Doc# OMA-DRM-2008-0059-CR_Pull_Rights_operation-AramsComments.doc[image: image3.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Doc# OMA-DRM-2008-0059-CR_Pull_Rights_operation-AramsComments.doc
Change Request

Change Request

	Title:
	PULL Rights operation
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA DRM

	Doc to Change:
	OMA-TS-SCE_A2A-V1_0_0-20080201-D

	Submission Date:
	20 Feb 2008

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
3: Clerical

	Source:
	Zhipeng Zhou, Huawei, zhouzp@zhouzp.com
Jun Ma, China Mobile, majun@chinamobile.com

	Replaces:
	n/a

1 Reason for Change

This CR provides detailed definition of Rights Pull operation and the description on the Rules for Obtaining User Consent by reference of relevant part in DRM2.0(section 5.1.8) and DRM2.1(section 5.1.13).
R01:adds a message exchange (see GetROConfirm) and gives definitions for the message bodies in this version.
2 Impact on Backward Compatibility

No impact on backward compatibility is anticipated.

3 Impact on Other Specifications

No impact on other specifications is anticipated.

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The authors request that the CR be agreed and incorporated into the current SCE LRM Technical Specification draft.

6 Detailed Change Proposal

Change 1: Add PULL protocol and subsequently the WhiteList mechanism

9.13 PULL Rights
The Pull RO operation is used by the DRM Requestor to get partial or entire Rights for a Rights Object from a DRM Agent. This operation MUST take place using a SAC. This operation MUST NOT be performed if the DRM Requestor’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set or the DRM Agent’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set (see xx). The following figure illustrates the Pull RO operation.

[image: image2.emf]DRM

Requestor

DRM Agent

GetRORequest

GetROResponse

GetROConfirmRequest

GetROConfirmResponse

Figure 2: Pull RO Operation
In order for this operation to take place, the following MUST be performed:

1. The DRM Requestor generates GetRoRequest with the information for the Rights Object (or portion) to be Moved from the DRM Agent. For stateful RO, the stateInformation element is needed in GetRoRequest to indicate the Rights that the DRM Requestor wants to be Moved.

2. The DRM Requestor sends the GetRoRequest to the DRM Agent, applying the replay protection mechanism described in section XX.
3. The DRM Agent processes the request as follows:

a. It processes the request for replay as described in sectionXX.

b. It validates the fields of the GetRoRequest. If any field is invalid, it sets GetRoResponse.Status to InvalidField and proceeds to step 4.
c. Check if the Rights Object with the ID that identical to the RoId in GetRoRequest does not exist in the DRM Agent, it sets GetRoResponse.Status to RONotExist and proceeds to step 4.
d. Check if the Rights Object requested does not have a <move> permission, it sets GetRoResponse.Status to NoMovePermission and proceeds to step 4.
e. If the <move> permission does not have a <system> constraint, proceeds to step 3.g.
f. Check the <context> child element(s) of the <system> constraint. If no <context> child element identifies the SCE A2A protocol, sets GetRoResponse.Status to SystemNotMatched
g. If the <move> permission does not have a <count> constraint, proceeds to step 3.k.
h. If the current move count (in the Rights Object’s state information) is zero, sets GetRoResponse.Status to NotEnoughRights and proceeds to step 4.
i. Checks if it does not have enough remaining Rights for the request, it sets GetRoResponse.Status to NotEnoughRights and proceeds to step 4.
j. If Rights Object is stateless, marks the Rights Object being Moved as unusable. If the Rights Object is stateful and just a portion of the Rights Object is being Moved (Partial Rights, see sectionXX), then that portion being Moved is marked as usuable.
k. It sets GetRoResponse.Status to Success.
4. The DRM Agent sends the GetRoResponse to the DRM Requestor, applying the replay protection mechanism described in sectionXX.

5. The DRM Requestor processes the response as follows:

a. It processes the response for replay as described in sectionXX.
b. If GetRoResponse.Status is not Success, it determines if it can restart the Pull RO operation at step 1. If it does not restart the operation, terminates the Pull RO operation.
c. It verifies the signature on the Rights Object. If any of the verifications fails, it gives up the Rights received. If verification is successful, proceeds to step 5.e.
d. It sets GetRoConfirmRequest.GetRoProcessFlag to 0, proceeds to step 6.
e. At this point, the requested Rights is Moved to the DRM Requestor. The DRM Requestor sets GetRoConfirmRequest.GetRoProcessFlag to 1.
6. It sends the GetRoConfirmRequest to DRM Agent, applying the replay protection mechanism described in sectionXX.
7. The DRM Agent processes the request as follows:
a. It processes the response for replay as described in sectionXX.
b. It validates the fields of the GetRoConfirmRequest. If any field is invalid, it sets GetRoConfirmResponse.Status to InvalidField and proceeds to step 8.
c. If GetRoConfirmRequest.GetRoProcessFlag is equal to 0, it re-enables the Rights Object (or portion) that has been marked as unusable in Step 3, and proceeds to step 7.e.
d. It deletes the Rights Object (or portion) that was Moved to the DRM Requestor
e. It sets GetRoConfirmResponse.Status to Success
8. It sends the GetRoConfirmResponse to DRM Agent, applying the replay protection mechanism described in sectionXX..
9. The DRM Requestor processes the response as follows:
a. It processes the response for replay as described in sectionXX.
b. If GetRoConfirmResponse.Status is not Success, it determines if it proceeds to step 6. If it does not, terminates the Pull RO operation.
c. At this point the Pull RO operation has successfully completed.
9.13.3 GetRoRequest

A GetRoRequest is sent as a protected request and its body is defined as follows:

Body(){
 stateInfoPresent
1
bslbf
 rfu
7
bslbf
 RoAlias()
 RoId ()

 if(stateInfoPresent){
 StateInformation()
 }

}

The fields are defined as follows:
· stateInfoPresent – this is a boolean field, that if true, indicates that the StateInformation field is present.

· rfu – this is a 6 bit field that is reserved for future use. When sending the request, MUST be set to 0. When processing this field, its value MUST be ignored.

· RoAlias – this field contains an optional alias for the Rights Object. It is of type String80 which is defined in section XX.
9.13.4 GetRoResponse

A GetRoResponse is sent as a protected response. The following table lists the valid Status values for this response.

Table: GetRoResponse Status Values
	Status Values

	Success

	NoMovePermission

	RONotExist

	InvalidField

	NotEnoughRights

	SystemNotMatched

A GetRoResponse is sent as a protected request and its body is defined as follows:
Body(){
 RoId ()
 RightsObjectContainer()
 EncryptedRek()

}
The fields are defined as follows:
· RightsObjectContainer – this field contains a Rights Object as defined in section XX.
· EncryptedRek – this field contains the encrypted REK for the Rights Object. The REK is encrypted using the negociated algorithm. The field is of type EncryptedData which is defined in section XX.

If the status value in GetRoResponse is ‘Success’ and both the RO verification and REK decryption are well, DRM Requestor SHALL obtain the Rights permission stated as the StateInformation in GetRoRequest.

9.13.5 GetRoConfirmRequest
A GetRoConfirmRequest is sent as a protected request and its body is defined as follows:
Body(){

GetRoProcessFlag
8
uimsbf

}
The field is defined as follows:
· GetRoProcessFlag – this field contains an 8 bit unsigned integer that indicates whether the Rights gained by the GetRoResponse have been verified successfully.
9.13.6 GetRoConfirmResponse
A GetRoConfirmResponse is sent as a protected response. The following table lists the valid Status values for this response.

Table: GetRoConfirmResponse Status Values
	Status Values

	Success

	InvalidField

A GetRoConfirmResponse does not have a body.
9.14 Rules for Obtaining User Consent

In PULL operation, the transfer of Rights SHALL not be done without permission of the User of the DRM Agent.

 Some explicit user interactions may not be necessary if the DRM Agent implements a User confirmation Whitelist that contains the fully qualified identities of authorised DRM Requestor and the ROIDs of the Rights that the user of the DRM Agent shares.

Before transferring Rights to the DRM Requestor, the DRM Agent MUST obtain user consent; however, when the DRM Agent receives the “GetRORequest” message from a DRM Requestor and both the DRM Requestor’s ID and the requested ROID are in the User Consent Whitelist, the DRM Agent MAY automatically decide whether existing Rights is enough for the request If so, the DRM Agent returns success status in the “GetROResponse” message and then starts the Rights transfer to the DRM Requestor without obtaining explicit user consent.
The User Consent Whitelist could only be set by the User of the DRM Agent’s Device. The User Consent Whitelist could be updated whenever necessary including adding new Device IDs,or ROIDs into the Whitelist, or deleting Device IDs or ROIDs from the Whitelist. Devices listed in the Whitelist SHALL be SCE Devices.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 5)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 5)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

_1265010261.vsd
�

�

DRM Requestor�

DRM Agent�

GetRORequest

GetROResponse

_1265537998.vsd
�

�

DRM Requestor�

DRM Agent�

GetRORequest

GetROResponse

GetROConfirmRequest

GetROConfirmResponse

