Doc# OMA-DRM-2008-0127R01-CR_SCR_A2A_TS_Proposed_Changes_to_Section_6.doc[image: image1.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Doc# OMA-DRM-2008-0127R01-CR_SCR_A2A_TS_Proposed_Changes_to_Section_6.doc
Change Request

Change Request

	Title:
	SCR A2A TS Proposed Changes to Section 6
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	DRM

	Doc to Change:
	OMA-TS-SCE_A2A-V1_0_0-20080324-D.doc

	Submission Date:
	1 May 2008

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Aram Perez, Qualcomm, aramp@qualcomm.com
Bert Greevenbosch, Fraunhofer IIS, bert.greevenbosch@iis.fraunhofer.de

Mercè Serra, Fraunhofer IIS, merce.serra@iis.fraunhofer.de

Yi Cheng, Ericsson, yi.cheng@ericsson.com

	Replaces:
	n/a

1 Reason for Change

This CR addresses SCE A2A CONR comments QC0015, E005, E010, E018, F006, F007, F008, F009, F010, F011 and F022.

2 Impact on Backward Compatibility

None.

3 Impact on Other Specifications

None.

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Qualcomm, Fraunhofer and Ericsson recommend that the DRM group approve this CR.

6 Detailed Change Proposal

Change 1: Change Section 6 as follows:

6. The A2A Protocol

The A2A interface uses a client-server communications model (similar to the Internet Web). This specification defines a protocol using a set of requests and responses between a DRM Requestor (the client) and a DRM Agent (the server). A DRM Requestor sends a request to the DRM Agent. The DRM Agent processes the request and sends a response to the DRM Requestor. Once a DRM Requestor sends a request, it waits for a response from the DRM Agent before sending another request.

All OMA Devices supporting the A2A Interface MUST implement both the DRM Agent and the DRM Requestor functionality. The Device is not required to function as both a DRM Agent and a DRM Requestor simultaneously.

How the requests and responses are transported between the DRM Requestor and the DRM Agent are outside the scope of this specification. Potential transports include, but are not limited to, USB, Bluetooth, IrDA and WiFi.

Two Devices must discover each other before any A2A functionality can take place. It is during the discovery phase that the roles of DRM Requestor and DRM Agent are assigned. How the discovery is performed and how the roles are assigned are outside the scope of specification. Potential discovery mechanisms include, but are not limited to, [UPnP] and [Bonjour].

6.1 Messages, Operations and Transactions

A message is either a request or a response. The sequence of sending a request and getting the response is called an operation. Certain A2A functionality requires two or more operations. This set of operations is called a transaction. Certain implementations of a DRM Agent MAY require that transactions be performed as defined in this document, i.e. that the set of operations be done in sequence. Other implementations MAY allow the interleaving of operations that are not part of a transaction.

·
·
The operations and transactions are described in section 8. Whenever an operation or a transaction is not successfully completed, the User MAY be informed. Error recovery is described in section 6.3.
6.2 Message Syntax

The syntax for all A2A messages is defined in the following sub-sections.

6.2.1 Request Syntax

All A2A requests follow one of two generic syntaxes:

· Plain request – this type of request does not require any integrity protection.

· Protected request – this type of request requires integrity protection.

The syntax for a plain request is defined as follows:

A2ARequest(){

 MessageId()

 Body()
 ExtensionsContainer()
}

The fields are defined as follows:

· MessageId – this field identifies the request. The list of valid message identifiers is described in section 7.2.3.

· Body – this field contains the body of the request. There is not just one definition of Body, but each request defined in section Error! Reference source not found. defines the data structure for this field. Some requests may have an empty Body field.

· ExtensionsContainer – this field allows for extending a request in future revisions of this specification. This field is described in section 6.2.5
.

The syntax for a protected request is defined as follows:

A2AProtectedRequest(){
 MessageId()
 replayCounter
32
uimsbf

 Body()
 ExtensionsContainer()
 Hmac()

}

The fields are defined as follows:

· MessageId – this field identifies the request. The list of valid message identifiers is described in section 6.2.3.

· replayCounter – this field constains a 32 bit unsigned integer that is used to provide replay protection. The use of this field is described in section Error! Reference source not found..

· Body – this field contains the body of the request. There is not just one definition of Body, but each request defined in section Error! Reference source not found. defines the data structure for this field. Some requests may have an empty Body field.
· ExtensionsContainer – this field allows for extending a request in future revisions of this specification. This field is described in section 6.2.5.

· Hmac – this field contains an HMAC value that provides integrity over the replayCounter and the A2ARequest fields. This field is defined in section Error! Reference source not found..

An A2AProtectedRequest MUST be sent using a Secure Authenticated Channel (see section Error! Reference source not found.).
Example requests are provided in Appendix C.
6.2.2 Response Syntax

All A2A responses follow one of two generic syntaxes:

· Plain response – this type of response does not require any integrity protection.

· Protected response – this type of response requires integrity protection.

The syntax for a plain response is defined as follows:

A2AResponse(){

 MessageId()
 Status()
 if(Status == 0){

 Body()
 }
 ExtensionsContainer()
}

The fields are defined as follows:

· MessageId – this field identifies the response. The list of valid message identifiers is described in section 7.2.3.

· Status – this field contains the result of processing a request. The list of allowed values are described in section 7.2.4.

· Body – this field contains the body of the response. There is not just one definition of Body but each response defined in section Error! Reference source not found. defines the data structure for this field. This field will exist only if Status is set to Success (see section 7.2.4). Some responses may have an empty Body field.
· ExtensionsContainer – this field allows for extending a response in future revisions of this specification. This field is defined in section 6.2.5.
The syntax for a protected response is defined as follows:

A2AProtectedResponse(){
 MessageId()
 replayCounter
32
uimsbf

 Status()

 if(Status == 0){
 Body()
 }
 ExtensionsContainer()
 Hmac()

}

The fields are defined as follows:

· MessageId – this field identifies the request. The list of valid message identifiers is described in section 6.2.3.

· replayCounter – this field constains a 32 bit unsigned integer that is used to provide replay protection. The use of this field is described in section Error! Reference source not found..

· Status – this field contains the result of processing a request. The list of allowed values are described in section 6.2.4.

· Body – this field contains the body of the response. There is not just one definition of Body but each response defined in section Error! Reference source not found. defines the data structure for this field. Some responses may have an empty Body field. This field will exist only if Status is set to Success (see section 6.2.4).

· ExtensionsContainer – this field allows for extending a response in future revisions of this specification. This field is defined in section 6.2.5.

·
· Hmac – this field contains an HMAC value that provides integrity over the replayCounter and the A2AResponse fields. This field is defined in section Error! Reference source not found..

An A2AProtectedResponse MUST be sent using a Secure Authenticated Channel (see section Error! Reference source not found.).
Example responses are provided in Appendix C.
6.2.3 Message Identifiers

Each A2A message, whether a request or response, is uniquely identified via the MessageId field. This field is defined as follows:

MessageId(){
 messageId
8
uimsbf
}

The messageId field is an 8 bit, unsigned integer that contains the message identifier. The following table lists all the identifiers for messages defined in this version of this specification.

Table 1: Message Identifiers

	Value
	Description

	0
	A2A Hello Request

	1
	A2A Hello Response

	2
	Authentication Request

	3
	Authentication Response

	4
	Key Exchange Request

	5
	Key Exchange Response

	6
	Change SAC Request

	7
	Change SAC Response

	8
	CRL Query Request

	9
	CRL Query Response

	10
	Put CRL Request

	11
	Put CRL Response

	12
	Get CRL Request

	13
	Get CRL Response

	14
	Put RO Request

	15
	Put RO Response

	16
	Put REK Request

	17
	Put REK Response

	18
	Share RO Request

	19
	Share RO Response

	20
	Lend RO Request

	21
	Lend RO Response

	22
	Lend Release Request

	23
	Lend Release Response

	24
	Render Request

	25
	Render Response

	26
	Copy RO Request

	27
	Copy RO Response

	28 – 255
	RFU

By definition, a DRM/Render Agent only receives requests. If it receives a message identified as a response or identified as “RFU”, the DRM/Render Agent SHALL send an A2AResponse with Status set to RequestNotSupported (see section 7.2.4).

By definition, a DRM Requestor only receives responses. If it receives a message identified as a request or identified as “RFU”, the DRM Requestor SHALL treat the message as an error to the operation or transaction.

6.2.4 Status

The Status field of a response indicates the result of the DRM Agent processing a request. It is defined as follows:

Status(){
 status
8
uimsbf
}
The following table lists all the values that are valid for this version of this document.

Table 2: Status Values and Names

	Value
	Name
	Description

	0
	Success
	The request was successfully processed.

	1
	TrustAnchorNotSupported
	The trust anchor is not supported.

	2
	CertificateChainVerificationFailed
	The verification of a certificate chain failed.

	3
	FieldDecryptionFailed
	The decryption of a field failed.

	4
	RandomNumberMismatched
	A random number did not match an expected value.

	5
	VersionMismatched
	A version did not match an expected value.

	6
	SACNotEstablished
	A SAC have not been established under the requested trust model.

	7
	OldCrl
	A newly received CRL is older than the current CRL.

	8
	CrlVerificationFailed
	The verification of a CRL failed.

	11
	CrlNotFound
	CRL Not Found

	12
	IntegrityVerificationFailed
	The integrity verification of the request failed.

	13
	NotEnoughSpace
	Not Enough Space

	17
	RequestNotSupported
	The DRM/Render Agent does not support the request.

	18
	RiCertificateChainNotFound
	RI Certificate Chain Not Found

	21
	InvalidField
	The request contains an invalid field.

	22
	UnexpectedRequest
	The request was not expected.

	23
	NoCommonTrustAnchor
	A common trust anchor was not found.

	24
	CrlExpired
	The DRM/Render Agent has an expired CRL.

	25
	DrmRequestorRevoked
	The DRM Requestor is listed on a CRL.

	26
	InvalidRightsObject
	The DRM Agent considers the Rights Object to be invalid.

	27
	UnknownHandle
	The DRM Agent has no knowledge of the handle.

	
	
	

	28 – 255
	RFU
	Reserved For Future Use

6.2.5 Extending a Message

Future specifications MAY use the ExtensionsContainer field to extend messages defined in this document without changing the definitions specified in this document. The ExtensionsContainer is defined as follows:

ExtensionsContainer(){

 nbrOfEntries
8
uimsbf

 for(i = 0; i < nbrOfEntries; i++){

 extensionType
8
uimsbf

 size
16
uimsbf

 Extension()

 }

}

The fields are defined as follows:

· nbrOfEntries – this field contains the number of extensions present in this container as an 8 bit unsigned integer.

· extensionType – this field identifies the extension. This value MUST be unique in the context of a message. There are no extensions defined in this version of this specification.

· size – this field contains the size (or length) of the Extension field in a 16 bit unsigned integer.

· Extension – this field contains the actual extension. The content of this field will depend on the particular extension (as identified by the particular message and extensionType) and will be defined in future versions of this specification.

If a DRM Requestor or a DRM Agent conformant to this specification receives an ExtensionsContainer with one or more Extensions, the DRM Requestor or DRM Agent SHALL ignore the Extensions.
Extensibility in Future Specifications (Informative)

When an extension is specified in a future specification, the extension can either be included in all messages independent of the version of the DRM Requestors and DRM Agents involved or only included when communication between DRM Requestors and DRM Agents of appropriate versions occurs. The decision on when and where a certain extension is to be included will be taken when the new specification is written.

Extensions can be mandated in future specifications. This means DRM Requestors and DRM Agents conformant to those specifications must include the extensions, even though older DRM Requestors and DRM Agents will ignore them. The extensions have to be designed in such a way that this does not open an attack opportunity.

6.3 Error Recovery

Under normal circumstances, a DRM Requestor sends a request to a DRM/Render Agent and a short time later receives a response from the DRM/Render Agent. However, under certain circumstances, the DRM Requestor may not receive a response after sending a request. It is anticipated that a DRM Requestor will time out when waiting for a response. If a response from the DRM/Render Agent is not received within a certain wait period, the DRM Requestor may retry sending the request again, or terminate the operation/transaction and inform the User. This document does not specify the wait period or how many times the DRM Requestor re-sends a request. These are left as implementation choices or may be specified by a trust model.
Change 2: Insert a new Appendix C as follows:

Appendix C. Example A2A Messages
(Informative)
Below are some sample A2A Messages. The last row contains the values (in hex). The second to the last row contains the offset (in decimal) from the beginning of the message.
The following is an example A2AHelloRequest:

	A2ARequest

	MessageId
	Body
	ExtensionsContainer

	
	Version
	TrustAnchorAndEntityIdPairList
	nbrOfEntries

	
	
	nbrOfEntries
	TrustAnchor
	EntityId
	

	
	
	
	length
	octets
	length
	octets
	

	0
	1
	2
	3
	4 – 23
	24
	25 – 44
	45

	0x00
	0x10
	0x01
	0x14
	hash
	0x14
	hash
	0x00

The following is an example CrlQueryRequest:

	A2ARequest

	MessageId
	ExtensionsContainer

	
	nbrOfEntries

	0
	5

	0x08
	0x00

The following is an example LendReleaseRequest:

	A2AProtectedRequest

	MessageId
	replayCounter
	Body
	ExtensionsContainer
	Hmac

	
	
	lendingHandle
	nbrOfEntries
	

	0
	1 – 4
	5 – 8
	9
	10 – 29

	0x14
	0x12345678
	0x98765432
	0x00
	hmac

The following is an example CrlQueryResponse with Status = Success:

	A2AResponse

	MessageId
	Status
	Body
	ExtensionsContainer

	
	
	CrlIdList
	

	
	
	nbrOfEntries
	CrlIssuerId
	CrlNumber
	

	
	
	
	
	length
	octets
	nbrOfEntries

	0
	1
	2
	3 – 22
	23
	24 – 25
	26

	0x09
	0x00
	0x01
	hash
	0x02
	0x1234
	0x00

The following is an example PutCrlResponse with Status = Success:

	A2AResponse

	MessageId
	Status
	ExtensionsContainer

	
	
	nbrOfEntries

	0
	1
	2

	0x0B
	0x00
	0x00

The following is an example A2AHelloResponse with Status = InvalidField:

	A2AResponse

	MessageId
	Status
	ExtensionsContainer

	
	
	nbrOfEntries

	0
	1
	5

	0x01
	0x15
	0x00

The following is an example LendReleaseResponse with Status = Success:

	A2AProtectedResponse

	MessageId
	replayCounter
	Status
	ExtensionsContainer
	Hmac

	
	
	
	nbrOfEntries
	

	0
	1 – 4
	5
	6
	7 – 26

	0x0B
	0x23455432
	0x00
	0x00
	hmac

The following is an example PutRoResponse with Status = InvalidField:

	A2AProtectedResponse

	MessageId
	replayCounter
	Status
	ExtensionsContainer
	Hmac

	
	
	
	nbrOfEntries
	

	0
	1 – 4
	5
	6
	7 – 26

	0x15
	0x34566543
	0x15
	0x00
	hmac

Appendix D. Change History
(Informative)

a. Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No previous version within OMA

b. Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-TS-DRM-SCE-A2A-V1_0_0
	24 Jan 2008
	n/a
	Initial Draft

	
	19 Mar 2008
	5.5, 6.1, 9.7

9.8, 9.9

8.19, 9.7.1
	2nd Draft based on:

 OMA-DRM-2008-0056R04-CR

 OMA-DRM-2008-0065R02-CR

 OMA-DRM-2008-0080R01-CR

	
	24 Mar 2008
	Appendix C

2.1, 3.3, 3.4, 6.4, 9.8-9.13

Appendix B and C
	3rd Draft based on:

 OMA-DRM-2008-0085R01

 OMA-DRM-2008-0106R01

Editorial, swapped Appendix B and C.

	Candidate Version

OMA-xxyyz-V1_0
	dd mmm 2008
	n/a
	Status changed to Candidate by TP

 TP ref # OMA-TP-2003-0abc-CandidateRequest_xxyyz_V1_2

	Draft Version

OMA-xxyyz-V1_2
	dd mmm 2008
	6.8
	Status changed to Draft (demoted) to address important class 1 CR

 OMA-XY-2003-0172-CR_AddSectionOnJellyGoesOnTop

Change 3: Change section 9.3.2 as follows:

9.3.2 ChangeSacResponse

A ChangeSacResponse is sent as a plain response. The following table lists the valid Status values for this response.

Table 3: ChangeSacResponse Status Values
	Status Values

	Success

	InvalidField

	SACNotEstablished

The body of a ChangeSacResponse is empty and is defined as follows:

Body(){

}
Change 4: Change section 9.4.1 as follows:

9.4.1 CrlQueryRequest

A CrlQueryRequest is sent as a plain request. It has an empty body as is defined as follows:

Body(){

}
Change 5: Change section 9.5.2 as follows:

9.5.2 PutCrlResponse

A PutCrlResponse is sent as a plain response. The following table lists the valid Status values for this response.

Table 4: PutCrlResponse Status Values
	Status Values

	Success

	InvalidField

	CrlVerificationFailed

The body of a PutCrlResponse is empty and is defined as follows:

Body(){

}

Change 6: Change section 9.7.2 as follows:

9.7.2 PutRoResponse

A PutRoResponse is sent as a protected response. The following table lists the valid Status values for this response.

Table 5: PutRoResponse Status Values
	Status Values

	Success

	InvalidField

	InvalidRightsObject

	NotEnoughSpace

	NotADomainMember

The body of a PutRoResponse is empty and is defined as follows:

Body(){

}

Change 7: Change section 9.7.4 as follows:

9.7.4 PutRekResponse

A PutRekResponse is sent as a protected response. The following table lists the valid Status values for this response.

Table 6: PutRoResponse Status Values
	Status Values

	Success

	InvalidField

	UnknownHandle

The body of a PutRekResponse is empty and is defined as follows:

Body(){

}

Change 8: Change section 9.8.2 as follows:

9.8.2 ShareRoResponse

A ShareRoResponse is sent as a protected response. The following table lists the valid Status values for this response.

Table 7: RenderResponse Status Values
	Status Values

	Success

	InvalidField

	NotEnoughSpace

	IntegrityVerificationFailed

	InvalidRightsObject

 The body of a ShareRoResponse is empty and is defined as follows:

Body(){

}

Change 9: Change section 9.9.2 as follows:

9.9.2 LendRoResponse

A LendRoResponse is sent as a protected response. The following table lists the valid Status values for this response.

Table 8: RenderResponse Status Values
	Status Values

	Success

	InvalidField

	IntegrityVerificationFailed

	InvalidRightsObject

 The body of a LendRoResponse is empty and is defined as follows:

Body(){

}

Change 10: Change section 9.10.2 as follows:

9.10.2 LendReleaseResponse

A LendReleaseResponse is sent as a protected response. The following table lists the valid Status values for this response.

Table 9: RenderResponse Status Values
	Status Values

	Success

	InvalidField

	IntegrityVerificationFailed

	UnknownLendingHandle

 The body of a LendReleaseResponse is empty and is defined as follows:

Body(){

}

Change 11: Change section 9.11.2 as follows:

9.11.2 RenderResponse

A RenderResponse is sent as a protected response. The following table lists the valid Status values for this response.

Table 10: RenderResponse Status Values
	Status Values

	Success

	InvalidField

	IntegrityVerificationFailed

The body of a RenderResponse is empty and is defined as follows:

Body(){

}

�Editor to fix all references.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 13)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 13)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

