Doc# OMA-DRM-2008-0129-CR_SCR_A2A_TS_Proposed_Changes_to_Section_9.2.doc[image: image2.jpg]
Change Request

Doc# OMA-DRM-2008-0129-CR_SCR_A2A_TS_Proposed_Changes_to_Section_9.2.doc
Change Request

Change Request

	Title:
	SCR A2A TS Proposed Changes to Section 9.2
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	DRM

	Doc to Change:
	OMA-TS-SCE_A2A-V1_0_0-20080324-D.doc

	Submission Date:
	7 Apr 2008

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Aram Perez, Qualcomm, aramp@qualcomm.com
Bert Greevenbosch, Fraunhofer IIS, bert.greevenbosch@iis.fraunhofer.de

Mercè Serra, Fraunhofer IIS, merce.serra@iis.fraunhofer.de

Yi Cheng, Ericsson, yi.cheng@ericsson.com

	Replaces:
	n/a

1 Reason for Change

This CR addresses SCE A2A CONR comments QC0025, E011, E013, E015, F024, F025, F026, F027, F028 and F030.

2 Impact on Backward Compatibility

None.

3 Impact on Other Specifications

None.

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Qualcomm recommends that the DRM group approve this CR.

6 Detailed Change Proposal

Change 1: Change Section 9.2 as follows:

9.2 Mutual Authentication and Key Exchange Transaction

The Mutual Authentication and Key Exchange (MAKE) transaction is used to establish a SAC between the DRM Requestor and the DRM/Render Agent. If a DRM Requestor, Render Agent or DRM Agent has an expired CRL, it MUST NOT perform a MAKE transaction. If a DRM Requestor has previously performed a MAKE transaction with the DRM/Render Agent and still has a valid SAC Context (see section 9.2.6), it can reuse the SAC Context and does not need to perform a new MAKE transaction.
The following figure illustrates the MAKE transaction.
[image: image1.png]
Figure 1, MAKE Transaction

The following table lists the operations that cannot be performed without a successful MAKE transaction.

Table 1: Operations Requiring MAKE
	Operation

	Change SAC

	Put RO

	Put REK

	Share RO

	Lend RO

	Copy RO

	

	Render

	

If the MAKE transaction is terminated for any reason, the User MAY be informed.

In order for this transaction to take place, the following MUST be performed:

1. The DRM Requestor checks the validity dates of its current CRL. If the CRL has expired, it MUST NOT perform this transaction. The DRM Requestor could check if the DRM/Render Agent has a current CRL by performing a CRL Query operation.
2. The DRM Requestor generates an AuthenticationRequest using the following:

· A trust anchor from the A2AHelloResponse.Body.TrustAnchorAndEntityIdPairList received from the DRM/Render Agent.

· Its certificate chain under the selected trust anchor (the root certificate is NOT included).

· The security algorithms it supports.

3. The DRM Requestor sends the AuthenticationRequest to the DRM/Render Agent.

4. The DRM/Render Agent processes the request as follows:

a. It validates the fields of the AuthenticationRequest. If any field is invalid, it sets AuthenticationResponse.Status to InvalidField and proceeds to step 5.
b. It checks that it supports the AuthenticationRequest.Body.TrustAnchor. If it does not, it sets AuthenticationResponse.Status to TrustAnchorNotSupported and proceeds to step 5.

c. It verifies the AuthenticationRequest.Body.CertificateChain (the chain MUST end at the root certificate identified by the AuthenticationRequest.Body.TrustAnchor). The verification includes the following:

i. The DRM Requestor’s certificate MUST NOT be expired. If the certificate has expired, the DRM/Render Agent sets AuthenticationResponse.Status to CertificateChainVerificationFailed and proceeds to step 5.
ii. The DRM Requestor’s certificate has an extKeyUsage extension with the oma-kp-sceDrmAgent key purpose. If the certificate does not have the key purpose, the DRM/Render Agent sets AuthenticationResponse.Status to CertificateChainVerificationFailed and proceeds to step 5.

d. It checks the validity dates of its current CRL. If the CRL has expired, it sets AuthenticationResponse.Status to CrlExpired and proceeds to step 5.

e. It checks if the DRM Requestor is listed in its current CRL. If the DRM Requestor is listed, the DRM/Render Agent sets AuthenticationResponse.Status to DrmRequestorRevoked and proceeds to step 5.

f. It sets AuthenticationResponse.Status to Success.

g. It copies its certificate chain under the AuthenticationRequest.Body.TrustAnchor to AuthenticationResponse.Body.CertificateChain.

h. It sets AuthenticationResponseData.RandomNumberS to a freshly generated 16-byte random number.

i. It sets AuthenticationResponseData.Version equal to A2AHelloRequest.Body.Version.

j. It sets AuthenticationResponseData.SelectedAlgorithms to the security algorithms it wants to use from those sent in the AuthenticationRequest.Body.SupportedAlgorithms.

k. It sets AuthenticationResponseData.HashOfSupportedAlgorithms to the hash of the AuthenticationRequest.Body.SupportedAlgorithms field. The algorithm is the selected hash algorithm from AuthenticationResponseData.SelectedAlgorithms.

l. It sets AuthenticationResponse.Body.EncryptedData to the RSA-OAEP encryption of AuthenticationResponseData. The encryption key is the DRM Requestor’s public key from the AuthenticationRequest.Body.CertificateChain.
5. The DRM/Render Agent sends the AuthenticationResponse to the DRM Requestor.

6. The DRM Requestor processes the response as follows:

a. If AuthenticationResponse.Status is not Success, then it determines if it can restart the MAKE transaction at step 2. Otherwise, it terminates the MAKE transaction.

b. It verifies the AuthenticationResponse.Body.CertificateChain (the chain MUST end at the root certificate identified by the AuthenticationRequest.Body.TrustAnchor). Verification includes checking that the entity’s certificate has an extKeyUsage extension with either the oma-kp-sceDrmAgent or oma-kp-sceRenderAgent key purpose. If the verification fails, it terminates the MAKE transaction.

c. It checks if the DRM/Render Agent is in its current CRL. If the DRM/Render Agent is on its current CRL, the DRM Requestor terminates the MAKE transaction. The User MAY be informed that the DRM/Render Agent is revoked.

d. It decrypts AuthenticationResponse.Body.EncryptedData to get an AuthenticationResponseData. To decrypt, it uses the private key that corresponds to the certificate it sent in the AuthenticationRequest. If the decryption fails, it terminates the MAKE transaction.

e. It performs the following:

1. Checks that AuthenticationResponseData.Version matches what it sent in the A2AHelloRequest.Body.Version. If not equal, it terminates the MAKE transaction.

2. Checks that AuthenticationResponseData.HashOfSupportedAlgorithms matches the hash of AuthenticationRequest.Body.SupportedAlgorithms. If the hashes do not match, it terminates the MAKE transaction.

3. Checks that AuthenticationResponseData.SelectedAlgorithms correspond to the algorithms in AuthenticationRequest.Body.SupportedAlgorithms. If they do not, it terminates the MAKE transaction.
f. It sets KeyExchangeData.RandomNumberR to a freshly generated 16-byte random number.

g. It sets KeyExchangeData.HashOfRandomNumberS to the hash of AuthenticationResponseData.RandomNumberS, using the hash specified in AuthenticationResponseData.SelectedAlgorithms.

h. It sets KeyExchangeData.SelectedVersion to a copy of AuthenticationResponseData.Version.

i. It encrypts KeyExchangeData with the public key of the DRM/Render Agent taken from the AuthenticationResponse.CertificateChain. The encrypted KeyExchangeData is put into the KeyExchangeRequest.Body.
7. The DRM Requestor sends the KeyExchangeRequest to the DRM/Render Agent.

8. The DRM/Render Agent processes the request as follows:

a. It validates the fields of the KeyExchangeRequest. If any field is invalid, it sets AuthenticationResponse.Status to InvalidField and proceeds to step 9.
b. It decrypts KeyExchangeRequest.Body with its private key to get KeyExchangeData. If there is an error with the decryption, it sets KeyExchangeResponse.Status to FieldDecryptionFailed and continues with step 9.

c. It checks that KeyExchangeData.HashOfRandomNumberS matches the hash, using the hash algorithm it sent in the AuthenticationResponse, of the RandomNumberS it sent in the AuthenticationResponse. If it does not match, it sets KeyExchangeResponse.Status to RandomNumberMismatched and continues with step 9.

d. It checks that KeyExchangeData.SelectedVersion matches what it sent in the AuthenticationResponse. If it does not match, it sets KeyExchangeResponse.Status to VersionMismatched and continues with step 9.

e. It sets KeyExchangeResponse.Status to Success.

f. It sets KeyExchangeResponse.Body.Hash to the hash, using the selected algorithm, of the concatenation of KeyExchangeData.RandomNumberR and RandomNumberS that it sent in the AuthenticationResponse.
9. The DRM/Render Agent sends the KeyExchangeResponse to the DRM Requestor. After sending the KeyExchangeResponse, the DRM/Render Agent generates the keys for the SAC (see section 6.1.5) and sets up its SAC context (see section 6.1.6).

10. The DRM Requestor processes the response as follows:

a. If KeyExchangeResponse.Status is not Success, then, based on the error, it can either retry the MAKE transaction (at either step 2 or step 6.e) or it can terminate the MAKE transation.

b. It verifies that KeyExchangeResponse.Body.Hash matches the hash it calculates over the concatenation of RandomNumberR and RandomeNumberS. If the hashes do not match, it terminates the MAKE transaction.

c. It generates the keys for the SAC (see section 9.2.5) and sets up its SAC context (see section 9.2.6).

d. At this point, the MAKE transaction has successfully completed and a SAC is established.

9.2.1 AuthenticationRequest

An AuthenticationRequest is sent as a plain request and its body is defined as follows:

Body(){
 TrustAnchor()

 CertificateChain()

 SupportedAlgorithms()
}

SupportedAlgorithms(){
 // Hash algorithms

 AlgorithmList()

 // HMAC algorithms

 AlgorithmList()

 // Symmetric algorithms

 AlgorithmList()

 // Asymmetric algorithms

 AlgorithmList()

 // KDF algorithms

 AlgorithmList()

}

The fields are defined as follows:

· TrustAnchor – this field identifies the trust model under which the DRM Requestor wants to establish the SAC. This field is defined in section Error! Reference source not found..

· CertificateChain – this field contains the DRM Requestor’s certificate chain under the trust model in the previous field. This field is defined in section Error! Reference source not found..

· SupportedAlgorithms – this field contains the security algorithms (hash algorithms, HMAC algorithms, symmetric encryption algorithms, asymmetric encryption algorithms and key derivation functions) that are supported by the DRM Requestor.

· AlgorithmList – this field is a list of algorithms and is defined in section Error! Reference source not found..

9.2.2 AuthenticationResponse

An AuthenticationResponse is sent as a plain response. The following table lists the valid Status values for this response.

Table 2: AuthenticationResponse Status Values
	Status Values

	Success

	InvalidField

	TrustAnchorNotSupported

	CertificateChainVerificationFailed

	CrlExpired

	DrmRequestorRevoked

The body of an AuthenticationResponse is defined as follows:

Body(){
 CertificateChain()

 EncryptedData() //Contains an encrypted AuthenticationResponseData
}

AuthenticationResponseData(){
 RandomNumberS()
 Version()

 SelectedAlgorithms()

 HashOfSupportedAlgorithms()
}

RandomNumberS(){
 RandomNumber()
}

SelectedAlgorithms(){
 // Hash algorithm

 Algorithm()

 // HMAC algorithms

 Algorithm()

 // Symmetric algorithms

 Algorithm()

 // Asymmetric algorithms

 Algorithm()

 // KDF algorithms

 Algorithm()

}

HashOfSupportedAlgorithms() {

 Hash()

}

The fields are defined as follows:

· CertificateChain – this field contains the DRM/Render Agent’s certificate chain under the trust model identified by the AuthenticationRequest.Body.TrustAnchor. This field is defined in section Error! Reference source not found..

· EncryptedData – this field contains an AuthenticationResponseData data structure that is encrypted by the DRM Requestor’s public key (from the DRM Requestor’s certificate). This field is defined in section Error! Reference source not found..
· RandomNumberS – this field contains a 16-byte random number generated by the DRM/Render Agent. This field is of type RandomNumber which is defined in section Error! Reference source not found..
· Version – this field contains a copy of the Version field of the A2AHelloRequest.
· SelectedAlgorithms – this field contains the security algorithms selected by the DRM/Render Agent from the SupportedAlgorithms sent in the AuthenticationRequest.
· Algorithm – this field contains one security algorithm and is defined in section Error! Reference source not found..

· HashOfSupportedAlgorithms – this field contains the hash, using the selected hash algorithm, of the SupportedAlgorithms field in the AuthenticationRequest. This field is of type Hash, which is defined in section Error! Reference source not found..
9.2.3 KeyExchangeRequest

A KeyExchangeRequest is sent as a plain request and its body is defined as follows:

Body(){
 EncryptedData() //Contains an encrypted KeyExchangeData
}

KeyExchangeData(){
 RandomNumberR()

 HashOfRandomNumberS()

 SelectedVersion()
}

RandomNumberR(){
 RandomNumber()
}

HashOfRandomNumberS(){
 Hash()

}

SelectedVersion(){
 Version()
}

The fields are defined as follows:

· EncryptedData – this field contains a KeyExchangeData data structure that is encrypted by the DRM/Render Agent’s public key (from the DRM Agent’s certificate). This field is of type EncryptedData, which is defined in section Error! Reference source not found..
· RandomNumberR – this field contains a 16 byte random number generated by the DRM Requestor. This field is of type RandomNumber, which is defined in section Error! Reference source not found..
· HashOfRandomNumberS – this field contains the hash, using the selected hash algorithm, of the RandomNumberS field in the AuthenticationResponse. This field is of type Hash, which is defined in section Error! Reference source not found..
· SelectedVersion – this field is a copy of the SelectedVersion sent in the A2AHelloResponse. This field is of type Version, which is defined in section Error! Reference source not found..
9.2.4 KeyExchangeResponse

A KeyExchangeResponse is sent as a plain response. The following table lists the valid Status values for this response.

Table 3: KeyExchangeResponse Status Values
	Status Values

	Success

	InvalidField

	FieldDecryptionFailed

	RandomNumberMismatched

	VersionMismatched

	Unexpected Request

The body of a KeyExchangeResponse is defined as follows:

Body(){
 Hash()

}

The fields are defined as follows:

· Hash – this field contains the hash, using the selected hash algorithm, of the concatenation of the random numbers RandomNumberR and RandomNumberS exchanged in this transaction. This field is defined in section Error! Reference source not found..

9.2.5 SAC Key Material

As part of steps 9 and 10 of the MAKE transaction, both the DRM Requestor and the DRM/Render Agent have mutually authenticated each other and have exchanged secret random numbers. By using a Key Derivation Function (KDF), key material that is required for the SAC (i.e. MAC Key, Session Key and CtrCounter) is derived from the secret random numbers.

The default KDF is the KDF specified in section 7.1.2 of [DRM-v2.1]. When using this KDF, set Z = RandomNumberR | RandomNumberS, set otherInfo = SupportedAlgorithms | SelectedAlgorithms and set kLen = 48 bytes (the total size of the key material in Table 4).
The SAC provides message integrity by using an HMAC algorithm. The default HMAC algorithm is HMAC-SHA1 with a 20-byte (160 bits) key. This key is referred to as the MAC Key (MK) and is equal to the 20 most significant bytes of the KDF output T (i.e. byte 0 to byte 19).
When encrypting portions of a message under the SAC, the negotiated symmetric encryption algorithm is used. The default symmetric encryption algorithm is AES-128-CTR. The encryption key is referred to as the Session Key (SK) and is equal to the next 16 bytes of T (i.e. byte 20 to byte 35). The initial value of the counter for the AES-128-CTR is equal to the next 12 bytes of T (i.e. byte 36 to byte 47).
The following table summarizes the key material derived from the exchanged secret random numbers for the default algorithms.
Table 4: Default SAC Key Material
	Name
	Description
	Size
	Abbreviation

	MAC Key
	The HMAC-SHA1 key used to provide message integrity (20 most significant bytes of T)
	160 bits
	MK

	Session Key
	The key used to encrypt portions of a message using AES in counter mode (next 16 bytes of T).
	128 bits
	SK

	CtrCounter
	The high order bits of the counter used in AES counter mode (next 12 bytes of T).
	96 bits
	CtrA

If different algorithms are defined in the future, the key material table has to be defined for the new algorithms.

9.2.6 SAC Context

Once a SAC has been established, a logical SAC context will exist. At a minimum, the context consists of the following information:

· Trust Anchor – this contains the trust anchor under which the SAC was established. Used when multiple SACs are available and the DRM Requestor wants to switch to a different SAC as specified in section Error! Reference source not found..
· Entity ID – for the DRM Requestor, this contains the DRM/Render Agent’s ID (under the trust anchor); for the DRM/Render Agent, this contains the DRM Requestor’s ID (under the trust anchor).

· Selected Algorithms – this contains the algorithms that were negotiated during the MAKE transaction.

· MAC Key (MK) – this contains the derived key for the negotiated HMAC algorithm.

· Session Key (SK) – this contains the derived key for the negotiated symmetric encryption algorithm.

· CtrCounter – this contains the current message counter when a symmetric algorithm in counter mode has been negotiated.

· currentReplayCounter – this contains the current replay counter as described in section Error! Reference source not found.. If the entity supports simultaneous DRM Requestor and DRM Agent functionality, it MUST maintain two replay counters, one for the DRM Requestor functionality and the other for the DRM Agent functionality.
The SAC context exists until a new SAC with the same DRM Requestor and DRM/Render Agent, and under the same trust model, is established. By using the A2A Hello operation, a DRM Requestor can determine if it is communicating with the same DRM/Render Agent. If it is communicating with the same DRM/Render Agent, the DRM Requestor can reuse the SAC context. If the DRM Requestor reuses the SAC context, sends a protected request and gets back an IntegrityVerificationFailed error, this probably indicates that the SAC context is no longer valid. In this case, the DRM Requestor SHOULD establish a new SAC.
9.2.7 Data Encryption

Any portion of a protected message that needs confidentiality must be encrypted using the symmetric key algorithm that was negotiated during the MAKE transaction. The key used to encrypt is the key derived using the KDF per section 6.1.5.

The default encryption algorithm is AES in counter mode. The initial value of the AES counter is shown in the following table.

Table 5: Intial AES Counter Value

	Counter Portion
	Bits
	Description

	CtrCounter
	80
	The msb’s of the counter. Taken from the KDF.

	CtrR
	32
	A copy of the replayCounter of the message being sent.

	CtrB
	16
	The lsb’s of the counter. Initially set to 0 and then incremented for each block.

Because the least significant bits of the counter are used for the blocks, the maximum field size that can be encrypted is 1048576 bytes, although EncryptedData only allows for a maximum field size of 65535 (see section Error! Reference source not found.).

�Editor to make sure all references are correct.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 9)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 9)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

