Doc# OMA-DRM-2007-0315-CR_Changes_To_MAKE_Process.doc[image: image3.jpg]
Change Request

Doc# OMA-DRM-2007-0315-CR_Changes_To_MAKE_Process.doc
Change Request

Change Request

	Title:
	Changes To MAKE Process
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	DRM

	Doc to Change:
	OMA-TS-SRM-V1_0-20070604-D

	Submission Date:
	17 July 2007

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Aram Perez, QUALCOMM, Inc., aramp@qualcomm.com

	Replaces:
	n/a

1 Reason for Change

This CR provides the proposed resolution to QUALCOMM’s comment on section 5.7.2 of the SRM Consistency Review.

2 Impact on Backward Compatibility

None.

3 Impact on Other Specifications

None.

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

That the DRM group approve this Change Request.

6 Detailed Change Proposal

Change 1: Change Section 5.7.2 as follows:

5.7.2 MAKE (Mutual Authentication and Key Exchange) Process

[image: image1.emf]
Figure 1: Sequence Diagram – MAKE Process
5.7.3.1 Authentication Message
The DRM Agent sends the AuthenticationRequest to the SRM Agent to start the MAKE process. The AuthenticationResponse expresses SRM information and preferences. The DRM Agent and SRM Agent also exchange their certificate chains and verify them.
5.7.3.1.1 Message Descriptions
The DRM Agent sends the AuthenticationRequest to initiate a MAKE process. The fields of the request are defined in Table 1.
Table 1: AuthenticationRequest Fields
	Field
	Protection Requirement
	Description

	
	
	

	Device Identification
	No
	This field identifies the Device.
If the Peer Key Identifier List field is present in the HelloResponse and the List contains a Device ID corresponding to the Device’s certificate chain, then this field contains the Device’s ID; otherwise, it contains the Device’s certificate chain.

	Control Options
	No
	
This field contains acceptable configuration options that the Device accepts. It contains two sub-fields:

1. A list of supported MAKE protocol versions

2. A list of supported ciphersuites
Future versions of MAKE may support additional fields.

Upon receiving the AuthenticationRequest, the SRM Agent verifies the Device Certificate Chain if present. When the Device Certificate Chain is not present even if the HelloResponse doesn’t include Peer Key Identifier, the SRM Agent returns Device Certificate Chain Verification Failed in the Status of the response. Otherwise, the SRM Agent checks that the Device Certificate Chain ends at a Trust Authority that is trusted by the SRM Agent.
After this processing, the SRM Agent sends the AuthenticationResponse to report the result of the processing. The fields of the response are defined in Table 3.
Table 2: AuthenticationResponse Fields
	Field
	Protection Requirement
	Description

	Status
	No
	This field indicates the result of processing the AuthenticationRequest. This field contains one of the values specified in Table 3.

	SRM Certificate Chain
	No
	This field contains the certificate chain for the SRM that chains up to the same root certificate as the Device’s certificate chain.

	Encrypted AuthResp Data
	Confidentiality
	This field contains the encrypted AuthRespData, e.g. E (PuKeyD , AuthRespData). AuthRespData = RNS | ControlOptions | ChosenOptions), where:

· RNS is a random number generated by the SRM Agent
· ControlOptions is a copy of the field from the AuthenticationRequest
· ChosenOptions are the options chosen by the SRM Agent, selected from the ControlOptions of the AuthenticationRequest.

AuthRespData is encrypted with the Device’s public key (PuKeyD), taken from the Device’s certificate.

Table 3: Status of Authentication Message
	Status Value
	Description

	Success
	The request is successfully handled.

	Trust Authority ID Not Supported
	Trust Anchor in the request is not supported by the SRM Agent

	Device Certificate Chain Verification Failed
	The SRM Agent fails to verify the Device Certificate Chain.

	Unknown Error
	Other errors

Upon receiving the AuthenticationResponse and Status is Success, the DRM Agent verifies the SRM Certificate Chain. After the verification, the DRM Agent decrypts AuthRespData with the Device’s private key. The DRM Agent checks that the ControlOptions match what it sent in the AuthorizationRequest. If it does not match, the DRM Agent terminates the MAKE process. Otherwise, the DRM Agent then checks that the ChosenOptions were selected from the ControlOptions. If not, the DRM Agent terminates the MAKE process. Otherwise,
the DRM Agent continues with section 5.7.3.2.
5.7.3.1.2 Message Formats
The message format (MessageBody) of the AuthenticationRequest is specified as follows.

DeviceIdentification(){

 deviceCertificateChainPresent
1
bslbf

 rfu

7
bslbf

 if(deviceCertificateChainPresent){

 DeviceCertificateChain()

 }else{

 DeviceId()

 }

}

DeviceCertificateChain() {

 CertificateChain()

}
DeviceId(){

 //Contains the hash of the Device’s public key

 Hash() //Defined in Appendix B.1
}

ControlOptions(){

 SupportedProtocolVersions()

 SupportedCipherSuites()

}

SupportedProtocolVersions(){
 //There MUST be at least one version, 1.0.
 numOfVersions

8
uimsbf

 for(i=0; i<numOfVersions; i++){
 Version()

 }

}

Version() {

 major

4
uimsbf

 minor

4
uimsbf
}

SupportedCipherSuites(){
 //There MUST be at least one CipherSuite
 numOfCipherSuites

8
uimsbf
 for(i=0; i<numOfCipherSuites; i++){

 CipherSuite()

 }

}

CipherSuite(){
 //Holds the symmetric algorithm
 Algorithm() //Default is AES-128-CBC
 //Holds the asymmetric algorithm

 Algorithm() //Default is RSA-OAEP
 //Holds the HMAC algorithm

 Algorithm() //Default is HMAC-SHA-1
 //Holds the hashing algorithm

 Algorithm() //Default is SHA-1
}

Algorithm(){

 //List of algorithms:
 // 0 Default (as specified elsewhere)
 // 1 SHA-1

 // 2 HMAC-SHA1

 // 3 AES-128-CBC

 // 4 AES-128-CBC-IV0

 // 5 AES-128-CTR

 // 6 RSA-OAEP

 // 7 RSA-PSS
 //

 //Note: for SRM V1.0, algorithm should

 //always be set to 0 (Default)
 algorithm

8
uimsbf

}
MessageBody() {
 DeviceIdentification()

 ControlOptions()

}

The fields are defined as follows:

· deviceCertificateChainPresent - if ‘1’, then DeviceCertificateChain is present in this message

·
·
· DeviceCertificateChain – the Device’s certificate chain

· DeviceId – the Device’s ID

· ControlOptions – the ControlOptions field of Table x.

· SupportedProtocolVersions – the list of MAKE protocol versions supported by the Device

· SupportedCiphterSuites – the list of cipher suites supported by the Device

· CipherSuite – consists of an algorithm for symmetric encryption (default is AES-128-CBC) and an algorithm for asymmetric encryption (default is RSA-OAEP).
·
The message format (MessageBody) of the AuthenticationResponse is specified as follows.
RandomNumber() {

 for(i=0; i<16; i++){

 byte

8
uimsbf

 }
}

SelectedOptions() {
 //The selected MAKE version
 Version() //See defintion above
 //The selected CipherSuite for MAKE
 CipherSuite() //See defintion above
}

SrmCertificateChain() {

 CertificateChainString()

}

AuthRespData() {

 RandomNumber()
 ControlOptions() //See definition above

 SelectedOptions()

}

EncryptAuthRespData() {
 //AuthRespData encrypted by

 //the Device’s Public Key
 EncryptedString()

}

MessageBody() {

 Status()
 if (Status() == 0) {

 SrmCertificateChain()

 EncryptAuthRespData()

 }

}

The fields are defined as follows:

· AuthRespData – M value of Encrypted AuthResp Data field in Table 2
·
·
· RandomNumber – RNS value of Encrypted AuthResp Data field in Table 2
· ControlOptions – ControlOptions value of Encrypted AuthResp Data field in Table 2
· ChosenOptions – ChosenOptions value of the Encrypted AuthResp Data field in Table 2
·
·
·
· Status - This field contains the request handling status. If the request is handled successfully in the SRM, then this field contains Success (0) value.
· SrmCertificateChain – SRM Certificate Chain field in Table 2
· EncryptedAuthRespData – Encrypted AuthRespData with the Device’s public key
5.7.3.1.3 Exception Handling

There may be an unexpected exception during the Authentication Message processing as specified in section Error! Reference source not found.. If the DRM Agent fails to receive the response, finds an error by referring to the Status, fails to verify the SRM Certificate Chain, or fails to decrypt the Encrypted AuthResp Data, then the DRM Agent regards it as an exception and terminates communication with the SRM Agent. The user may be informed of this exception.

5.7.3.2 Key Exchange Message

This step performs the key exchange and key confirmation.

5.7.3.2.1 Message Descriptions
The DRM Agent generates a random number (RND), and encrypts it with the SRM’s public key. At this step, the DRM Agent also encrypts the hash of the SRM Random Number (RNS) received in the AuthenticationResponse.

Then the DRM Agent sends the KeyExchangeRequest to exchange keys with the SRM Agent. The fields of the request are defined in Table 7.
Table 7: KeyExchangeRequest Fields
	Field
	Protection Requirement
	Description

	Encrypted KeyEx Data
	Confidentiality
	E (PuKeyS , KeyExData) where KeyExData = RND | H(RNS).

KeyExData is encrypted with the SRM’s public key (PuKeyS).

Upon receiving the KeyExchangeRequest, the SRM Agent decrypts Encrypted KeyExData with the SRM’s private key.

The SRM Agent compares the decrypted H(RNS) to the hash of the random number (RNS) that the SRM Agent sent in the AuthenticationResponse.
The SRM Agent sends the KeyExchangeResponse to carry the result of the processing the request. The fields of the response are defined in Table 9.
Table 9: KeyExchangeResponse Fields
	Field
	Protection Requirement
	Description

	Status
	No
	This indicates if the KeyExchangeRequest is successfully handled or not. The Status value is specified in Table 11.

If the Status contains any error, only this field is present in the KeyExchangeResponse.

	Hash Of RanNum Data
	No
	H(RanNumData) where RanNumData = RND | RNS. The hash is the chosen hash algorithm.

Table 11: Status of Key Exchange Message
	Status Value
	Description

	Success
	The request was successfully handled.

	Field Decryption Failed
	The SRM Agent failed to decrypt an encrypted field.

	SRM Random Number Mismatched
	The SRM Random Number from the DRM Agent is not identical to its original value in the SRM.

	
	

	Unknown Error
	Other errors

Upon receiving the KeyExchangeResponse and Status is Success, the DRM Agent confirms whether the hashed Device Random Number (RND) and SRM Random Number (RNS) are matched with the random numbers exchanged in the AuthenticationResponse and KeyExchangeRequest.

After the key exchange and key confirmation are successfully finished, the DRM Agent and SRM Agent generate key material by using the Key Derivation Function as specified in section 5.7.3.1.

5.7.3.2.2 Message Formats
The message format (MessageBody) of the KeyExchangeRequest is specified as follows.
DeviceRandomNumber() {

 RandomNumber ()

}

SrmRandomNumber() {

 RandomNumber ()

}

HashOfSrmRandomNumber() {

 Hash() //Defined in Appendix B.1
}

KeyExData() {

 DeviceRandomNumber()

 HashedSrmRandomNumber()

}

EncryptedKeyExData() {
 //KeyExData encrypted by the

 //SRM’s public key
 EncryptedString()

}

MessageBody() {

 EncryptedKeyExData()

}

The fields are defined as follows:

· KeyExData – KeyEx Data field in Table 7
· DeviceRandomNumber – RNH value of Encrypted KeyEx Data field in Table 7
· SrmRandomNumber – RNS value of Encrypted KeyEx Data field in Table 7
·
· HashOfSrmRandomNumber – Hash of the SrmRandomNumber
· EncryptedKeyExData – Encrypted KeyExData with the SRM’s public key
The message format (MessageBody) of the KeyExchangeResponse is specified as follows.
DeviceRandomNumber() {

 RandomNumberString()

}

SrmRandomNumber() {

 RandomNumberString()

}

RanNumData() {

 DeviceRandomNumber()

 SrmRandomNumber()

}

HashOfRanNumData() {

 Hash()

}

MessageBody() {

 status

16
uimsbf

 if (status == 0) {

 HashOfRanNumData()

 }

}

The fields are defined as follows:

· RanNumData – RanNum Data field in Table 9
· DeviceRandomNumber – RND value of RanNum Data field in Table 9
· SrmRandomNumber – RNS value of RanNum Data field in Table 9
· Status - This field contains the request handling status. If the request is handled successfully in the SRM, then this field contains Success (0) value.
· HashOfRanNumData – Hash of RanNumData
5.7.3.2.3 Exception Handling

There may be an unexpected exception during the Key Exchange Message processing as specified in section Error! Reference source not found.. If the DRM Agent fails to receive the response, finds an error by referring to the Status, or fails to verify the random numbers, then the DRM Agent regards it as an exception and terminates communication with the SRM Agent. The user may be informed of this exception.
5.7.3 Secure Authenticated Channel

Whenever sensitive information, such as cryptographic keys, needs to be transferred between the DRM Agent and SRM Agent, a Secure Authenticated Channel (SAC) needs to be used. A SAC is a logical channel that provides message integrity and optionally message confidentiality. A SAC needs to be established using credentials from a Trust Authority under which the sensitive information was created. Therefore, if the SRM supports more than one Trust Authority which are also supported by the DRM Agent, multiple Secure Authenticated Channels can be established by repeating the MAKE process.
5.7.3.3 Key Derivation Function
After the MAKE process is completed, both the DRM Agent and the SRM Agent have mutually authenticated each other and have exchanged secret random numbers that are used in generating key materials (Session Key and Message Integrity Key). The keys are used in the SAC.
The Key Derivation Function (KDF) is the same as the KDF specified in [OMADRMv2.1]. The key material in Table 13 is derived from the KDF. When using the KDF, let Z = RND | RNS and otherInfo = ControlOptions | ChosenOptions., kLen is 52 bytes in Table 13.

Table 13: Key Materials
	Field
	Size
	Description
	Nomenclature

	Message Integrity Key
	160 bits
	The initial HMAC-SHA1 Key: The first 20 octets of T as the derived key
	MK0

	Session Key
	128 bits
	AES Key: The next 16 octets of T as the derived key
	SK

	Initial Vector
	128 bits
	The initial IV: The last 16 octets of T as the derived vector
	IV

By default, the DRM Agent and SRM Agent support the AES128-CBC mode. The padding is performed as specified in [RFC2630].
5.7.3.4 Secure Message

Once the SAC has been established, two types of security are provided. The first type is integrity protection and the other type is confidentiality protection. The integrity protection is performed by generating HMAC over fields using the Message Integrity Key (MK). The confidentiality protection is performed by encrypting fields using the Session Key (SK) and Initial Vector (IV).
5.7.3.5 Message Replay Protection

Replay protection is provided by using a different Message Integrity Key (MK) for every request-response message pair, whether or not any message requires integrity protection. After sending a response, the SRM Agent MUST generate a new MK. After receiving a response, the DRM Agent MUST generate a new MK. A new MK is generated as follows: MKi+1 = H(MKk).

5.7.3.6 Switching Channels
The DRM Agent switches to a different SAC as illustrated in the following Figure:
[image: image2.png]
Figure 2, Sequence Diagram - Switch SAC
5.7.3.6.1 Message Descriptions
If the SRM support multiple Trust Authorities, the DRM Agent sends the SwitchSACRequest so the SRM Agent can switch to a different SAC. The fields of the request are defined in Table 7.
Table 8: SwitchSACRequest Fields
	Field
	Protection Requirement
	Description

	Trust Authority ID
	No
	The ID of the Trust Authority under which a SAC was established.

Upon receiving the SwitchSACRequest, the SRM Agent switches to the SAC identified by the Trust Authority ID and starts using the key material established for that particular SAC (after sending the SwitchSACResponse).
The SRM Agent sends the SwitchSACResponse to carry the result of the processing the request. The fields of the response are defined in Table 9.
Table 9: SwitchSACResponse Fields
	Field
	Protection Requirement
	Description

	Status
	No
	This indicates if the SwitchSACRequest was successfully handled or not. The Status value is specified in Table 11.

Table 10: Status of Key Exchange Message
	Status Value
	Description

	Success
	The request was successfully handled.

	SAC Not Established
	A SAC under the Trust Authority has not been established.

	Request Not Supported
	The SRM only supports one Trust Authority and hence does not support this request.

	Unknown Error
	Other errors

Upon receiving the SwitchSACResponse and Status is Success, the DRM Agent switches to the SAC.

5.7.3.6.2 Message Formats
The message format (MessageBody) of the SwitchSACRequest is specified as follows.
MessageBody() {

 TrustAuthorityId()

}

The fields are defined as follows:

· TrustAuthorityId – the Trust Authority ID field in Table 7
The message format (MessageBody) of the SwitchSACResponse is specified as follows.
MessageBody() {

 Status()
}

The fields are defined as follows:

· Status - This field contains the request handling status. If the request is handled successfully in the SRM, then this field contains Success (0) value.
5.7.3.6.3 Exception Handling

There may be an unexpected exception during the Key Exchange Message processing as specified in section Error! Reference source not found.. If the DRM Agent fails to receive the response or finds an error by referring to the Status, then the DRM Agent regards it as an exception and terminates communication with the SRM Agent. The user may be informed of this exception.

�These changes are adapted from Change 6 of CR 2007-0229R06.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2007 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 11)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20070101-I]

© 2007 Open Mobile Alliance Ltd. All Rights Reserved.
Page 8 (of 11)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20070101-I]

_1237721196.vsd
�

�

DRM Agent

SRM Agent

AuthenticationRequest

KeyExchangeRequest

AuthenticationResponse

KeyExchangeResponse

