Doc# OMA-DRM-2007-0454R04-CR_SRM_Resolution_for_Hello_and_MAKE_Comments.doc[image: image4.jpg]
Change Request

Doc# OMA-DRM-2007-0454R04-CR_SRM_Resolution_for_Hello_and_MAKE_Comments.doc
Change Request

Change Request

	Title:
	SRM Resolution for Hello and MAKE Comments
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	DRM

	Doc to Change:
	OMA-TS-SRM-V1_0-20070604-D

	Submission Date:
	12 Oct 2007

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Aram Perez, QUALCOMM, Inc., aramp@qualcomm.com

	Replaces:
	n/a

1 Reason for Change

Per SRM AP 030, this CR resolves SRM CONRR comments listed below:

	B007-ERI
	2007.06.20
	T
	5.7.2.1
	Source: Ericsson

Form: OMA-DRM-2007-0294

Comment: In Table 8 the 2nd row for Device Certificate Chain, it states “If the Peer Key Identifier List parameter is present in the HelloResponse and the List contains the Device ID corresponding to the Device Certificate Chain, then this parameter need not be sent in the AuthenticationRequest”. In case the Peer Key Identifier List contains more than one Device IDs, the absence of the Device Certificate Chain parameter will make SRM confused as to which Device public key to use for the AuthenticationResponse.

Proposed Change:

See OMA-DRM-2007-0255R02
	Status: CLOSED
Resolution as per OMA-DRM-2007-0255R02-CR
This CR resolves this comment in a similar manner as agreed in CR 0255R02 but in a slightly different way.

	B008-ERI
	2007.06.20
	T
	5.7.2.1.1
	Source: Ericsson

Form: OMA-DRM-2007-0294

Comment: In the AuthenticationResponse, it would be more efficient to send a hash value of Supported Algorithms (instead of the list of algorithm identifiers).

Proposed Change:

	Status: OPEN

To be addressed in CR-454

	B066-PA
	2007.07.18
	T
	5.7.1
	Source: Panasonic

Form: OMA-DRM-2007-0305
Comment: It’s unclear when DRMA is allowed to call Hello Message.

Proposed Change: It should be clearly specified that the status is discarded after the Hello Message.
	Status: OPEN
To be included in the new MAKE CR

	B080-PA
	2007.07.18
	T
	5.7.3.1
	Source: Panasonic

Form: OMA-DRM-2007-0305
Comment: There is no need to generate the IV from the shared secret as part of the KDF. Also, the IV is sent in the EncryptedString.
	Status: OPEN
To be included in CR-454

	B085-PA
	2007.07.18
	T
	5.7.2.1.1

Appendix B.2.2
	Source: Panasonic

Form: OMA-DRM-2007-0305
Comment: Table 8 says that "Supported Algorithms" parameter contains URIs of security algorithms specified in 5.2. However, Appendix B.2.2 says that "algorithmId" is 16 bits length. So it cannot store the URIs.
Proposed Change: Assign IDs for algorithm type, RMA sends algorithm type ID and corresonding hash value of URI for each algorithm type in "Supported Algorithms" parameter of Authentication Request message, and Change "algorithmId uimsbf 16"

to "algorithmTypeId uimsbf 16, OctetString8()".
	Status: OPEN
Resolution as per CR-XXXX

	B131-QU
	2007.07.18
	T
	5.7.2
	Source: QUALCOMM

Comment: The MAKE Process in the current TS is missing several features that were described in the document OMA-DLDRM-2006-0474-INP_Consolidated_Move_Framework_AKA_Protocol.
Proposed Change: See OMA-DRM-2007-0315-CR_Changes_To_MAKE_Process.
	Status: OPEN

	B133-QU
	2007.07.18
	E
	5.7.2.1.2, RandomNumber
	Source: QUALCOMM

Comment: There’s no need to not define RandomNumber since it is only used as part of the MAKE process. In addition, the random number should be fixed sized, not variable sized.

Proposed Change:
	Status: OPEN
To be included in CR-454

	B207-HU
	07.07.12
	T
	5.7.1.1

5.7.2.1
	Source: Huawei

Form: This input

Comment: In the current TS, the SRM must include the SRM Certificate Chain every time it sends the AuthenticationResponse, which result in much transfer redundancy
Proposed Change: It would be more efficient for the DRM Agent to store the SRM Certificate Chain, and to include a Peer Key Identifier List parameter in the AuthenticationRequest to indicate to the SRM whether SRM Certificate Chain has been stored. Correspondingly, SRMID List should be added to the SRM Hello message.
	Status: OPEN

CR-405R02 submitted. To be included in MAKE CR

	B214-HU
	07.07.12
	T
	5.7.1.1

and

5.7.8.1
	Source: Huawei

Form: This input

Comment:
In section 5.7.1.1, the HelloResponse message includes a field named “Max Number Of ContentIDs”. Even if max number of ContentIDs is set to ONE, but the HandleIDs related to that ONE contentID may also be too much, then it would still be a great burden to the cache memory in both sides.

Proposed Change:

	Status: OPEN

	B215-HU
	07.07.12
	T
	5.7.2.2.1
	Source: Huawei

Form: This input

Comment: In Table 12, the parameter Hashed RanNum Data the hash of M, where M = RND | RNS, and the hash algorithm is SHA-1. The question is why not using the negotiated algorithm.

Proposed Change:

	Status: OPEN

To be included in the MAKE CR

	B244-PH
	2007.07.18
	E
	5.7.2.1.1
	Source: Philips

Form: Philips-SRM-CONR.doc

Comment: Somewhat unclear that Supported Algorithms refers only to additionally supported algorithms. Also, if a device supports other algo’s, MUST is say sao?
Proposed Change: “Additionally Supported Algorithms identifies the cryptographic algorithms (hash algorithms, MAC algorithms, signature algorithms, asymmetric encryption algorithms, symmetric encryption algorithm, and key derivation functions) that are supported by the DRM Agent in addition to the default algorithms as specified in section 5.2. These algorithms and associated identifiers MUST be supported by all DRM Agents and SRM Agents.Use of other algorithms is optional. Since all DRM Agents and all SRM Agents must support the default algorithms, they need not be sent in this parameter. Only identifiers for algorithms that are not one of the defaults MAY be sent in the AuthenticationRequest.”
	Status: OPEN

	B245-PH
	2007.07.18
	E
	5.7.2.1.1
	Source: Philips

Form: Philips-SRM-CONR.doc

Comment: Encrypted AuthResp Data somewhat unclear. Does the word parameter in the text: “…then the SRM Agent need not include this parameter.” Refer to the Selected Algorithms or to the Encrypted AuthResp Data as a whole?
Proposed Change:
Selected Algorithms specify the cryptographic algorithms selected by the SRM Agent. If the DRM Agent indicated support of only mandatory algorithms (i.e. left out the Supported Algorithm parameter in the AuthenticationRequest, or the DRM Agent only supports the mandatory algorithms), then the SRM Agent need not include Selected Algorithmsthis parameter. Otherwise, the SRM Agent MUST provide this parameter and MUST identify one algorithm of each type.
	Status: OPEN

	B246-PH
	2007.07.18
	E
	5.7.2.1.1
	Source: Philips

Form: Philips-SRM-CONR.doc

Comment:

We need some MUSTs in this text: “Upon receiving the AuthenticationResponse and Status is Success, the DRM Agent verifies the SRM Certificate Chain. After the verification, the DRM Agent decrypts RNS, Version, Supported Algorithms and Selected Algorithms with the Device’s private key.

Then the DRM Agent compares Version to the Version parameter sent in the HelloRequest, and also compares Supported Algorithms to the Supported Algorithms sent in the AuthenticationRequest. If both are identical and it is sure that the Selected Algorithms are from the Supported Algorithms, the DRM Agent continues with section 5.7.2.2.”
And also in similar text earlier.

Proposed Change:
	Status: OPEN

	B247-PH
	2007.07.18
	E
	5.7.2.2.1
	Source: Philips

Form: Philips-SRM-CONR.doc

Comment: We need more MUST in this section. There is a lot of comparison going-on but we do not require any specific result of the comparison and we do not specify what MUST happen depending on the result.
Proposed Change:
	Status: OPEN

	B264-CM
	07.07.18
	T
	5.7.1

	Source: China Mobile
Form: This input

Comment: There is no parameter in HelloRequest message to indicate which Hash algorithm is used to compute Device ID by the Device. Therefore only the default SHA-1 can be used.
Proposed Change: To move the Supported Algorithms parameter from the AuthenticationRequest message to the HelloRequest message. A CR will be uploaded soon to address this comment.

	Status: OPEN

	B272-BS
	2007.07.18
	T
	5.7.1.1.1

and

5.7.8.1.1
	Source: Beep Science

Form: OMA-CONR-2007-0010

Comment: The HelloResponse contains a “Max Number of Content IDs” field which relates to the maximum number of handles that will be returned in the HandleListQueryResponse.

Does this really relate to the maximum number of Content Ids that can be specified in the HandleListQueryRequest? Or does it relate to the maximum number of handles that can be returned in the HandleListQueryResponse?

Proposed Change:

1) In section 5.7.1.1.1 change the description of Max Number of Content IDs to “This field contains the maximum number of Hashed ContentIDs that can be specified in the HandleListQueryRequest message”.

2) In section 5.7.8.1.1 add: “The DRM Agent SHOULD NOT include more ContentIds in the HandleListQueryRequest than was specified as the Maximum Number of Content Ids in the HelloResponse”
	Status: OPEN

	B276-BS
	2007.07.18
	T
	5.7.2.1.1
	Source: Beep Science
Form: OMA-CONR-2007-0010
Comment: Why is the Trust Anchor related to the Trusted Authorities in the HelloResponse message? The Trusted Authorities identifies device PKIs that the SRM trusts; while the Trust Anchor identifies SRM PKIs that the Device trusts.
Proposed Change:

	Status: OPEN

	B287-BS
	2007.07.18
	E
	5.7.2.1.1
	Source: Beep Science
Form: OMA-CONR-2007-0010
Comment: The text in this section states:
Upon receiving the AuthenticationRequest, the SRM Agent verifies the Device Certificate Chain if present. When the Device Certificate Chain is not present even if the HelloResponse doesn’t include Peer Key Identifier, the SRM Agent returns Device Certificate Chain Verification Failed in the Status of the response.

However, there is not Peer Key Identifier in the Hello Response. Only a Peer Key Identifier List.

Why is the status code “Device Certificate Verification Failed” status code returned if the Device Certificate Chain is not sent when it is already stored on the SRM? What then is the point of the Peer Key Identifier mechanism

Proposed Change:

1) Change text as follows:

“Upon receiving the AuthenticationRequest, the SRM Agent verifies the Device Certificate Chain if present. When If the Device Certificate Chain is not present even and if the HelloResponse doesn’t include Peer Key Identifier List, the SRM Agent SHALL returns Device Certificate Chain Verification Failed in the Status of the response.”
	Status: OPEN

R07 changes Algorithms to AlgorithmList and removes the placeholder for signature algorithms.
2 Impact on Backward Compatibility

None.

3 Impact on Other Specifications

None.

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

That the DRM group approve this Change Request.

6 Detailed Change Proposal

Change 1: Change section 5.6.4.1 as follows:

5.7.3.3 Message Format

All messages between the DRM Agent and SRM Agent have the following generic format:
MessageFormat ()

 protectedFlag
1
bslbf

 messageIdentifier
6
bslbf

 messageType
1
bslbf

 MessageBody()

}

The fields are defined as follows:

· protectedFlag - This flag is set to ‘1’ if the message is protected by a Secure Authenticated Channel.

· messageIdentifier - This field defines the identifier of messages being communicated. This is defined in Table 1
· messageType - This flag is set to ‘0’ if this is a request from the DRM Agent to SRM Agent. In case of a response, it’s set to ‘1’.

· MessageBody - This field contains parameters of a message. The MessageBody is specified in each sub-section in section Error! Reference source not found..

Table 1: Message Identifier
	Identifier Value
	Description

	0
	Hello

	1
	Authentication

	2
	Key Exchange

	3
	CRL Information Exchange

	4
	OCSP Nonce

	5
	OCSP Process

	6
	CRL Update

	7
	CRL Retrieval

	8
	Installation Setup

	9
	Rights Installation

	10
	Rights Retrieval

	11
	REK Query

	12
	Rights Info Query

	13
	Handle List Query

	14
	Handle Removal

	15
	Rights Enablement

	16
	Rights Removal

	17
	RI Certificate Store

	18
	RI Certificate Query

	19
	RI Certificate Removal

	20
	Dynamic Code Page Query

	21
	Dynamic Code Page Update

	22
	Rights Info List Query

	23
	Change SAC

	24 ~ 63
	Reserved For Future Use

Note to Editor: The exact value can be decided later when all the messages are defined.
5.7.3.4 Status

Each response message (i.e. messageType is set to 1) has status parameter indicating the result whether its previous request message (i.e. messageType is set to 0) is successfully handled or not. Table 2 assigns integer value to each error code of the parameter. This is 2 byte integer.

Table 2: Status
	Identifier Value
	Error Code in Status

	0
	Success

	1
	Unknown Error

	2
	Trust Anchor Not Supported

	3
	Device Certificate Chain Verification Failed

	4
	Parameter Decryption Failed

	5
	SRM Random Number Mismatched

	6
	Version Mismatched

	7
	CRL Update Needed

	8
	OCSP Not Supported

	9
	OCSP Response Verification Failed

	10
	Invalid OCSP Nonce

	11
	CRL Verification Failed

	12
	CRL Not Found

	13
	Parameter Integrity Verification Failed

	14
	Duplicate Handle

	15
	Not Enough Space

	16
	Handle Not Found

	17
	Handle List Not Found

	18
	Handle Not Removed

	19
	Function Not Supported

	20
	RI Certificate Chain Not Found

	21
	Dynamic Code Pages Not Found

	22
	SAC Not Established

	23 ~ 65535
	Reserved For Future Use

Note to Editor: The exact value can be decided later when all the errors are defined.
Change 2: Change sections 5.7.1 – 5.7.3 as follows:

5.7.1 SRM Hello
The SRM Hello message pair is used by the DRM Agent and the SRM to exchange information about each other.

5.7.1.1

[image: image1.emf]
Figure 1: Sequence Diagram – Device - SRM Hello
5.7.3.5 Description Of Messages
The DRM Agent sends the SrmHelloRequest to initiate a logical channel with the SRM Agent. The fields of the request are defined in Table 1.

Table 1: Fields of SrmHelloRequest
	Field
	Protection Requirement
	Description

	Version
	No
	Version is a <major.minor> representation of the highest SRM protocol version number supported by the DRM Agent.
For this version of the protocol, Version SHALL be set to 1.0.

	Trust Anchor and Device ID Pair List
	No
	Trust Anchor and Device ID Pair List contains the list of trust anchor and Device ID pairs for the Device. The trust anchor identifies the trust model. If the Device has more than one Device ID under a trust model, then only one Device ID under the trust model MUST be present in this list.

Upon receiving the SrmHelloRequest, the SRM Agent selects a protocol version supported by the SRM.

After this completing this step, the SRM Agent sends the SrmHelloResponse to the DRM Agent. The fields of the response are defined in Table 2.
Table 2: Fields of SrmHelloResponse
	Field
	Protection Requirement
	Description

	Status
	No
	Status contains the result of processing the SrmHelloRequest. The Status values are specified in Table 3.

If the Status contains any error, only this field is present in the SrmHelloResponse.

	Selected Version
	No
	The protocol version selected by the SRM Agent. The Selected Version will be min(DRM Agent suggested version, highest version supported by the SRM Agent). The min(A,B) = A where A <= B.

	Trust Anchor And SRM ID Pair List
	No
	Trust Anchor And SRM ID Pair List contains the list of trust anchor and SRM ID pairs for the SRM. The trust anchor identifies the trust model. The trust anchors MUST be one of the trust anchors in the Trust Anchor and Device ID Pair List in the SrmHelloRequest. For example, if the Trust Anchor and Device ID Pair List has trust anchors A, B and C and the SRM supports trust anchors B, C and D, then the Trust Anchor And SRM ID Pair List would only contain trust anchors B and C. If the SRM has more than one SRM ID under a trust model, then only one SRM ID under the trust model MUST be present in this list.

	Peer Key Identifier List
	No
	Peer Key Identifier List contains a list of Device IDs stored by the SRM. If any of the identifiers match the Device IDs in the Trust Anchor and Device ID Pair List in the preceeding SrmHelloRequest, it means the SRM has already verified the corresponding Device certificate chains, and that the DRM Agent does not need to send any of those certificate chains in a later message. If the SRM has verified the Device’s certificate chain, based on the Trust Anchor and Device ID Pair List in the SrmHelloRequest, then the SRM Agent MUST include this field in the SrmHelloResponse.

	Max Number Of ContentIDs
	No
	This field contains the maximum number of H(ContentID)s that can be processed by the SRM Agent in the HandleListQueryRequest (see section Error! Reference source not found.).

	Optional Messages Supported
	No
	This field indiciates which optional messages are supported by the SRM.

Table 3: Status Values For SrmHelloResponse
	Value
	Description

	Success
	The request is successfully handled

	Unknown Error
	Other errors

Upon receiving the SrmHelloResponse and Status is Success, the DRM Agent continues with the MAKE process in section 5.7.2.

5.7.3.6 Format Of Messages
The message format (MessageBody) of the SrmHelloRequest is specified as follows. The messageType and protectedFlag are set to ‘0’.
Version() {

 Version() //Defined in Appendix B
}
EntityId()

{

 //SHA-1 of the DER-encoded
 //subjectPublicKeyInfo component
 //of the Entity's certificate
 Hash()

}
DeviceId()

{
 EntityId()

}
TrustAnchor(){

 //SHA-1 of root public key

 EntityId()

}

DeviceIdPairList() {
 //There MUST be at least one pair

 numOfPairs
8
uimsbf

 for (i = 0 ; i < numOfPairs; i++) {
 TrustAnchor()
 //The Device’s ID under the Trust Anchor above
 DeviceId()
 }

}

MessageBody() {

 Version()

 DeviceIdPairList()

}

The fields are defined as follows:

· Version - Version field in Table 1
· TrustAnchorAndDeviceIdPairList – Trust Anchor and Device ID Pair List field in Table 1
The message format (MessageBody) of the SrmHelloResponse is specified as follows. The messageType is set to ‘1’ and the protectedFlag is set to ‘0’.
SelectedVersion() {

 Version()

}
SrmId(){

 EntityId()

}
SrmIdPairList() {
 //There MUST be at least one pair
 numOfPairs

8
uimsbf

 for (i = 0 ; i < numOfPairs ; i++) {
 TrustAnchor()
 //The SRM’s ID under the Trust Anchor above
 SrmId()
 }

}

PeerKeyIdentifier() {

 EntityId()

}

PeerKeyIdentifierList() {

 numOfPeerKeyIdentifiers

8
uimsbf

 for (i = 0 ; i < numOfPeerKeyIdentifiers ; i++) {

 PeerKeyIdentifier()

 }

}

OptionalMessages() {

 ocspSupported

1
bslbf

 rightsInfoListSupported

1
bslbf

 riCertificateStorageSupported

1
bslbf

 riCertificateRemovalSupported

1
bslbf

 dynamicCodePageSupported

1
bslbf
 changeSacSupported

1
bslbf
 rfu

10
bslbf

}
MessageBody() {

 status

16
uimsbf

 if (status == 0) {

 SelectedVersion()

 SrmIdPairList()

 PeerKeyIdentifierList()

 maxNumOfContentIds

16
uimsbf
 OptionalMessages()
 }

}

The fields are defined as follows:

· status - Status field in Table 2.
·
· SelectedVersion - Selected Version field in Table 2.
· TrustAnchorAndSrmIdPairList – Trust Anchor And SRM ID Pair List field in Table 2.
· PeerKeyIdentifierList – PeerKeyIdentifierList field in Table 2.
· maxNumOfContentIds – Max Number of ContentIDs field in Table 2.
· OptionalMessages – Optional Messages Supported field in Table 2. The contained flags have meaning as follows:
· ocspSupported – if ‘0’, the OCSP Nonce and OCSP Process messages in section Error! Reference source not found. and Error! Reference source not found. are not supported by the SRM Agent. If ‘1’, the messages are supported by the SRM Agent.
· rightsInfoListSupported – if ‘0’, the Rights Info List Query message in section Error! Reference source not found. is not supported by the SRM Agent. If ‘1’, the message is supported by the SRM Agent.
· riCertificateStorageSupported – if ‘0’, the RI Certificate Store and RI Certificate Query messages in section Error! Reference source not found. and Error! Reference source not found. are not supported by the SRM Agent. If ‘1’, the messages are supported by the SRM Agent.
· riCertificateRemovalSupported – if ‘0’, the RI Certificate Removal message in section Error! Reference source not found. is not supported by the SRM Agent. If ‘1’, the message is supported by the SRM Agent.
· dynamicCodPageSupported – if ‘0’, the Dynamic Code Page Query and Dynamic Code Page Update messages in section Error! Reference source not found. and section Error! Reference source not found. are not supported by the SRM Agent. If ‘1’, the messages are supported by the SRM Agent.
· changeSacSupported – if ‘0’, the ChangeSac messages in section Error! Reference source not found. are not supported by the SRM Agent. If ‘1’, the messages are supported by the SRM Agent.
5.7.3.7 Exception Handling

There may be an unexpected exception during the SRM Hello message pair processing as specified in section Error! Reference source not found.. If the DRM Agent fails to receive the response or finds an error by referring to the Status, then the DRM Agent regards it as an exception and terminates communication with the SRM Agent. The user may be informed of this exception.
5.7.2 MAKE (Mutual Authentication and Key Exchange) Process

[image: image2.emf]
Figure 2: Sequence Diagram – MAKE Process
5.7.2.1 Authentication
The DRM Agent sends the AuthenticationRequest to the SRM Agent to start the MAKE process. This request expresses Device information and preferences. The AuthenticationResponse expresses SRM information and preferences. The DRM Agent and SRM Agent may also exchange their certificate chains and verify them.
5.7.2.1.1 Description of Messages
The DRM Agent sends the AuthenticationRequest to initiate a MAKE process. The fields of the request are defined in Table 4.
Table 4: Fields of AuthenticationRequest
	Field
	Protection Requirement
	Description

	Trust Anchor
	No
	Trust Anchor preferred by the DRM Agent. The trust anchor MUST be selected from Trust Anchor And SRM ID Pair List in the SrmHelloResponse. Selection of the trust anchor implicitly selects both the Device ID and the SRM ID.

	Device Certificate Chain
	No
	A certificate chain for the Device under the selected trust anchor. The chain MUST NOT include the root certificate. The Device Certificate MUST come first in the list. Each following certificate MUST directly certify the one preceding it. Refer to Appendix Error! Reference source not found.
If the Peer Key Identifier List field is present in the SrmHelloResponse and the list contains the Device ID corresponding to the Device Certificate Chain, then this field need not be sent in the AuthenticationRequest.

	Peer Key Identifier
	No
	An SRM ID under the trust anchor indicated by the Trust Anchor field in this message. If the Device has already verified the corresponding SRM Certificate Chain, then this field SHOULD be present. This informs the SRM to not send the SRM’s certificate chain in the AuthenticationResponse.

	Supported Algorithms
	No
	Supported Algorithms identifies the cryptographic algorithms (hash algorithms, MAC algorithms, signature algorithms, asymmetric encryption algorithms, symmetric encryption algorithm, and key derivation functions) that are supported by the DRM Agent.
Use of other algorithms is optional. Since all DRM Agents and all SRM Agents must support the default algorithms, they need not be sent in this field. Only identifiers for algorithms that are not one of the defaults needs to be sent in the AuthenticationRequest.

Upon receiving the AuthenticationRequest, the SRM Agent MUST perform the following steps:

1) Check if it supports the Trust Anchor. If not, set Status to Trust Anchor Not Supported and send the AuthenticationResponse.
2) If present, verify the Device Certificate Chain. If the verification is good, then continue with step 5. Otherwise, set Status to Device Certificate Chain Verification Failed and send the AuthenticationResponse.

3) If the Device Certificate Chain is not present do the following:

a) If the SrmHelloResponse did not include the Peer Key Identifier List, set Status to Device Certificate Chain Verification Failed and send the AuthenticationResponse.
b) If the SrmHelloResponse did include the Peer Key Identifier List, then checks whether the Trust Anchor matches any trust anchor of the in the Peer Key Identifier List. If it is not, then set Status to Device Certificate Chain Verification Failed and send the AuthenticationResponse.
4) Check the Peer Key Identifier and determine whether or not to send the SRM’s certificate chain under the Trust Anchor.
5) Select the algorithms to use from the Supported Algorithms.
After these steps, the SRM Agent sends the AuthenticationResponse to carry the result of the action. The fields of the response are defined in Table 5.
Table 5: Fields of AuthenticationResponse
	Field
	Protection Requirement
	Description

	Status
	No
	This field indicates the result of processing the AuthenticationRequest. The Status value is specified in Table 6.

	SRM Certificate Chain
	No
	The SRM’s certificate chain under the trust anchor sent in the preceding request. The chain MUST NOT include the root certificate. The SRM Certificate MUST come first in the list. Each following certificate MUST directly certify the one preceding it. Refer to Appendix Error! Reference source not found.
If the Peer Key Identifier field was present in the preceding request, then this field SHOULD NOT be present.

	Encrypted AuthResp Data
	No
	E (PuKeyD , AuthRespData) where AuthRespData = RNS | Version | Selected Algorithms | H(Supported Algorithms)
RNS is a random number generated by the SRM Agent.
Version is copied from the Version field in the SrmHelloRequest.

Selected Algorithms specifies the cryptographic algorithms selected by the SRM Agent.
H(Supported Algorithms) is the hash, using the selected hash algorithm, of the Supported Algorithms field in the AuthenticationRequest.

AuthRespData is encrypted with the Device’s public key (PuKeyD) under the trust anchor specified in the AuthenticationRequest.

Table 6: Status Values for AuthenticationResponse
	Value
	Description

	Success
	The request is successfully handled.

	Trust Anchor Not Supported
	Trust Anchor in the request is not supported by the SRM Agent

	Device Certificate Chain Verification Failed
	The SRM Agent fails to verify the Device Certificate Chain.

	Unknown Error
	Other errors

Upon receiving the AuthenticationResponse and Status is Success, the DRM Agent verifies the SRM Certificate Chain, if the certificate chain is present. If the DRM Agent did not send a Peer Key Identifier in the AuthenticationRequest and the certificate chain is not present, then the DRM Agent MUST terminate communications with the SRM. After the verification, the DRM Agent decrypts RNS, Version, Selected Algorithms and H(Supported Algorithms) with the Device’s private key (under the trust anchor sent in the AuthenticationRequest).
The DRM Agent compares Version to the Version field sent in the SrmHelloRequest, and validates that it supports the Selected Algorithms. If the Selected Algorithms are not supported, then the DRM Agent MUST terminate communications with the SRM. Otherwise, using the selected hash algorithm, the DRM Agent validates the H(Supported Algorithms). If valid, the DRM Agent continues with section 5.7.2.2.
5.7.2.1.2 Format of Messages
The message format (MessageBody) of the AuthenticationRequest is specified as follows. The messageType and protectedFlag are set to ‘0’.

DeviceCertificateChain() {

 CertificateChain() //Defined in Appendix B
}
AlgorithmList(){
 //If number of algorithms is zero,

 //then the default algorithm is used
 numOfAlgorithms
8
uimsbf

 for(i=0; i < numOfAlgorithms; i++){

 Algorithm() //Defined in Appendix B
 }

}
SupportedAlgorithms() {
 //Hash algorithms
 AlgorithmList()
 //HMAC algorithms
 AlgorithmList()

 //Symmetric algorithms
 AlgorithmList()

 //Asymmetric algorithms
 AlgorithmList()

 //KDF algorithms
 AlgorithmList()
}

MessageBody() {

 TrustAnchor() //Defined in section 5.7.1.2

 DeviceCertificateChain()
 PeerKeyIdentifier() //Defined in section 5.7.1.2

 SupportedAlgorithms()

}

The fields are defined as follows:

·
·
· TrustAnchor – Trust Anchor field in Table 4
· DeviceCertificateChain – Device Certificate Chain field in Table 4
· PeerKeyIdentifier – Peer Key Identifier field in Table 4
· SupportedAlgorithms – Supported Algorithms field in Table 4
The message format (MessageBody) of the AuthenticationResponse is specified as follows. The messageType is set to ‘1’ and the protectedFlag is set to ‘0’.

SelectedAlgorithms() {

 //Hash algorithms

 AlgorithmList()

 //HMAC algorithms

 AlgorithmList()

 //Symmetric algorithms

 AlgorithmList()

 //Asymmetric algorithms

 AlgorithmList()

 //KDF algorithms

 AlgorithmList()

}

HashOfSupportedAlgorithms() {
 //Hash of SupportedAlgorithms from the

 //AuthenticationRequest, using the

 //hash from SelectedAlgorithms

 Hash() //Defined in Appendix B

}

SrmCertificateChain() {

 CertificateChain()

}

AuthRespData() {

 RandomNumber()

 Version()
 SelectedAlgorithms()

 HashOfSupportedAlgorithms()

}

EncryptAuthRespData() {
 //Contains the encrypted AuthRespData
 EncryptedData()
}

MessageBody() {

 status

16
uimsbf

 if (status == 0) {

 SrmCertificateChain()

 EncryptedAuthRespData()

 }

}

The fields are defined as follows:

· AuthRespData – AuthRespData value of Encrypted AuthResp Data parameter in Table 5
·
·
· RandomNumber – RNS value of Encrypted AuthResp Data parameter in Table 5
· Version –Version value of Encrypted AuthResp Data parameter in Table 5
·
· SelectedAlgorithms – Selected Algorithms value of Encrypted AuthResp Data parameter in Table 5
· HashOfSupportedAlgorithms – H(Supported Algorithms) value of Encrypted AuthResp Data parameter in Table 6
· status - Status field in Table 5.
· SrmCertificateChain – SRM Certificate Chain field in Table 5.
· EncryptedAuthRespData – Encrypted AuthResp Data field in Table 5.
5.7.2.1.3 Exception Handling

There may be an unexpected exception during the Authentication Message processing as specified in section Error! Reference source not found.. If the DRM Agent fails to receive the response, finds an error by referring to the Status, fails to verify the SRM Certificate Chain, or fails to decrypt the Encrypted AuthResp Data, then the DRM Agent regards it as an exception and terminates communication with the SRM Agent. The user may be informed of this exception.

5.7.2.2 Key Exchange
This step performs the key exchange and key confirmation.

5.7.2.2.1 Description of Messages
The DRM Agent generates a random number (RND), and encrypts it with the SRM’s public key. At this step, the DRM Agent also encrypts the hash of the SRM Random Number (RNS) received in the AuthenticationResponse.

Then the DRM Agent sends the KeyExchangeRequest to exchange keys with the SRM Agent. The fields of the request are defined in Table 7.
Table 7: Fields of KeyExchangeRequest
	Field
	Protection Requirement
	Description

	Encrypted KeyEx Data
	No
	E (PuKeyS , KeyExData) where KeyExData = RND | H(RNS) | Selected Version
Selected Version is identical to the Selected Version received by the DRM Agent in the SrmHelloResponse
KeyExData is encrypted with the SRM’s public key (PuKeyS) under the trust anchor sent in the AuthenticationRequest.

Upon receiving the KeyExchangeRequest, the SRM Agent decrypts Encrypted KeyExData with the SRM’s private key (under the trust anchor sent in the AuthenticationRequest).

The SRM Agent compares the decrypted H(RNS) to the hash of the random number (RNS) that the SRM Agent sent in the AuthenticationResponse. The hash is computed using the negociated algorithm. The SRM Agent also compares the decrypted Selected Version to the Selected Version field sent in the HelloResponse.

After this action, the SRM Agent sends the KeyExchangeResponse to carry the result of the action. The fields of the response are defined in Table 8.
Table 8: Fields of KeyExchangeResponse
	Field
	Protection Requirement
	Description

	Status
	No
	This field indicates the result of processing KeyExchangeRequest. The Status values are specified in Table 9.

If the Status contains any error, only this field is present in the KeyExchangeResponse.

	Hash Of RanNum Data
	No
	H(RanNumData) where RanNumData = RND | RNS. RanNumData is hashed by the selected hash algorithm.

Table 9: Status of Key Exchange Message
	Value
	Description

	Success
	The request was processed successfully.

	Field Decryption Failed
	The SRM Agent fails to decrypt the encrypted fields.

	SRM Random Number Mismatched
	The SRM Random Number from the DRM Agent is not identical to its original value in the SRM.

	Version Mismatched
	The Selected Version received in KeyExchagenRequest is not matched with the original value sent in the SrmHelloResponse.

	Unknown Error
	Other errors

Upon receiving the KeyExchangeResponse and Status is Success, the DRM Agent confirms whether the hashed Device Random Number (RND) and SRM Random Number (RNS) are matched with the random numbers exchanged in the AuthenticationResponse and KeyExchangeRequest.

After the key exchange and key confirmation are successfully finished, the DRM Agent and SRM Agent generate security elements by using the Key Derivation Function as specified in section 5.7.3.1.

5.7.2.2.2 Format of Messages
The message format (MessageBody) of the KeyExchangeRequest is specified as follows. The messageType and protectedFlag are set to ‘0’.
DeviceRandomNumber() {

 RandomNumber()

}

SrmRandomNumber() {

 RandomNumber()

}

HashOfSrmRandomNumber() {

 Hash()

}

KeyExData() {

 DeviceRandomNumber()

 HashOfSrmRandomNumber()

 SelectedVersion()

}

EncryptedKeyExData() {

 EncryptedData()

}

MessageBody() {

 EncryptedKeyExData()

}

The fields are defined as follows:

· KeyExData – KeyExData value of Encrypted KeyEx Data field in Table 7
· DeviceRandomNumber – RND value of Encrypted KeyEx Data field in Table 7
· SrmRandomNumber – RNS value of Encrypted KeyEx Data field in Table 7
· Selected Version – Selected Version value of Encrypted KeyEx Data field in Table 7
· HashOfSrmRandomNumber – Hash of SrmRandomNumber, using the selected hash algorithm.
· EncryptedKeyExData – Encrypted KeyExData with the SRM’s public key
The message format (MessageBody) of the KeyExchangeResponse is specified as follows. The messageType is set to ‘1’ and the protectedFlag is set to ‘0’.

RanNumData() {

 DeviceRandomNumber()

 SrmRandomNumber()

}

HashOfRanNumData() {

 Hash()

}

MessageBody() {

 status

16
uimsbf

 if (status == 0) {

 HashOfRanNumData()

 }

}

The fields are defined as follows:

· RanNumData – RanNumData value of Hashed RanNum Data field in Table 8.
· DeviceRandomNumber – RND value of Hashed RanNum Data field in Table 8.
· SrmRandomNumber – RNS value of Hashed RanNum Data field in Table 8.
· status - Status field in Table 8.
· HashOfRanNumData – Hash of RanNumData field in Table 8, using the selected hash algorithm.
5.7.2.2.3 Exception Handling

There may be an unexpected exception during the Key Exchange Message processing as specified in section Error! Reference source not found.. If the DRM Agent fails to receive the response, finds an error by referring to the Status, or fails to verify the random numbers, then the DRM Agent regards it as an exception and terminates communication with the SRM Agent. The user may be informed of this exception.
5.7.3 Secure Authenticated Channel

Whenever sensitive information, such as cryptographic keys, needs to be transferred between the DRM Agent and SRM Agent, a Secure Authenticated Channel (SAC) needs to be used. A SAC is a logical channel that provides message integrity and optionally message confidentiality. A SAC needs to be established using credentials from a trust model under which the sensitive information was created. Therefore, if the Device and SRM support than one trust model in common, then multiple Secure Authenticated Channels can be established by repeating the MAKE process.
5.7.3.1 Key Derivation Function
After the MAKE process is completed, both the DRM Agent and the SRM Agent have mutually authenticated each other and have exchanged secret random numbers that are used in generating key materials (Session Key and MAC Key). The keys are used in the SAC.
The Key Derivation Function (KDF) is the same as the KDF specified in section 7.1.2 of the OMA DRM v2.0 specification [OMADRMv2]. A trust model may use a different KDF. The following key material in Table 10 is derived from the KDF. When using the KDF, let Z = RND | RNS, otherInfo = Supported Algorithms | Selected Algorithms, and kLen is 36 bytes (the total size of the key material in Table 10).

Table 10: Key Materials
	Field
	Size
	Description
	Nomenclature

	MAC Key
	160 bits
	HMAC-SHA1 Key: The first 20 octets of T as the derived key
	MK0

	Session Key
	128 bits
	AES Key: The next 16 octets of T as the derived key
	SK

	
	
	
	

By default, the DRM Agent and SRM Agent support the AES128-CBC mode. The padding is performed as specified in [RFC2630].
5.7.3.8 SAC Context

Once a SAC has been established, a logical SAC context will exist. The context consists of the following information:

· MAC Key – this key gets updated as specified in section 5.7.3.4.

· Session Key – this key does not change for the duration of the SAC.

· Selected Algorithms – the algorithms that were negotiated during the MAKE process.

· Trust Anchor – the trust anchor under which the SAC was established. Used when multiple SACs are available and the Device wants to switch to a different SAC as specified in section 5.7.3.5.

· Entity ID - for the Device, this contains the SRM’s ID (under the trust anchor); for the SRM, this contains the Device’s ID (under the trust anchor).

The SAC context exists until a new SAC with the same Device and SRM, under the same trust model, is established. By using the SRM Hello message pair, a DRM Agent can determine if it communicating with the same SRM. If the DRM Agent reuses the SAC context, sends a secure message and gets back a Parameter Integrity Verification Failed error, this probably indicates that the SAC context is no longer valid. The DRM Agent SHOULD establish a new SAC.
5.7.3.9 Secure Message

Once the SAC has been established, two types of security are provided. The first type is integrity protection and the other type is confidentiality protection. The integrity protection is performed by generating HMAC (using the negotiated HMAC algorithm) over fields using the current MAC Key (MK) in the SAC Context. The confidentiality protection is performed by encrypting fields using the current Session Key (SK) and the negociated symmetric encryption algorithm.
5.7.3.10 Message Replay Protection

Replay protection is provided by using a different MAC Key for every request or response message that requires integrity protection. After the SRM Agent sends a response, if the request or the response required integrity protection, then the SRM Agent MUST generate a new MK. After the DRM Agent receives a response, if the request or the response required integrity protection, the DRM Agent MUST generate a new MK before sending a response needing integrity protection. Using the SAC Context, a new MK is generated as follows:

MKi+1 = H(MKi), where H is the negociated hashing algorithm.

5.7.3.11 Changing Secure Channels

The DRM Agent changes to a different SAC as illustrated in the following Figure:

[image: image3.wmf]
Figure 3, Sequence Diagram – Change SAC
If an SRM supports multiple trust models, then the SRM MAY implement the Change SAC message pair. If this message pair is supported, this is indicated in the SrmHelloResponse (see section 5.7.1). If this message pair is not supported, then the DRM Agent MUST use the MAKE process to change to a different SAC. Note that the DRM Agent can use the SRM Hello message pair to determine if it communicating with the same SRM.

5.7.3.11.1 Description of Messages
If the SRM support multiple trust models and the DRM Agent has established multiple SACs (as described in section 5.7.2), the DRM Agent can send the ChangeSacRequest so that the SRM Agent can change to a different SAC. The fields of the request are defined in Table 7.
Table 8: ChangeSacRequest Fields
	Field
	Protection Requirement
	Description

	Trust Anchor
	No
	The Trust Anchor under which a SAC was established.

Upon receiving the ChangeSacRequest, the SRM Agent checks that it has established a SAC under the specified trust anchor.
The SRM Agent sends the ChangeSacResponse to carry the result of the processing the request. Upon sending the ChangeSacResponse and if the Status is Success, the SRM Agent MUST change to the SAC identified by the trust anchor and start using that SAC context. The fields of the response are defined in Table 9.
Table 9: ChangeSacResponse Fields
	Field
	Protection Requirement
	Description

	Status
	No
	This field indicates the result of processing the ChangeSacRequest. The Status value is specified in Table 11.

Table 10: Status Values for ChangeSacResponse
	Value
	Description

	Success
	The request was successfully handled.

	SAC Not Established
	A SAC under the trust anchor has not been established.

	Request Not Supported
	The SRM only supports one trust model and hence does not support this request.

	Unknown Error
	Other errors

Upon receiving the ChangeSacResponse and Status is Success, the DRM Agent MUST change to the SAC and start using that SAC context.

5.7.3.11.2 Formats of Messages
The message format (MessageBody) of the ChangeSacRequest is specified as follows.
MessageBody() {

 TrustAnchor()

}

The fields are defined as follows:

· TrustAnchor – the Trust Anchor field in Table 8.
The message format (MessageBody) of the ChangeSacResponse is specified as follows.
MessageBody() {

 Status()
}

The fields are defined as follows:

· Status – Status field in Table 10.
5.7.3.11.3 Exception Handling

There may be an unexpected exception during the Change SAC message pair processing as specified in section Error! Reference source not found.. If the DRM Agent fails to receive the response or finds an Unknown Error by referring to the Status, then the DRM Agent regards it as an exception and terminates communication by discarding any existing SAC context with the SRM Agent. The user may be informed of this exception.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2007 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 1)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20070101-I]

© 2007 Open Mobile Alliance Ltd. All Rights Reserved.
Page 18 (of 25)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20070101-I]

_1253431465.vsd
�

�

SrmHelloRequest

SrmHelloResponse

DRM Agent

SRM Agent

_1253432644.vsd
DRM Agent

SRM Agent

ChangeSacRequest

ChangeSacResponse

_1237721196.vsd
�

�

DRM Agent

SRM Agent

AuthenticationRequest

KeyExchangeRequest

AuthenticationResponse

KeyExchangeResponse

