNAL_ERROR

Function:

Get Rights list stored in SRM
Prior condition：

Mutual authentication is completed
Post condition：

None

Notice：

BLOCK size is defined by each SRM type



D.2.5 Rights_Installation_Message
	Declaration：
STATUS_CODE Rights_Installation_Message (f_bytes* roID, ContentID* contentidList,



f_bytes* encSRMData, f_bytes* encESFData));
Input：
roID

ROID of SRM RO to write

contentidList

list of contents which are associated with the RO

encSRMData

RO data encrypted by Session Key
encESFData

ESF data encrypted by Session Key
Output：
None

Return value：
SUCCESS
INVALID_PARAMETER_ERROR

MUTUAL_AUTH_NOT_COMPLETED_ERROR

NO_CARD_ERROR

NO_ENOUGH_SPACE_ERROR

MEMORY_ERROR

INVALID_HMAC_ERROR

HMAC_ERROR_IN_RESPONSE

INTERNAL_ERROR

Function:

Write Right to SRM
Prior condition：

Mutual authentication is completed
Post condition：

None

Notice：

Rights List is updated in this API 



D.2.6 Rights_Retrieval_Message
	Declaration：
STATUS_CODE Rights_Retrieval_Message (f_bytes* roID, unsigned char* rFlag, 



f_bytes* encSRMData, f_bytes* encESFData);
Input：
roID

RO ID to read SRM RO

rFlag

Read Data Flag

Output：
encSRMData

RO data encrypted by Session Key
encESFData

ESF data encrypted by Session Key
Return value：
SUCCESS
INVALID_PARAMETER_ERROR

MUTUAL_AUTH_NOT_COMPLETED_ERROR

NO_CARD_ERROR

RIGHTS_NOT_FOUND_ERROR

INVALID_HMAC_ERROR

HMAC_ERROR_IN_RESPONSE

MEMORY_ERROR

INTERNAL_ERROR

Function:

Read SRM RO & ESF stored in SRM

Prior condition：

Mutual authentication is completed
Post condition：

None

Notice：

“Read Data Flag” has two parameters

             - 00h: The Rights is disabled after retrieval

             - 01h: The Rights stays in the enabled state after retrieval

For the move function, the “Read Data Flag” has the value 00h



D.2.7 Rights_Update_Message
	Declaration：
STATUS_CODE Rights_Update_Message (f_bytes* roID,  f_bytes* encESFData );
Input：
roID

RO ID to be update

encESFData

ESF data encrypted by Session Key
Output：
None
Return value：
SUCCESS
INVALID_PARAMETER_ERROR

MUTUAL_AUTH_NOT_COMPLETED_ERROR

NO_CARD_ERROR

RIGHTS_NOT_FOUND_ERROR

INVALID_HMAC_ERROR

INVALID_DRM_AGENT_ERROR

RIGHTS_NOT_LOCKED_UPDATE_ERROR
UPDATE_FAILURE_ERROR
MEMORY_ERROR

INTERNAL_ERROR
Function:

Update State Information stored in SRM
Prior condition：

Mutual authentication is completed
Post condition：

None

Notice：




D.2.8 Rights_Removal_Message
	Declaration：
STATUS_CODE Rights_Removal_Message (f_bytes* roID);
Input：
roID

RO ID of Rights to be deleted 

Output：
None

Return value：
SUCCESS
INVALID_PARAMETER_ERROR

MUTUAL_AUTH_NOT_COMPLETED_ERROR

NO_CARD_ERROR

RIGHTS_NOT_FOUND_ERROR

INVALID_HMAC_ERROR

MEMORY_ERROR

INTERNAL_ERROR
Function:

Delete Rights stored in SRM
Prior condition：

Mutual authentication is completed
Post condition：

None

Notice：

Rights List is updated in this API



D.2.9 Rights_Lock_Message
	Declaration：
STATUS_CODE Rights_Lock_Message (f_bytes* roID);
Input：
roID

RO ID of Rights to be locked 

Output：
None

Return value：
SUCCESS
INVALID_PARAMETER_ERROR

MUTUAL_AUTH_NOT_COMPLETED_ERROR

NO_CARD_ERROR

RIGHTS_NOT_FOUND_ERROR

INVALID_HMAC_ERROR

DISABLE_LOCKED_ERROR
MEMORY_ERROR

INTERNAL_ERROR
Function:

Lock Rights stored in SRM
Prior condition：

Mutual authentication is completed
Post condition：

None

Notice：




D.2.10 Rights_Release_Message
	Declaration：
STATUS_CODE Rights_Release_Message (f_bytes* roID);
Input：
roID

RO ID of Rights to be released 

Output：
None

Return value：
SUCCESS
INVALID_PARAMETER_ERROR

MUTUAL_AUTH_NOT_COMPLETED_ERROR

NO_CARD_ERROR

RIGHTS_NOT_FOUND_ERROR

INVALID_HMAC_ERROR

RIGHTS_NOT_LOCKED_RELEASE_ERROR

RELEASE_FAILURE_ERROR

MEMORY_ERROR

INTERNAL_ERROR
Function:

Release locked Rights stored in SRM
Prior condition：

Mutual authentication is completed
Post condition：

None

Notice：




D.3 Status Codes
Table 63: Status Codes
	Error Code
	Description

	SUCCESS
	Success

	INVALID_PARAMETER_ERROR
	Parameter is invalid

	NO_CARD_ERROR
	Card is not inserted

	RIGHTS_NOT_FOUND_ERROR
	Specified Rights do not exist

	NO_ENOUGH_SPACE_ERROR
	No space in SRM

	INVALID_HMAC_ERROR
	HMAC is invalid

	MEMORY_ERROR
	Memory error

	RIGHTS_NOT_LOCKED_UPDATE_ERROR
	The Rights is not locked for update.

	UPDATE_FAILURE_ERROR
	The SRM Agent fails to update Rights.

	INVALID_DRM_AGENT_ERROR
	This DRM Agent hasn’t locked the Rights

	DISABLE_LOCKED_ERROR
	The Rights has already been disabled or locked.

	RIGHTS_NOT_LOCKED_RELEASE_ERROR
	The Rights is not locked for release

	RELEASE_FAILURE_ERROR
	The SRM Agent fails to release Rights.

	OLD_CRL
	CRL in the request is older than the CRL in SRM

	CRL_VERIFICATION_FAILED
	The verification of the CRL signature failed.

	INTERNAL_ERROR
	Uncategorized Internal error

	UNKNOWN_ERROR
	Unknown error


Appendix E. Certificates and CRL
E.1 Certificate Profiles and Requirements
The profile for Device Certificates follows the profile of the DRM Agent Certificates in OMA DRM v2.0 [OMADRMv2]. The DRM Agent Certificate in OMA DRM v2.0 is referred to as Device Certificate in this specification. SRM Agents processing Device Certificates MUST meet all requirements on entities processing user certificates defined in [CertProf]. In addition, SRM Agents:

· MUST be able to process Device Certificates with serial numbers up to 20 bytes long;

· MUST recognize and require the presence of the oma-kp-drmAgent object identifier defined in the extKeyUsage extension in Device Certificates; and

· MUST support the cRLDistributionPoints extension
The profile for SRM Certificates follows the profile for “User Certificates for Authentication” in [CertProf] with the following modifications in Table 64:
Table 64: SRM Certificate Profile
	Fields
	Values

	Version
	Version 3 (Integer value is 2)

	Signature
	MUST be RSA with SHA-1

	Serial Number
	MUST be less than, or equal to, 20 bytes in length

	Issuer Name
	MUST be present and MUST use a subset of following naming attributes from [CertProf] – countryName, organizationName, organizationalUnitName, commonName, and stateOrProvinceName.

	Subject Name
	MUST be present and MUST use a subset of the following attributes from [CertProf] – countryName, organizationName, organizationalUnitName, commonName, and serialNumber

The structure and contents of an SRM subject name shall be as follows:

[countryName=<Country of manufacturer>]

[organizationName=<Manufacturer company name>]

[organizationalUnitName=<Manufacturing location>]

[commonName=<Model name>]

[serialNumber=<Unique identifier for SRM, as assigned by the Certificate Issuer>]
The serialNumber attribute MUST be present. The countryName, organizationName, organizationalUnitName, and commonName may be present. Other attributes are not allowed and must not be included. For all naming attributes of type DirectoryString, the PrintableString or the UTF8String choice must be used.

Note that the maximum length (in octets) for values of these attributes is as follows: countryName - 2 (country code in accordance with ISO/IEC 3166), organizationName, organizationalUnitName, commonName, and serialNumber - 64.

Example:

C="US";O="DRM SRMs 'R Us"; CN="DRM SRM Mark V"; SN="1234567890"

	Extensions
	The extKeyUsage extension SHALL be present, and contain (at least) the oma-kp-srmAgent key purpose object identifier:
oma-kp-srmAgent OBJECT IDENTIFIER ::= {oma-kp 3}
The oma-kp object identifier is defined as follows:

oma-kp OBJECT IDENTIFIER ::= {oma 1}

oma OBJECT IDENTIFIER ::= {joint-iso-itu-t(2) identified-organizations(23) wap(43) oma(6)}
CAs are recommended to set this extension to critical.

· If CAs include the keyUsage extension (recommended), then both the digitalSignature bit and the keyEncipherment bit must be set, if the corresponding private key is to be used both for authentication and decryption. Otherwise only the applicable bit shall be set. When present, this extension shall be set to critical. 

CAs may include the certificatePolicy extension, indicating the policy the certificate has been issued under, and possibly containing a URI identifying a source of more information about the policy.

CAs are recommended to not include any other extensions, but may, for compliance with [RFC3280], include the authorityKeyIdentifier extension. CAs may also include the authorityInfoAccess extension from [RFC3280] for OCSP responder navigation purposes, and the cRLDistributionPoints extension to identify how CRL information is obtained.

CAs MUST NOT include any other critical extensions.


DRM Agents processing SRM Certificates MUST meet all requirements on entities processing user certificates defined in [CertProf]. In addition, DRM Agents:

· MUST be able to process SRM Certificates with serial numbers up to 20 bytes long;

· MUST recognize and require the presence of the oma-kp-srmAgent object identifier defined in the extKeyUsage extension in SRM Certificates; and

· MUST support the cRLDistributionPoints extension
E.2 CRL Profiles and Requirements
The profile for CRLs follows the CRL profile in the Certificate Revocation List (CRL) profile in [RFC3280] with the following modifications in Table 65:

Table 65: CRL Profile

	Fields
	Values

	Version
	Version 2 (Integer value is 1)

	Signature
	MUST be RSA with SHA-1

	Issuer
	MUST be present and MUST use a subset of following naming attributes from Certificate profiles in [OMADRMv2] – countryName, organizationName, organizationalUnitName, commonName, and stateOrProvinceName.

	ThisUpdate
	The issue date of this CRL

	NextUpdate
	The date by which the next CRL will be issued

	RevokedCertificates entries
	See Table 66

	Extensions
	CAs shall include the Key Identifier extension, identifying the public key corresponding to the private key used to sign a CRL.

CAs may also include the CRL Number extension, determining when a particular CRL supersedes another CRL.
CAs are recommended to not include any other extensions, but may, for compliance with [RFC3280], include the Issuing Distribution Point extension from [RFC3280] to identify how CRL information is obtained.

CAs MUST NOT include any other critical extensions.


When there are no revoked Device Certificates or SRM Certificates, the revoked certificates list MUST be absent. Otherwise, revoked Device Certificates or SRM Certificates are listed by the fields in Table 66.

Table 66: RevokedCertificates Entry fields in CRL Profile

	Fields
	Values

	UserCertificate
	Revoked certificate serial number

	RevocationDate
	Date of revocation decision

	CRL Entry Extensions
	CAs may define private CRL entry extensions to carry information unique to them.

Except the private CRL entry extensions, CAs MUST NOT include any other critical extensions.


Appendix F. Move Permission in Rights Object (Normative)
The Move permission in a Rights Object grants the permission to move the Rights Object between devices and SRMs.
F.1 Extension of Permission Model in REL
This document defines the extension of the OMA DRM REL specification [OMADRMv2] to include the Move permission in Rights Objects.
F.1.1 Element <permission>
	Element
	<!ELEMENT o-ex:permission (o-ex:constraint?, o-ex:asset*, o-dd:play?, o-dd:display?, o-dd:execute?, o-dd:print?, oma-dd:export?, o-dd:move?)>

	Semantics
	A single Rights Object can have only one <move> permission. For the other elements, refer to the OMA DRM REL specification.


F.1.2 Element <move>
	Element
	<!ELEMENT o-dd:move (#PCDATA)>

	Semantics
	The <move> element grants move rights over a Rights Object. 

The <move> element has the semantics of moving a Rights Object between devices and SRMs.


Appendix G. Change History
(Informative)

G.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA


G.2 Draft/Candidate Version <current version> History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-TS-SRM-V1_0-20060517-D
	17 May 2006
	All
	The initial version of this document. 

	OMA-TS-SRM-V1_0-20060622-D
	22 May 2006
	9
	Add Transport Mappings text as agreed in OMA-DLDRM-2006-0227R01

	OMA-TS-SRM-V1_0-20060901-D
	1 Sep 2006
	5, Appendix A
	Revise text as agreed in OMA-DLDRM-2006-0325R02-INP_SRMv1.0_TS_Revision

	OMA-TS-SRM-V1_0-20061103-D
	3 Nov 2006
	1,2,3,4,5, Appendix B,C,D
	Revise text as agreed in  OMA-DLDRM-2006-0410-TS-SRM-Read-Data-Flag-correction, OMA-DLDRM-2006-0441-CR_SRM_Revocation_Checking, and OMA-DLDRM-2006-0451-CR_SRM_TS_Anchor_Removal
Delete comments from the OMA specification template

	OMA-TS-SRM-V1_0-20061110-D
	10 Nov 2006
	2, 3, 5, Appendix B
	Revise text as agreed in OMA-DLDRM-2006-0469R01-CR_SRM_TS_CRL_Delivery_Protocol 
Delete <Additional Information> appendix

	OMA-TS-SRM-V1_0-20061120-D
	20 Nov 2006
	5.5, Appendix B
	Revise text as agreed in OMA-DLDRM-2006-0475-CR_SRM_Certificate_Profile

	OMA-TS-SRM-V1_0-20061208-D
	8 Dec 2006
	Appendix B
	Revise text as agreed in OMA-DLDRM-2006-0398R03-CR_HTTP_Mapping

	OMA-TS-SRM-V1_0-20070112-D
	12 Jan 2007
	All
	Revise text as agreed in 
OMA-DLDRM-2006-0487-CR_SRM_TS_Move_Permission,

OMA-DLDRM-2006-0498R01-CR_SRM_MAKE_Process,

OMA-DLDRM-2006-0500R02-CR_SRM_Multi_CRL_Support,
OMA-DLDRM-2006-0531R01-CR_Rights_Release_Correction,
OMA-DLDRM-2006-0538R01-CR_SRM_roID_List_Retrieval,
OMA-DLDRM-2006-0553R01-CR_Method_for_Describing_Binary_Structures,

OMA-DLDRM-2006-0556R01-CR_Formating_Changes, and OMA-DLDRM-2007-0001-CR_SRM_Additional_Formating_Changes

	OMA-TS-SRM-V1_0-20070116-D
	16 Jan 2007
	5.6.1
	Revise text as agreed in OMA-DLDRM-2006-0520R03-CR_Change_to_Rights_Movement_from_Device_to_SRM
Revise text in section 5.6.1 to be consistent with CR-2006-0556R01, CR-2007-0001, and other parts of the document

	OMA-TS-SRM-V1_0-20070202-D
	2 Feb 2007
	5.6, Appendix B, D
	Revise text as agreed in OMA-DLDRM-2006-0555-CR_SRM_API, OMA-DLDRM-2007-0008-CR_SRM_Common_Data_Structure,  and OMA-DLDRM-2007-0011R01-CR_SRM_TS_Restructuring

	OMA-TS-SRM-V1_0-20070313-D
	13 Mar 2007
	2.1, 3.2, 3.4, 3.5, 4.1, 5.4, 5.5, Appendix A, C, D
	Revise text as agreed in
OMA-DRM-2006-0562R02-CR_SRM_Response,

OMA-DRM-2007-0030R04-CR_Replay_Attack_Protection_in_SRM,
OMA-DRM-2007-0062-CR_update_of_2006_0563_561,
OMA-DRM-2007-0072-CR_SRM_HMAC_Reference,
OMA-DRM-2007-0078R02-CR_SRM_System_Diagram,

OMA-DRM-2007-0081-CR_SRM_Error_Codes,

OMA-DRM-2007-0082R01-CR_SRM_Notation,
OMA-DRM-2007-0083-CR_SRM_Optional_Variables,

OMA-DRM-2007-0087R01-CR_RI_Certificate_Delivery,
OMA-DRM-2007-0089-CR_SRM_LROID_Retrieval,
and OMA-DRM-2007-0096-CR_Definition_Handle

	OMA-TS-SRM-V1_0-20070320-D
	20 Mar 2007
	5.1, 5.4.5, Appendix B, D
	Revise text as agreed in
OMA-DRM-2007-0006R05-CR_Rights_Redefinition, and OMA-DRM-2007-0110-CR_SRM_Secure_Storage_Section_Removal

	
	
	
	

	
	
	
	

	
	
	
	


Appendix H. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [IOPPROC].

H.1 SCR for XYZ Client

	Item
	Function
	Reference
	Status
	Requirement

	XYZ-C-001
	Something mandatory
	Section x.y
	M
	(XYZ-C-001 OR XYZ-C-003) AND
 XYZ-C-002

	XYZ-C-002
	Something optional
	Section x.y
	O
	

	XYZ-C-003
	Dependencies on ZYX
	Section x.y
	M
	ZYX:MCF

	XYZ-C-004
	Dependencies on ZYX
	Section x.y
	O
	ZYX:OCF


H.2 SCR for XYZ Server

	Item
	Function
	Reference
	Status
	Requirement

	XYZ-S-001
	Something mandatory
	Section x.y
	M
	XYZ-S-001 OR XYZ-S-002 OR XYZ-S-003

	XYZ-S-002
	Something optional
	Section x.y
	O
	

	XYZ-S-003
	Dependencies on ZYX
	Section x.y
	M
	ZYX:MSF

	XYZ-S-004
	Dependencies on ZYX
	Section x.y
	O
	ZYX:OSF


( 2007 Open Mobile Alliance Ltd.  All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20070101-I]
( 2007 Open Mobile Alliance Ltd.  All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20070101-I]

_1229242395.vsd
�

�

CRLUpdateResponse


DRM Agent

SRM Agent


CRLUpdateRequest


1



_1230104780.vsd
�

�

�

DRM Agent

SRM Agent

1


2


3


RightsUnsealRequest


RightsInstallationResponse


SealedRightsInstallationInSRM�

RightsRemovalInDevice�

RightsInstallationRequest


RightsUnsealResponse


RightsUnsealInSRM�


_1237721196.vsd
�

�

DRM Agent

SRM Agent

AuthenticationRequest


KeyExchangeRequest


AuthenticationResponse


KeyExchangeResponse



_1237731326.vsd
�

�

HelloRequest (Device Hello)


HelloResponse (SRM Hello)


DRM Agent


SRM Agent



_1233678718.vsd
�

�

DRM Agent

SRM Agent

RICertificateQueryRequest


1


RICertificateQueryResponse



_1235221323.vsd
DRM Agent


SRM Agent


Device


Secure Removable Media


Secure Storage


Operating System


Mass Storage


Trusted Entity


User Equipment


Rights Issuer


ROAP (OMA DRM V2.0)


SRM-DP


SRM-AP


Out of Scope



_1233678732.vsd
�

�

DRM Agent

SRM Agent

RICertificateRemovalRequest


1


RICertificateRemovalResponse



_1233678692.vsd
�

�

DRM Agent

SRM Agent

RICertificateStoreRequest


1


RICertificateStoreResponse



_1229242523.vsd
�

�

�

DRM Agent

SRM Agent

1


2


3


RightsRetrievalResponse


RightsRetrievalInSRM�

RightsInstallationInDevice�

RightsRemovalResponse


RightsRemovalInSRM�

RightsRetrievalRequest


RightsRemovalRequest


RightsDisablementInSRM



_1229242594.vsd
�

�

�

RightsUpdateResponse


DRM Agent


SRM Agent


RightsUpdateRequest


RightsUpdateInSRM�

1



_1229242606.vsd
�

�

�

RightsReleaseResponse


DRM Agent

SRM Agent

RightsReleaseRequest


RightsReleaseInSRM�

1



_1229245017.vsd
�

�

�

DRM Agent

SRM Agent

LROIDRetrievalRequest


1


LROIDRetrievalResponse


LROIDRetrievalInSRM�


_1229242555.vsd
�

�

�

DRM Agent

SRM Agent

RightsRetrievalRequest


RightsRetrievalInSRM�

RightsLockRequest


RightsLockInSRM�

1


2


RightsLockResponse


RightsSelectionInDevice�

3


RightsRetrievalResponse



_1229242415.vsd
�

�

CRLRetrievalRequest


DRM Agent

SRM Agent


CRLRetrievalResponse


1



_1229242120.vsd
�

�

{message name}Response


Entity A

Entity B

{message name}Request



_1229242342.vsd
�

�

DRM Agent

SRM Agent

SRMHelloRequest


1


SRMHelloResponse


2


KeyExchangeResponse


KeyExchangeRequest



_1214830163.vsd
�

�

�

Entity C

{action name}�


_1211286387.vsd
Application Layer


Middle Layer


Transformation Layer


SRM Access Layer



