Error! No text of specified style in document.
Page 5 V(29)

4. Introduction

<< From a market perspective...

What can you do with this specification?

What problem does this solve?

How can this specification be applied?

Consider the target audience and provide deployment examples as possible.

DELETE THIS COMMENT >>

4.1 Pairing-Key Management (Informative)

This specification includes the use of pairing-key management in order to:

1) instantiate Import to a (SCE) DRM Agent in the case that an LRM exercises its localRightsManagerDomain key purpose, where the LRM and Import-recipient DRM Agent are both registered with a DEA, and

2) control subsequent Rights transfers of such LRM-created Imported-Rights-Objects between DRM Agents that are paired via that same DEA.

The DA plays an oversight role via its generation and distribution of DA-Signed Data, but does not gain cryptographic access to Imported Content. Pairing-key management thus supports business models where copy-control systems that are upstream of LRMs must remain independent of the OMA DRM service provider infrastructure.

The efficient Kerberos-based methodology makes minimal use of PKI: The use of LRM Tickets, as well as the acquisition by DRM Agents of LRM Tickets does not involve public-key cryptography. In particular, the Secure Authenticated Channel (SAC) that is used between an LRM and a DRM Agent to enable Import can be established without public-key cryptography because of the pair-wise uniqueness of the keys.
The continued secure operation of a User Domain that was established via pairing-key management does not require each remaining User Domain DRM Agent to upgrade domain keys even if one or more removed DRM Agents have been compromised.

While others have recognized the advantages of applying Kerberos-derived techniques to home network- based DRM security architectures (e.g., B.C. Popescu, B. Crispo, A.S. Tanenbaum, and F.L.A.J. Kamperman, DRM ’04, October 25, 2004, Washington, DC), the method introduced into this specification has been optimized to take full advantage of DRM Agents that support DRM Time.
5. LRM and DEA Protocols
[Informative] A layered security model is used in order to support user privacy and facilitate controlled Rights transfers with minimal need for backend network connectivity. At one layer, a DEA corresponding to an LRM manages the association of DRM Agents with one another relative to transfers that involve LRM-created Rights Objects. At another layer, the DA manages policy-related issues, including, in the case of production of Device-specific DA-Signed Data, approving the incorporation of specific DRM Agents (perhaps based on DEA administrative user’s request and/or on Device ownership criteria such as service provider accounts) with which the DEA is authorized to complete registration.
Within Device-specific DA-Signed Data, DRM Agents SHALL be specified in the standard manner via hashes of certified public keys. Registration of a Device by a DEA can proceed without knowledge by that DEA of the DRM Agent’s current status with respect to other DEAs.

5.1 Generic Message Format for Protocols

All messages have the following syntax:
Message() {

msgType

8
uimsbf

Pvno()
stid

64
uimsbf

dtid
64
uimsbf

retryCount

8
uimsbf
Attributes()

AttributeStructures()
Signature()
}

Pvno() {
major
4
bslbf
minor
4
bslbf
}

Attributes() {
nbrOfAttrs
8
uimsbf
for(i=0; i<nbrOfAttrs; i++){
Attribute()
}
}

Attribute() {

type
16
uimsbf
OctetString16()
}

AttributeStructures() {
nbrOfAttrStrs
8
uimsbf
for(i=0; i<nbrOfAttrStrs; i++){
 AttributeStructure()
}
}
AttributeStructure() {

typeStr
16
uimsbf
lengthStr
16
uimsbf

for(i = 0; i < lengthStr; i++){

Attribute()

}

}

OctetString16() {

length

16
uimsbf

for(i = 0; i < length; i++){

octet
8
uimsbf

}

}

The fields are defined as follows:

· msgType – This field defines the type of messages being communicated. This is defined in Table 1.
· Pvno – This field is the Protocol Version Number. The version number is a <major.minor> representation of the highest protocol version number supported by the sender of the message. The <major> portion of the version number is encoded in the most significant 4 bits of the field. The <minor> portion the version number is encoded in the least significant 4 bits of the field. For this version of the protocol, Pvno SHALL be set to 1.0.

· stid – This field contains a Source Transaction ID. This is a random value that uniquely identifies this key management transaction on the source’s side. The value must be non-zero if the sender expects a reply to this message. Otherwise, the value must be set to 0.
· dtid – This field contains a Destination Transaction ID. This is a random value that uniquely identifies this key management transaction on the destination’s side. The value must be set to the stid from the preceding message in this key management transaction.
· retryCount – This field contains the number of times that this key management transaction was restarted due to time outs. The initial value must be set to 0, then 1 for the first retry, etc.
· Attributes – This data structure contains a list of attributes as specified in Section 6.1.2 and the number of these attributes.
· nbrOfAttrs – This field contains the number of attributes.
· Attribute – This data structure specifies the parameters used in messages. It consists of a field and an octet string of variable length. The field specifies the type of the attribute, and the octet string specifies the value of the attribute. A DRM Agent that does not understand an Attribute type SHALL ignore the Attribute.
· type – This field encodes the attribute type, as specified in Table 2.
· length – This field encodes the length in bytes of the attribute.
· AttributeStructures – This data structure contains a list of attribute data structures as specified in Section 6.1.2 and the number of these attribute data structures.
· nbrOfAttrStrs – This field contains the number of attributes in an Attribute data structure.
· AttributeStructure – This data structure specifies a logical grouping of parameters used as a logical unit in messages. It consists of two fields and a list of attributes. The first field specifies the type of the attribute data structure, and the second field encodes the number of the attributes. A DRM Agent that does not understand an Attribute data structure type SHALL ignore the Attribute data structure.
· typeStr – This field encodes the attribute data structure type, as specified in Table 2.
· lengthStr – This field encodes the number of attributes in an attribute data structure.

· Signature – This data structure specifies either the digital signature or keyed checksum of a message. It is defined as an attribute data structure that contains two attributes: SigType and SigValue. The SigType attribute specifies the type of the algorithm used to generate the signature or keyed checksum, and the SigValue attribute specifies the value of the signature or keyed checksum.
6.1.1 Message Types

The message types are listed in Table 1 in decimal for each message supported. The possible attributes of the messages are listed in Table 2.
Table 1: Message Types

	msgType
	Message

	3
	Key Request

	4
	Key Response

	5
	Ticket Request

	6
	Ticket Response

	8
	SAC Key Request

	9
	SAC Key Response

	11
	Error Message

	12
	Device Registration Request

	13
	Device Registration Response

	26
	Imported-RO Request

	27
	Imported-RO Response

	28
	A2A Imp-RO Request

	29
	A2A Imp-RO Response

	30
	Authorization Request

	31
	Authorization Response

In Table 1, the assignment of the msgType values is somewhat arbitrary. The final values are TBD.
6.1.2 Attributes

6.1.2.1

·
·
6.1.3 Attribute Data Structures

6.1.3.9 PrivateTicketPart
This attribute data structure specifies the private part of a ticket – stored in encrypted form inside a Ticket data structure. (A Ticket data structure is discussed in Section 6.1.3.14.) The data structure has 5 mandatory attributes: two attributes of the KeyInfo data structure, ClientDomainBaseID, ClientName and ClientIdentifier. KeyInfo contains a 21-Byte Session Key in the KeyValue. There is also an optional SkeyVnum attribute. The Session Key is not directly used to encrypt or authenticate data. Instead, encryption and authentication keys are derived from this Session Key.

The fields for the attribute data structure are defined as follows:

· typeStr – This field has the value 34.
· lengthStr – This field encodes the value 5.
· Attributes – The attributes contained in this data structure are KeyType and KeyValue, ClientDomainBaseID, ClientName and ClientIdentifier.

6.1.3.10
7.
8.
9.
10.
11.
11.1.3.11
12.
13.
14.
15.
6.1.3.25 TicketResp

This is an attribute data structure that is generated by a DEA to a client. The fields for the attribute data structure are defined as follows:

· typeStr – This field has the value TBD.
· lengthStr – This field encodes the value 2.
Attributes – The attributes contained in this data structure include a Ticket and an EncryptedData attribute data structure.
6.1.4 Error Message

An error message is generated when there is an error processing one of the messages. Error messages MUST always be authenticated either with a digital signature or with a keyed checksum. When this is not possible, a DEA or an LRM silently drops the request message that generated the error, and an error message is not returned. Note that Devices do not send error messages back to a DEA or an LRM.
6. Key Management
6.1 Cryptographic Components
<text>
6.2 Key Transport Mechanisms
6.2.1 Pairing-Key Management Protocols
One of the functions of a DEA is to keep track of all the provisioned Devices in a system and the cryptographic data associated with them. Additionally, the DEA authenticates Devices and issues LRM Tickets for those Devices to use as trusted tokens during communications with LRMs. The DEA assigns expiration time to LRM Tickets, thus requiring Devices with LRM Tickets to periodically renew them. By allowing Devices to cache these LRM Tickets, the system eliminates the need for Devices to request replacements for LRM Tickets that have not expired.
Imported Rights Objects can be imported from an LRM to a Device for which there is an LRM Ticket that identifies both entities, and can subsequently be transferred by the Import-recipient Device to another Device if permitted within the Imported Rights Object. Move [SCE-A2A] under pairing-key management utilizes a domain-wide Pairing Domain Key (PDK) that is generated by the DEA and distributed to Devices via the Service Key protocol.
If a Device registers with a DEA, then the Device SHALL register with the DEA by using a Device’s digital certificate. The DEA SHALL store the Device’s unique identity and public key. Once this is done and the Device has obtained a Service Key from the DEA (via the Service Key protocol), the Device can obtain LRM Tickets directly from the DEA.

In what follows, how an LRM registers with a DEA is defined in the same way as that of how a Device registers with a DEA. The protocols in Section 7.2.1.1 apply to both Devices and LRMs. Similarly, an LRM obtains a Service Key for a DEA in the same way that a Device obtains a Service Key for a DEA. The protocols in Section 7.2.1.2 apply to both Devices and LRMs. In practice, it is possible that a Device might ask for an LRM Ticket corresponding to an LRM that has not yet registered with the DEA. In this case, the DEA returns an error message to a requesting device.
6.2.1.1 Device Registration Protocol
This section discusses the Device Registration messages for a Device that interacts with a DEA. During the registration phase, the device exchanges its digital certificate with the DEA and that allows the device and the DEA to perform RSA-based key agreement in the next phase.
The protocol messages are depicted in Figure 5. In general, a Device needs to register with a DEA only once, unless, for example, the Device needs to re-register because of an expired digital certificate. A Device MAY register more than once with a DEA, in which case a new registration replaces a previous registration. A Device MAY register with more than one DEA. To start the registration process, the Device SHALL send to the DEA a Device Registration Request message that includes the client signature and certificate. The Device Registration Request message is specified in Section 7.2.1.1.1.

6.2.1.2 Service Keys and PDKs for Devices
The DEA SHALL assign a unique symmetric Service Key to each Device. The symmetric Service Keys provide faster authentication to the DEA in subsequent ticket requests than authentication with public/private keys. The assignment of the Service Keys is described below and is shown in Figure 6.

[image: image1.emf]Device DEA

Device Registration Response

Device Registration Request

Key Request

Key Response

Figure 6 – Assignment of Service Keys and distribution of PDKs
To obtain a Service Key, a Device SHALL send to the DEA a Key Request message that is authenticated by using the private key of the Device. The message SHALL contain the identity of the Device, the identity of the DEA, and a list of symmetric encryption algorithms that are supported by the Device. To check against replays, this message SHALL also contain a nonce. The Key Request message is specified in Section ‎7.2.1.2.1.
In response, the DEA SHALL randomly generate a symmetric Service Key, store it, and then send a copy of it in a Key Response message to the Device, as specified next. The Key Response message SHALL include the Service Key encrypted by using a shared key derived based on the key agreement algorithm, and a validity period. The entire Key Response message SHALL be signed by the DEA private key. The Key Response message is specified in Section 7.2.1.2.2.
Each Device that has a Service Key SHALL periodically update its Service Key based on an expiration time returned in the Key Response message. Each Service Key update is performed by repeating the Key Request/Response exchange. The default value for the Service Key lifetime is RECOMMENDED to be 30 days. When a Service Key is renewed, the value field in the inner SkeyVnum attribute (inside encrypted PrivateKeyInfo) associated with the Service Key is incremented by one.
In addition to the Service Key, a Pairing Domain Key (PDK) SHALL be delivered to a Device using the Key Response message. PDKs are domain-global keys generated by the DEA that are used between DRM Agents to perform a Move transaction [SCE-A2A] with respect to a <pairing>-constrained LRM-created RO. PDKs are not used by or made available to LRMs. If a Device has been revoked and the Device with which it communicates is aware of the revocation, the revoked Device will not be able to perform successfully as DRM Requestor or DRM Agent relative to a Move transaction, regardless of whether or not the Device has access to a current PDK. A DRM Agent need not be registered with the DEA in order to complete a Move transaction with a DRM Requestor. In order to consume the RO, the DRM Agent acquires from the DEA within a Key Response the PDK used by the DRM Requestor.
6.2.2 To avoid storage of multiple PDKs in the Device, the PDKs are derived using Hash Chains as specified in section 7.3 of [DRM-DRM-v2.1].
6.2.3 DRM Requestors SHALL use the latest PDK they have when performing a Move of an RO.
6.2.3.1.1 Key Request Message Details

The Key Request message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 3.
· Pvno – This field contains the value 1.0.

· stid – This field is set as discussed in Section 7.2.1.2.1.1.
· dtid – This field is set as discussed in Section 7.2.1.2.1.1.
· retryCount – This field is set as discussed in Section 7.2.1.2.1.1.
· Attributes – This data structure contains the following attributes: EncTypeSet and SigTypeSet.
a. nbrOfAttrs – This field contains the value 2.
· AttributeStructures – This data structure contains the following attribute data structures: KeyAgreementInfo, PubKeyClientAuthenticator, and CertificateChain. The CertificateChain attribute data structure is optional.
b. nbrOfAttrStrs – This field contains the value 3 if the CertificateChain attribute data structure is present; else the value is 2.
· Signature – This attribute data structure specifies a digital signature of the message as discussed in Section 7.2.1.2.1.1.
6.2.3.1.1.1. Generating Key Request Message

The Device MUST follow the following steps to generate a Key Request message:

1. Generate a pseudo random number for the stid header field of the message.

2. Set the dtid header field of the message to 0.
3. Fill in the retryCount field. The value must be 0 for the initial message, 1 for the first retry, etc.

4. Fill in list of encryption types supported by the client (EncTypeSet).

5. Fill in list of signature types supported by the client (SigTypeSet).
6. Generate key agreement parameters, i.e., generate a random nonce and encrypt it using the DEA’s public key. The encrypted nonce is added to the message in the KeyAgreementInfo attribute data structure, while the clear nonce is saved in order to derive the shared key for decrypting a portion of the subsequent Key Response message.
7. Generate the PubKeyClientAuthenticator attribute data structure to authenticate this request as per Section 7.2.1.1.1.2.
8. Generate the CertificateChain attribute data structure if the client is registered with the DEA and wants to update its certificate chain in the DEA.
9. Generate the Signature attribute data structure. The data structure consists of a SigType attribute and a SigValue attribute. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the Device private key to compute the signature.
After the Device sends out the Key Request message, it MUST save the value of the stid header field in order to later validate the matching Key Response message from the DEA. The Device MUST keep the stid until a configurable time out value. After the time out, the Device will no longer be able to process the corresponding Key Response message and must retry and increment the retryCount value.

6.2.3.1.1.2. Generating PubKeyClientAuthenticator
The PubKeyClientAuthenticator attribute data structure is generated in order to authenticate one of several messages sent by a client to the DEA. The generation steps are:

1. Generate ClientName attribute and ClientDomainBaseID attribute. A client MAY set the length field value of ClientDomainBaseID to 0 and not specify a value for ClientDomainBaseID.

2. Fill in the ClientDRMtimeSeconds attribute.

3. Add the DEAPubKeyIdentifier attribute data structure.

4. If the Device previously saved a DEA certificate chain, check if any of the corresponding CRLs are expired. If so, add a RequestCRLs attribute to the PubKeyClientAuthenticator, listing the issuers of the expired CRLs. The DEA will be required to reply with the corresponding up-to-date CRLs.

6.2.3.1.1.3. Processing Key Request Message

The DEA MUST perform the following steps to verify the Key Request message:

1. Parse the message header. If the header parsing fails, drop the message and do not return an error.

2. Verify the protocol version number in the header. If this protocol version is not supported, send an error message with the DEA_ERR_BAD_PVNO error code.

3. Parse the rest of the message. If the message format is found to be illegal, drop the message and do not return an error.

4. If the CertificateChain attribute data structure is present in the message, then validate the client certificate chain, extract the client’s public key, and compute the ClientIdentifier from the certificate.

5. Process the PubKeyClientAuthenticator attribute data structure as specified in Section 7.2.1.2.1.4.

6. If the key agreement parameters in KeyAgreementInfo specified by the client is of insufficient strength (due to the key size or algorithm used) as determined by DEA policy, then the DEA returns an error message with the error code DEA_ERR_KEYAGR_KEY_TOO_WEAK.

7. If the DEA cannot accommodate the requested encryption type, then the DEA returns an error message with the error code DEA_ERR_ETYPE_NOSUPP.

8. If the DEA cannot accommodate the requested signature type, then the DEA returns an error message with the error code DEA_ERR_SIGTYPE_NOSUPP.

9. The DEA generates the Key Response message.
6.2.3.1.1.4. Processing PubKeyClientAuthenticator
The DEA MUST verify the PubKeyClientAuthenticator attribute data structure by using the following procedure:

1. Search the DEA storage for a record that matches the value of the ClientName attribute present in PubKeyClientAuthenticator. If a record exists, and the CertificateChain attribute is present in the Key Request message, then verify that the ClientIdentifier value present in the record matches the ClientIdentifier value extracted from the CertificateChain. If the values do not match, then the DEA sends an error message with the error code DEA_ERR_HOSTID_CHANGE_PROHIBITED. This prevents a new client intentionally registering with an existing ClientName so as to take advantage of the ClientName’s authorizations.

Else, if a record does not exist in the DEA storage, and the CertificateChain attribute is not present in the Key Request message, then the DEA sends an error message with the error code DEA_ERR_OTHER_PRINCIPAL_NOT_FOUND.

2. If the ClientIdentifier has been marked as being revoked in the DEA, then an error message with the error code DEA_ERR_CLIENT_REVOKED is returned.

3. Verify the Signature attribute data structure. If the attribute data structure contains a SigType attribute, then an error message with the error code ERR_INAPP_CKSUM is generated. If the value of the SigType in the Signature attribute data structure is not supported by the DEA, then the DEA generates a DEA_ERR_SIGTYPE_NOSUPP error message. If the signature value that the DEA computes for the Key Request message does not match the value contained in the SigValue attribute contained in the Signature attribute data structure, then an error message with DEA_ERROR_INVALID_SIG is returned.

4. Check the value contained in the ClientDRMtimeSeconds attribute. If the value is outside of an acceptable time window (typically +/- 5 minutes), then the DEA rejects the Key Request message and returns the ERR_SKEW error message.

5. Otherwise, the DEA computes a SHA-1 hash of the full Key Request message and checks if there is already a record for this particular message type (i.e. msgType value 3) with this hash value in a DEA Replay Cache. Each Replay Cache record contains a hash value indexed by a msgType and the ClientDRMtimeSeconds value. Only the entries corresponding to the acceptable time window, e.g. +/- 5 minutes, are kept in the Replay Cache. If the DEA finds a record in the Replay Cache with the same hash value, a replay attack is assumed and the ERR_REPEAT error message is returned. If no such entries are found, the processing continues as specified below.

6. The DEA updates the Replay Cache with a record corresponding to this Key Request message. The record contains a SHA-1 message hash and the value of the ClientDRMtimeSeconds attribute.

7. Make sure that the value contained in the DEAPubKeyHash attribute in the PubKeyClientAuthenticator attribute data structure matches one of the DEA public keys. If the value does not match any of the public keys possessed by the DEA, then the Key Request message MUST be rejected with the error code DEA_ERR_PUBKEY_NOT_FOUND logged into a local file, and the DEA MUST NOT send back an error message (since the Device will be unable to verify it).

6.2.3.1.2 Key Response Message Details

The Key Response message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 4.
· Pvno – This field contains the value 1.0.

· stid – This field is set as discussed in Section 7.2.1.2.2.1.
· dtid – This field is set as discussed in Section 7.2.1.2.2.1.
· retryCount – This field is set as discussed in Section 7.2.1.2.2.1.
· Attributes – This data structure contains no attributes.
c. nbrOfAttrs – This field contains the value 0.
· AttributeStructures – This data structure contains the following attribute data structures: one or two sets of EncryptedData, EndTime, CsumType, EncType, KeyAgreementInfo, and PubKeyDEAAuthenticator.
d. nbrOfAttrStrs – This field contains the value 6 or 7, depending on whether a PDK is included.
· Signature – This attribute data structure specifies a digital signature of the message as discussed in Section 7.2.1.2.2.1.
6.2.3.1.2.1. Generating Key Response Message

The DEA MUST follow the following steps to generate a Key Response message:

1. Set the stid header field of the message to 0.

2. Set the dtid header field of the message to the same value of the stid header field from the preceding Key Request message, so that the response message is tied to the request message.
3. The retryCount from the preceding Key Request message is copied to the retryCount in this message.

4. The DEA randomly generates a Service Key.
5. The DEA chooses an encryption algorithm based on the intersection of the list of algorithms specified in the EncTypeSet attribute in the preceding Key Request message with the list of encryption algorithms supported by the DEA. If this intersection contains more than one encryption algorithm, the DEA MUST select the strongest one. The encryption algorithm is used to encrypt the data in EncryptedData.

6. Generate key agreement parameters, i.e., generate a random nonce and encrypt it using the Device public key. The encrypted nonce is added to the message as KeyAgreementInfo, while the clear nonce is used (together with the Device’s nonce from the Key Request message) in the key agreement algorithm to generate a symmetric shared key.
7. The DEA populates the EncryptedData attribute data structure. The EncType contains the identifier of the encryption algorithm that the DEA chose. The CipherText contains the Service Key type in a KeyType attribute and the Service Key in a KeyValue attribute. The CipherText also contains the Service Key version number (SkeyVnum) attribute for the Service Key. If this is the first Service Key created for the client, then the version number is 1. If this is not the first Service Key created for the client, then a Service Key number already is associated with the record for the client in the DEA storage. So, the Service Key number is incremented by one. The value of the CipherText attribute is encrypted by using the symmetric shared key generated from the Key Agreement.
8. If the client is a DRM Agent (i.e. not an LRM), the DEA populates a second EncryptedData attribute data structure with the current generation of the PDK. The EncType contains the identifier of the encryption algorithm that the DEA chose. The CipherText contains the PDK type in a KeyType attribute and the current generation of the PDK in a KeyValue attribute.
9. The DEA adds the Service Key and the Service Key version number to the record for the client in the DEA storage. It is RECOMMENDED that the DEA keeps at least two generations of Service Keys for clients in the DEA storage. The DEA SHOULD save the old Service keys of a client for at least the maximum duration of Tickets issued by the DEA for this client.

10. Fill in the EndTime attribute value. This is the expiration time for this Service Key and MAY be set according to a policy communicated to the DEA. The format of this policy and the method to communicate the policy to the DEA are ouside the scope of these specifications.

11. Fill in the EncType and the CsumType attribute values. The EncType indicates the DEA chose in step 5 above. The CsumType is similarly chosen by the DEA.

12. Generate the PubKeyDEAAuthenticator attribute data structure to authenticate this request as per Section 7.2.1.2.2.2.
13. Generate the Signature attribute data structure. The data structure consists of a SigType attribute and a SigValue attribute. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the DEA private key to compute the signature.

14.
6.2.3.1.2.2. Generating PubKeyDEAAuthenticator
The PubKeyDEAAuthenticator attribute data structure is generated in order to authenticate one of several messages sent by a DEA to a client. The generation steps are:

1. Find the DEA public key whose hash equals the value in the DEAPubKeyHash attribute present in the PubKeyClientAuthenticator attribute data structure in the preceding Key Request message.

2. In the event that the DEA does not find that public key, the DEA SHOULD choose another public key and include the certificate of that public key in the PubKeyDEAAuthenticator.

3. If the client requested some updated CRLs (in the PubKeyClientAuthenticator), and the DEA is not including a new certificate in the Key Response message, then the DEA SHOULD include the CRLList attribute data structure with a list of requested CRLs. If for whatever reason the DEA is unable to obtain some of the requested CRLs, it should leave them out of the CRLList but MUST NOT return an error. If the DEA was unable to obtain any of the requested CRLs, it MUST omit the CRLList attribute data structure. (It is up to the client policy to decide if it can accept a DEA signature when some of the CRLs are missing.)

4. If the client requested some updated CRLs (in the PubKeyClientAuthenticator), and the DEA included a new certificate in the Key Response message, then the DEA SHOULD include the CRLList attribute data structure with a list of CRLs that correspond to each of the issuers in the DEA certificate chain. If for whatever reason the DEA is unable to obtain some of the CRLs, it should leave them out of the CRLList but MUST NOT return an error. If the DEA was unable to obtain any of the CRLs, it MUST omit the CRLList attribute data structure. (It is up to the client policy to decide if it can accept a DEA signature and a new DEA certificate when some of the CRLs are missing.)

6.2.3.1.2.3. Processing Key Response Message

The client MUST follow the following procedure to process the Key Response message. Note that the client does not send an error message back to the DEA. In some cases, the client will retry with another Key Request message:

1. Parse the message header. If the header parsing fails, pretend that the Key Response message were never received, i.e. continue waiting for a reply to the initial Key Request message until a timeout occurs and then retry.
2. Verify the protocol version number in the header. If this protocol version is not supported, pretend the message were never received.

3. The client looks for an outstanding Key Request message whose stid value matches the dtid header field in the Key Response message. If there is no match, the client proceeds as if the Key Response message were never received.

4. Verify that the retryCount in the preceding Key Request message matches the retryCount in the Key Response message. If it does not match, the client proceeds as if the reply message were never received.

5. Parse the rest of the Key Response message. If the message format is found to be illegal, pretend the message were never received.
6. Verify the signature (by using the DEA public key). If the signature does not verify, this message is dropped and the client proceeds as if the message were never received.
7. Compute a symmetric shared key by using the content of KeyAgreementInfo (by decrypting the DEA’s encrypted nonce using the Device private key) and the nonce that the client stored when the client sent the preceding Key Request message.

8. The client decrypts the value of the Ciphertext attribute in the first EncryptedData in the reply message by using the symmetric shared key. If the value cannot be decrypted because the client does not support the encryption type of the EncryptedData, a fatal error MUST be reported to the user, and the client MUST NOT retry. If the resulting clear text contains formatting errors or contains a Service Key with a type that is not supported by this client, then a fatal error MUST be reported to the user, and the client MUST NOT retry.
9. If the client is a DRM Agent (i.e. not an LRM), it decrypts the value of the Ciphertext attribute in the second EncryptedData in the reply message by using the symmetric shared key. If the value cannot be decrypted because the client does not support the encryption type of the EncryptedData, a fatal error MUST be reported to the user, and the client MUST NOT retry. If the resulting clear text contains formatting errors or contains a PDK with a type that is not supported by this client, then a fatal error MUST be reported to the user, and the client MUST NOT retry.
10. Process PubKeyDEAAuthenticator as specified in Section 7.2.1.2.2.4.
11. If no errors in the Key Response message were detected, the client MUST save the Service Key (and a PDK in the case of a DRM Agent) in a new entry in its key ring until the Service Key (and the PDK) expires (as indicated by the EndTime attribute in the response). The client also saves the CsumType and EncType chosen by the DEA.

6.2.3.1.2.4. Processing PubKeyDEAAuthenticator

The client MUST verify the PubKeyDEAAuthenticator attribute data structure by using the following procedure:
1. The client verifies the digital signature contained in the Signature attribute data structure by using the pre-provisioned DEA public key if the DEA did not include a DEA certificate in PubKeyDEAAuthenticator. If the DEA included a DEA certificate in PubKeyDEAAuthenticator, then the client verifies the signature by using the public key in the certificate. If the signature does not verify, then the Key Response message is dropped and the client proceeds as if the message were never received.

2. In the case that a DEA certificate chain was included in PubKeyDEAAuthenticator but the client does not support this particular certificate type or does not support parsing of DEA certificates altogether, the client MUST abort processing of the message and log the error code DEA_ERR_CERTTYPE_NOSUPP.

3. If the DEA certificate was included in the Key Response message, the client MUST save the new DEA public key for verifying all future reply messages that contain PubKeyDEAAuthenticator.
6.2.3.1.2.5. Key Derivation

The Service Key assigned by the DEA and the Session Key embedded in an LRM-Ticket are not used directly for encryption or authentication. Instead, a Key Derivation Function (KDF) is used to derive an encryption key and authentication key as described below. The KDF used is the KDF specified in Section 7.1.2 of [OMADRMv2]. This KDF has three input parameters: Z, otherInfo, and kLen and outputs a key of length equals to kLen bytes. The derivation of the encryption key, authentication key, and other cryptographic parameters required are specified as follows:

Encryption Key = KDF(Session Key or Service Key, “encrkey”, kLen)

Authentication Key = KDF(Session Key or Service Key, “authkey”, kLen)

If an Initialization Vector (IV) is required for the encryption algorithm, the IV is derived as follows:

IV = KDF(Session Key or Service Key, “iv”, Length of IV)

If a counter is required for the encryption algorithm, the Counter is derived as follows:

Counter = KDF(Session Key or Service Key, “counter”, Length of Counter)

where otherInfo is an ascii string as specified in each case above.

In the following, the Encryption Key and Authentication Key derived from the Service Key are referred to as the “Service Encryption Key” and “Service Authentication Key”, respectively. Similarly, the Encryption Key and Authentication Key derived from the Session key are referred to as the “Session Encryption Key” and “Session Authentication Key”, respectively.
6.2.3.2 Import Protocol
Any DRM Agent can Import from any LRM, and an LRM also can import directly to any DRM Agent under the paring mechanism. A DRM Agent that gets an Imported-RO from an LRM MUST be registered with the DEA associated with the LRM. This registration is proved by a Ticket that the DRM Agent uses to obtain an Imported-Rights-Object for the desired Imported-Content.
Figure 7 depicts the messages used in Import. When a DRM Agent wants an Import from an LRM, and the DRM Agent does not have a valid Ticket for the LRM, then the DRM Agent SHALL obtain a Ticket for the LRM before the DRM Agent sends an Imported-RO Request message to the LRM. The Imported-RO Request message SHALL include an LRM-Ticket, and the LRM-Ticket SHALL be integrity protected by a keyed checksum that uses the Service Authentication Key derived from the Service Key obtained previously by the LRM from the DEA. There are situations where a DRM Agent with a valid Ticket requests a new Ticket. For example, the DRM Agent may want to renew the expiry date of the Ticket before it actually expires. If the DRM Agent wants an Import from an LRM, and the DRM Agent already has a valid Ticket for the LRM, then the DRM Agent MAY obtain a new Ticket for the LRM, in which case the DRM Agent SHALL discard the old Ticket. A DRM Agent SHALL use a Ticket Request message to request from a DEA associated with an LRM a Ticket for the LRM. The Ticket Request message is specified in Section 7.2.1.3.2.
When an LRM has not setup a connection with a DRM Agent and wants to initiate the Import transaction, the LRM sends Import Initiation message to DRM Agent. The Import Initiation message SHALL contain the IDs of ROs to be imported and the corresponding Content-IDs, the identities of the DEA, LRM and DRM Agent. The subsequent steps of Import are equivalent to those described in the above paragraph.

[image: image3.emf]DEA DRM Agent LRM

Import Init Request

Ticket Request

Ticket Response

Imported-RO Request

Imported-RO Response

Figure 7 – Messages used in Import
The Ticket Request message SHALL contain the identity of the LRM and the DRM Agent. To check against replays, this message SHALL also contain a nonce. The DRM Agent SHALL authenticate the message by using a keyed checksum that uses its Service Authentication Key.
Once the DEA validates the Ticket Request message from the DRM Agent, the DEA randomly generates a symmetric Session Key, and then sends a copy of the Session Key in a Ticket Response message to the DRM Agent. The Ticket Response message includes an LRM-Ticket that has both a clear and an encrypted part. The clear part of the LRM-Ticket includes the identity of the LRM and a Ticket validity period. The encrypted part of the LRM-Ticket contains the identity of the DRM Agent and information pertaining to the symmetric Session Key. The encrypted part of the LRM-Ticket is encrypted by using the Service Encryption Key of the LRM. The LRM-Ticket is integrity protected by a keyed checksum that uses the Service Authentication Key of the LRM. Note that the LRM-Ticket is integrity protected to prevent the DRM Agent from tampering with the content of the LRM-Ticket.
The DEA includes in the Ticket Response message a copy of the Session Key encrypted with the Service Key of the Device that contains the DRM Agent. The DEA then authenticates the message by using a keyed checksum that uses also the Device’s Service Authentication Key.
Once the DRM Agent validates the Ticket Response message from the DEA, the DRM Agent sends an Imported-RO Request message to the LRM. The Imported-RO Request message includes the LRM-Ticket and a list of RO-IDs that corresponds to the ROs the DRM Agent is requesting. The Imported-RO Request message is integrity protected by a keyed checksum that uses the Session Authentication Key derived from the Session Key obtained from the DEA. The Imported-RO Request message is specified in Section 7.2.1.3.4.
Once the LRM validates the Imported-RO Request message from the DRM Agent, the LRM generates an Imported-RO Response message that includes responses to individual ROs requested by the DRM Agent. The Imported-RO Response message is integrity protected by a keyed checksum that uses the Session Authentication Key derived from the Session Key in the LRM-Ticket. The Imported-RO Response message is specified in Section 7.2.1.3.5.
6.2.3.2.1 Import Initiation Request Message Details

The Import Initiation Request message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value TBD.
· Pvno – This field contains the value 1.0.

· stid – This field is set as discussed in Section 7.2.1.3.1.1.
· dtid – This field is set as discussed in Section 7.2.1.3.1.1.
· retryCount – This field is set as discussed in Section 7.2.1.3.1.1.
· Attributes – This data structure contains the following attributes: ClientIdentifier and ServerIdentifier.
e. nbrOfAttrs – This field contains the value 2.
· AttributeStructures – This data structure contains the following attribute data structures: DEAPubKeyIdentifier and ImportInitList.
f. nbrOfAttrStrs – This field contains the value 2.
· Signature – The Import Initiation Request message SHALL NOT contain a Signature attribute.
6.2.3.2.1.1. Generating Import Initiation Request Message

The Device MUST follow the following steps to generate an Import Initiation Request message:

1. Set the stid and dtid header fields of the message to 0.
2. Set the RetryCount to 0. There is no response associated with the Import Initiation Request message and the LRM SHALL NOT resend the Import Initiation Request message.

3. Fill in the ServerIdentifier with the LRM’s Identifier.

4. Fill in the ClientIdentifer with the DRM Agent’s Identifier.
5. Fill in the DEAPubKeyIdentifer attribute data structure for the DEA to which the LRM is associated with.

6. For each Import-Ready Data the LRM wants to notify the DRM Agent, the LRM creates an ImportInit attribute data structure and adds it to the ImportInitList attribute data structure of the message. The ImportInit attribute data structure contains the Content_ID and RO_ID associated with the RO. Note that at this point, the actual Imported-RO has not been created by the LRM yet. The Imported-RO will be created by the LRM when it is actually requested by the DRM Agent with an Imported-RO Request message.

6.2.3.2.1.2. Processing Import Initiation Request Message

The DRM Agent MUST perform the following steps to process the Import Initiation Request message:

1. Parse the message header.
2. Verify the protocol version number in the header is supported.
3. Parse the rest of the message to make sure the message format is legal.

4. Verify that the ClientIdentifier contains the DRM Agent’s Identifier.

5. Based on the LRM Identifier, the DRM Agent determines whether it already possesses a valid LRM Ticket (in order to determine whether it needs to request an LRM Ticket from the DEA). The DRM Agent determines whether it already possesses the DA-Signed Data and the LRM’s certificate chain (in order to determine whether it needs to request those from the LRM in the Imported-RO Request message).
6. Verify that the DEAPubKeyIdentifier corresponds to one of the DEA the DRM Agent is associated with.

7. For each of the ImportInit attribute data structure, the DRM Agent records the Content_ID and associated RO_ID. The user may decide to request any of the ImportedROs in the list by using the ImportedRO Request message.

If any of the above processing fails, the DRM agent drops the message and does not return an error. If the DRM Agent does not already have an LRM Ticket for this LRM, it uses the Ticket Request message to obtain such a ticket from the DEA. When an LRM Ticket for this LRM is available, the DRM Agent may use the Imported-RO Request message to request the Imported-RO for any of RO_IDs sent by the LRM in the Import Initiation Request message.

6.2.3.2.2 Ticket Request Message Details

The Ticket Request message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 5.
· Pvno – This field contains the value 1.0.

· stid – This field is set as discussed in Section 7.2.1.3.2.1.
· dtid – This field is set as discussed in Section 7.2.1.3.2.1.
· retryCount – This field is set as discussed in Section 7.2.1.3.2.1.
· Attributes – This data structure contains the following attributes: ServerName, ClientIdentifer, EncTypeSet, SigTypeSet, ClientDRMtimeSeconds.
g. nbrOfAttrs – This field contains the value 5.
· AttributeStructures – This data structure does not contain any attribute data structure.
h. nbrOfAttrStrs – This field contains the value 0.
· Signature – This attribute data structure specifies a digital signature of the message as discussed in Section 7.2.1.3.2.1.
6.2.3.2.2.1. Generating Ticket Request Message

The Device MUST follow the following steps to generate a Ticket Request message:

1. Generate a pseudo random number for the stid header field of the message.

2. Set the dtid header field of the message to 0.
3. Fill in the retryCount field. The value must be 0 for the initial message, 1 for the first retry, etc.

4. Fill in the ClientIdentifier attribute with the Device’s Identifier.
5. Fill in the ServerName for the LRM to which the Ticket is associated with.
6. Fill in list of encryption types supported by the client (EncTypeSet).

7. Fill in list of checksum types supported by the client (SigTypeSet).

8. Fill in the ClientDRMtimeSeconds attribute.
9. Generate the Signature attribute data structure. The data structure consists of a CsumType attribute and a SigValue attribute. The value in CsumType is that indicates in the Key Response by the DEA. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the Device’s Service Authentication Key to compute the keyed checksum.
After the Device sends out the Ticket Request message, it MUST save the value of the stid header field in order to later validate the matching Ticket Response message from the DEA. The Device MUST keep the stid until a configurable time out value. After the time out, the Device will no longer be able to process the corresponding Ticket Response message and must retry and increment the retryCount value.

6.2.3.2.2.2. Processing Ticket Request Message

The DEA MUST perform the following steps to verify the Ticket Request message:

1. Parse the message header. If the header parsing fails, drop the message and do not return an error.

2. Verify the protocol version number in the header. If this protocol version is not supported, send an error message with the DEA_ERR_BAD_PVNO error code.

3. Parse the rest of the message. If the message format is found to be illegal, drop the message and do not return an error.

4. Based on the ClientIdentifier attribute in the Ticket Request message, the DEA looks up the Service Key of the client in the DEA storage. If no record is found, drop the message and do not return an error.
5. Verify the signature attribute using the client’s Service Authentication Key derived from the Service Key retrieved in step 4. If verification fails for any reason, drop the message and do not return an error.

6. Check the ClientDRMtimeSeconds attribute in the Ticket Request message. If the time is outside of the acceptable time window (typically +/- 5 minutes), this message is rejected and a message with the ERR_SKEW error code is returned.

7. If the ClientDRMtimeSeconds value is within an acceptable time window, compute a SHA-1 hash of the Ticket Request message and check if there is already a record with this hash value in the Replay Cache. (Each Replay Cache record consists of a request hash value and the ClientDRMtimeSeconds value. Only the entries corresponding to the acceptable time window, e.g. +/- 5 minutes are kept in the Replay Cache.) If the DEA finds a record in the Replay Cache with the same hash value, a replay attack is assumed and a message with the ERR_REPEAT error code is returned. If no such entries are found, the processing of the Ticket Request message continues as specified below.

8. At this point, the DEA MUST update the Replay Cache with the record corresponding to this Ticket Request message (containing message hash and value of ClientDRMtimeSeconds).

9.
10. If the ServerName value is not in the storage, or the DEA is not authorized by the DA to issue tickets for the ServerName, then an error message DEA_ERR_S_PRINCIPAL_UNKNOWN is returned.

11. If the ServerName can accommodate none of the requested encryption type, an error message with code DEA_ERR_ETYPE_NOSUPP is returned.

12. If the ServerName can accommodate none of the requested signature type, an error message with code DEA_ERR_SIGTYPE_NOSUPP is returned.

13. If no errors are generated during the processing of the Ticket Request message, then a Ticket Response message is generated.

6.2.3.2.2.3. Verifying a Ticket
An LRM MUST verify a Ticket destined to it using the procedure specified in this section.
	
	
	

	
	
	

	
	
	

1. Parse the Ticket. If the general ticket format does not fit the specification, then verification fails with the error code ERR_TICKET.

2. If the LRM does not support the ticket version number, then verification fails with the error code ERR_TICKET_VERSION.

3. If the ServerName and ServerDomainBaseID values in the Ticket do not match that of the LRM, then verification fails with the error code ERR_NOT_US.

4. If the version number of the LRM’s Service Key (used to encrypt the PrivateTicketPart) is not the current version used by the LRM, then the LRM does the following:

• If the LRM still possesses its Service Key with the version number specified in the Ticket, the LRM MUST use it to derive the Service Authentication Key to authenticate the Ticket (Step 5 below) and to derive the Service Encryption Key to decrypt the private ticket part and to extract the shared key from the ticket (Step 6 below). At this point, an ERR_BADKEYVER error code is generated and saved but the processing of the Ticket continues with the next step. The LRM SHOULD save the old Serivce Keys for at least the maximum duration of the Tickets.

• Otherwise, Ticket verification fails immediately with the error code ERR_BADKEYVER.

5. Verify the keyed checksum over the Ticket by using the version of the LRM’s Service Key that is specified in the Ticket. If the LRM no longer supports the signature type, then verification fails with the error code ERR_TKT_INAPP_CKSUM. If the signature verification fails, then the overall Ticket verification fails with the error code ERR_BAD_INTEGRITY.

6. Decrypt the private part of the Ticket and then parse the decrypted data. If decryption fails or if parsing fails, then the overall Ticket verification fails with the error code ERR_PRIV_TKT_PART.

7. If Step 4 above previously recorded error code ERR_BADKEYVER, now fail the ticket verification with this error code.

8. If the start of the ticket validity period is in the future by more than the acceptable clock skew (usually configured to be 5 minutes), then verification fails with the error code ERR_TKT_NYV.

9. If the end time of the ticket validity period is passed by more than the acceptable clock skew, then the verification fails with the error code ERR_TKT_EXPIRED.

When an error is detected in Steps 1 through 6 above, the corresponding error code must be considered as Non-Recoverable: the error code MUST NOT be returned by the LRM in an error message. Unless Step 6 succeeds with no errors, the shared key was not successfully extracted from the Ticket, and, therefore, the LRM cannot authenticate an error message.

When an error is detected after Step 6, the corresponding error code MUST be considered as Recoverable: an error message can be authenticated with a keyed checksum that is keyed with the shared key obtained from the Ticket.
6.2.3.2.3 Ticket Response Message Details

The Ticket Response message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 6.
· Pvno – This field contains the value 1.0.

· stid – This field is set as discussed in Section 7.2.1.3.3.1.
· dtid – This field is set as discussed in Section 7.2.1.3.3.1.
· retryCount – This field is set as discussed in Section 7.2.1.3.3.1.
· Attributes – This data structure contains the DASignedData attributes.
i. nbrOfAttrs – This field contains the value 1.
· AttributeStructures – This data structure contains one TicketResp attribute data structure.
j. nbrOfAttrStrs – This field contains the value 1.
· Signature – This attribute data structure specifies a digital signature of the message as discussed in Section 7.2.1.3.3.1.
6.2.3.2.3.1. Generating Ticket Response Message

The DEA MUST follow the following steps to generate a Ticket Response message:

1. Set the stid header field of the message to 0.

2. Set the dtid header field of the message to the same value of the stid header field from the preceding Ticket Request message, so that the response message is tied to the request message.
3. The retryCount from the preceding Ticket Request message is copied to the retryCount in this message.

4. The DEA generates a TicketResp as described below.
a. The DEA randomly generates a Session Key. The DEA MUST assign the type of Session Key based on the intersection of the list of algorithms specified in the EncTypeSet attribute in the preceding Ticket Request message with the list of encryption algorithms supported by the ServerName. If this intersection contains more than one encryption algorithm, the DEA MUST select the strongest one. The encryption algorithm is used to encrypt the data in PrivateTicketPart.
b. The DEA generates a Ticket, as per Section 7.2.1.3.3.2.
c. The DEA chooses an encryption algorithm based on the intersection of the list of algorithms specified in the EncTypeSet attribute in the preceding Ticket Request message with the list of encryption algorithms supported by the DEA. If this intersection contains more than one encryption algorithm, the DEA MUST select the strongest one. The encryption algorithm is used to encrypt the data in EncryptedData.

d. The DEA populates the EncryptedData attribute data structure. The EncType contains the identifier of the encryption algorithm that the DEA chose. The CipherText contains the Session Key type in a KeyType attribute and the Session Key in a KeyValue attribute. The value of the CipherText attribute is encrypted by using the Device Service Encryption Key derived from the Service Key retrieved in step 4 of Section 7.2.1.3.2.2.
5. Populate the DASignedData attribute.
6. Generate the Signature attribute data structure. Specifically, the DEA chooses a keyed checksum algorithm based on the intersection of the list of algorithms specified in the CsumTypeSet attribute in the preceding Ticket Request message with the list of checksum algorithms supported by the DEA. The data structure consists of a CsumType attribute and a SigValue attribute. The DEA then specifies the chosen keyed checksum algorithm identifier in the CsumType attribute. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the Device Service Authentication Key derived from the Service Key retrieved from DEA storage to compute the keyed checksum.

6.2.3.2.3.2. Generating a Ticket

The DEA generates a Ticket attribute data structure as follows:

1. Fill in the TktVnum with the value 1.0.

2. Fill in the ServerDomainBaseID and ServerName values. The ServerDomainID is the same as the ClientDomainID. The ServerName is copied from the preceding Ticket Request message.
3. Fill in the ClientDomainBaseID and ClientName values corresponding to the client.

4. Fill in the AuthTime attribute value. This is the value of ClientDRMtimeSeconds in the record of the ClientName in the DEA storage.

5. Fill in the EndTime attribute value. This is the expiration time for the Ticket and MAY be set according to a policy communicated to the DEA. The format of this policy and the method to communicate the policy to the DEA are outside the scope of these specifications.

6. Fill in the EncType attribute value. This is the identifier of the algorithm the DEA uses to encrypt PrivateTicketPart.
7. Generate the PrivateTicketPart attribute data structure. This data structure contains the Session Key type in a KeyType attribute, the Session Key in a KeyValue attribute, the ClientDomainBaseID attribute and the ClientName attribute. PrivateTicketPart is encrypted by using the Service Key for the ServerName.

8. Fill in the Service Key version number in the outer SkeyVnum attribute. This version number is for the Service Key for the ServerName.

9. Fill in the values of EncTypeSet and SigTypeSet for the ServerName.
10.
11. Compute the keyed checksum for the Ticket and populate the Signature attribute data structure. Specifically, the DEA chooses a checksum algorithm based on the intersection of the list SigTypeSet of algorithms in the ServerName record with the list of keyed checksum algorithms supported by the DEA. If this intersection contains more than one keyed checksum algorithm, the DEA MUST select the strongest one. The DEA then specifies the chosen keyed checksum algorithm identifier in the SigType attribute. The DEA then computes a keyed checksum over the entire Ticket except for the SigType and SigValue attributes and populates SigValue with the computed keyed checksum. (During the keyed checksum calculation, the value of the lengthStr field is adjusted to reflect the missing SigType and SigValue attributes.) The DEA uses the Service Authentication Key of the ServerName to compute the keyed checksum for the Ticket.

6.2.3.2.3.3. Processing Ticket Response Message

The client MUST follow the following procedure to process the Ticket Response message. Note that the client does not send an error message back to the DEA. In some cases, the client will retry with another Ticket Request message:

1. Parse the message header. If the header parsing fails, pretend that the Ticket Response message were never received, i.e. continue waiting for a reply to the initial Ticket Request message until a timeout occurs and then retry.
2. Verify the protocol version number in the header. If this protocol version is not supported, pretend the message were never received.

3. The client looks for an outstanding Ticket Request message whose stid value matches the dtid header field in the Ticket Response message. If there is no match, the client proceeds as if the Ticket Response message were never received.

4. Verify that the retryCount in the preceding Ticket Request message matches the retryCount in the Ticket Response message. If it does not match, the client proceeds as if the reply message were never received.

5. Parse the rest of the Ticket Response message. If the message format is found to be illegal, pretend the message were never received.
6. Verify the keyed checksum (by using the client’s Service Authentication Key). If the checksum does not verify, this message is dropped and the client proceeds as if the message were never received.
7.
8. Process the TicketResp attribute data structure in the response as follows:

a. The client decrypts the value of the Ciphertext attribute in EncryptedData in the TicketResp attribute data structure using its Service Encryption Key. If the value cannot be decrypted because the client does not support the encryption type of the EncryptedData, a fatal error MUST be reported to the user, and the client MUST NOT retry. If the resulting clear text contains formatting errors or contains a Service Key with a type that is not supported by this client, then a fatal error MUST be reported to the user, and the client MUST NOT retry.
b. The client processes the Ticket by using the procedure described in Section 7.2.1.3.3.4. If there is an error in the Ticket, then a fatal error is reported to the user, and the client MUST NOT retry.
9. Verify that the value of the DASignedData attribute shows that the DEA is authorized by the DA to issue Tickets to the Device, and that the LRM is associated with the DEA. If the verification fails, then the client MUST abort processing of the message and log the error code DEA_ERROR_DEA_NOT_TRUSTED.

2. If no errors in the Ticket Response message were detected, the client MUST save the full Ticket in a new entry in its ticket cache until the Ticket expires.
6.2.3.2.3.4. Ticket Processing by Client
A client is normally unable to verify the integrity of a Ticket. Still, a client MUST perform some verification on the received Ticket, as specified below. If the verification below fails at any step, the client application reports it as a fatal error to the user, and the client MUST NOT retry:

1. Parse the Ticket. If the general ticket format does not fit the specification, then verification fails.

2. If the ServerName and ServerDomainBaseID in the Ticket do not match what the client was expecting from the DEA, then verification fails.

3. If the end of the Ticket validity period (End Time) is in the past by more than the clock skew period (usually 5 minutes), then verification fails.

6.2.3.2.4 Imported-RO Request Message Details

The Imported-RO Request message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 26.
· Pvno – This field contains the value 1.0.

· stid – This field is set as discussed in Section 7.2.1.3.4.1.
· dtid – This field is set as discussed in Section 7.2.1.3.4.1.
· retryCount – This field is set as discussed in Section 7.2.1.3.4.1.
· Attributes – This data structure contains the following attributes: ClientName, EncTypeSet, ROReqFlags and ClientDRMtimeSeconds.
· nbrOfAttrs – This field contains the value 4.
· AttributeStructures – This data structure contains the following attribute data structures: Ticket and ROReqList.
· nbrOfAttrStrs – This field contains the value 2.
· Signature – This field is set as discussed in Section 7.2.1.3.4.1.
6.2.3.2.4.1. Generating Imported-RO Request Message

The Device MUST follow the following steps to generate an Imported-RO Request message:

1. Generate a pseudo random number for the stid header field of the message.

2. Set the dtid header field of the message to 0.
3. Fill in the retryCount field. The value must be 0 for the initial message, 1 for the first retry, etc.

4. Fill in the ClientName attribute.

5. Fill in list of encryption types supported by the client (EncTypeSet).

6. Fill in the ROReqFlags attribute: If the DRM Agent does not have the DA-Signed Data that associates the LRM to the DEA, it sets the corresponding bit to 1; otherwise it sets it to 0. Similarly, if the DRM Agent does not have the LRM’s certificate chain, it sets the corresponding bit to 1, otherwise it sets it to 0.

7. Fill in the ClientDRMtimeSeconds attribute.

8. Insert the Ticket attribute data structure with the LRM Ticket received from the DEA.

9. For each of the ROs that the DRM Agent wants to import, create an RO_ID attribute with the RO_ID and insert it into the RORequestList attribute data structure.

10. Generate the Signature attribute data structure. Specifically, the DRM Agent chooses a keyed checksum algorithm based on the intersection of the list of algorithms specified in the SigTypeSet attribute in the LRM Ticket with the list of keyed checksum algorithms supported by the client. The data structure consists of a SigType attribute and a SigValue attribute. The client then specifies the chosen keyed checksum algorithm identifier in the SigType attribute. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the Session Authentication Key derived from the Session Key obtained from the DEA to compute the keyed checksum.
After the Device sends out the Imported-RO Request message, it MUST save the value of the stid header field in order to later validate the matching Imported-RO Response message from the LRM. The Device MUST keep the stid until a configurable time out value. After the time out, the Device MUST retry the request with the same stid and increment the retryCount value.

6.2.3.2.4.2. Processing Imported-RO Request Message

The LRM MUST perform the following steps to verify the Imported-RO Request message:

1. Parse the message header. If the header parsing fails, drop the message and do not return an error.

2. Verify the protocol version number in the header. If this protocol version is not supported, drop the message and do not return an error.

3. Parse the rest of the message. If the message format is found to be illegal, drop the message and do not return an error.
4. Verify the LRM Ticket as specified in Section 7.2.1.3.2.3. If the LRM Ticket verification fails with a Recoverable error code, save the error code and proceed to the next step without returning an error message yet. If the LRM Ticket verification fails with a Non-Recoverable error code, drop the message and do not return an error.
5. Verify the signature attribute. If verification fails for any reason, drop the message and do not return an error. If the LRM Ticket verification earlier resulted in a Recoverable error code, then the LRM must possess the LRM Service Key and can use it to extract the LRM Session Key for verifying the signature.
6. If the LRM Ticket verification earlier resulted in a Recoverable error code, at this time return the corresponding error message. The same Session Key that was used to verify the signature in Step 5 above MUST now be used to generate a keyed checksum for the error message.
7. Check the ClientDRMtimeSeconds attribute in the Imported-RO Request message. If the time is outside of the acceptable time window (typically +/- 5 minutes), this message is rejected and a message with the ERR_SKEW error code is returned.

8. If the ClientDRMtimeSeconds value is within an acceptable time window, compute a SHA-1 hash of the Imported-RO Request message and check if there is already a record with this hash value in the Replay Cache. (Each Replay Cache record consists of a request hash value and the ClientDRMtimeSeconds value. Only the entries corresponding to the acceptable time window, e.g. +/- 5 minutes are kept in the Replay Cache.) If the LRM finds a record in the Replay Cache with the same hash value, a replay attack is assumed and a message with the ERR_REPEAT error code is returned. If no such entries are found, the processing of the Imported-RO Request message continues as specified below.

9. At this point, the LRM MUST update the Replay Cache with the record corresponding to this Imported-RO Request message (containing message hash and value of ClientDRMtimeSeconds).
10. Parse the ROReqFlags attribute to take notes of whether the DA-Signed Data and LRM’s certificate chain are requested by the DRM Agent. If requested, the DA-Signed Data and the LRM’s certificate chain are included in the Imported-RO Response message.

11. If no errors are generated during the processing of the Imported-RO Request message, then the LRM generates an Imported-RO Response message.

6.2.3.2.5 Imported-RO Response Message Details

The Imported-RO Response message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 27.
· Pvno – This field contains the value 1.0.

· stid – This field is set as discussed in Section 7.2.1.3.5.11.
· dtid – This field is set as discussed in Section 7.2.1.3.5.1.
· retryCount – This field is set as discussed in Section 7.2.1.3.5.1.
· Attributes – This data structure may contain the DASignedData attribute if requested in the corresponding request.
a. nbrOfAttrs – This field contains the value 0 or 1.
· AttributeStructures – This data structure contains the RORespList attribute data structure and may contain the CertificateChain attribute data structure if requested in the corresponding request.
b. nbrOfAttrStrs – This field contains the value 1 or 2.
· Signature – This field is set as discussed in Section 7.2.1.3.5.1.
6.2.3.2.5.1. Generating Imported-RO Response Message

The LRM MUST follow the following steps to generate an Imported-RO Response message:

1. Set the stid header field of the message to 0.

2. Set the dtid header field of the message to the same value of the stid header field from the preceding Imported-RO Request message, so that the response message is tied to the request message.
3. The retryCount from the preceding Imported-RO Request message is copied to the retryCount in this message.
4. If the DA-Signed Data bit of the ROReqFlags is set in the Imported-RO Request message, the LRM adds a DASignedData attribute containing the DA-Signed Data that associates the LRM to the DEA.

5. If the LRM’s certificate chain bit of the ROReqFlags is set in the Imported-RO Request message, the LRM adds a CertificateChain attribute data structure containing the LRM’s certificate chain.

6. If the request is a retry, the LRM retrieves the ROReqList attribute data structure from its storage and inserts it to the Imported-RO Response message. The LRM then proceeds to step 9.

7. For each RO_ID listed in the ROReqList of the Imported-RO Request message, the LRM adds an ROResp attribute data structure to the RORespList attribute data structure in the response:

a. If the RO_ID is not recognized, the LRM sets the status code in the RORespStatus attribute to indicate this error and continue to process the next RO_ID.

b. If the LRM is no longer authorized to issue the Imported-RO corresponding to the RO_ID, the LRM sets the status code in the RORespStatus attribute to indicate this error and continue to process the next RO_ID.

c. The LRM sets the status code in the RORespStatus attribute to “Status OK”. The LRM decrements by one the number of Imported-ROs corresponding to the specific Import-Ready Data that the LRM has available for use within the User Domain managed by the DEA corresponding to the LRM.

d. The LRM generates a random REK for use by this Imported-RO. The LRM chooses an encryption algorithm based on the intersection of the list of algorithms specified in the EncTypeSet attribute in the preceding Imported-RO Request message with the list of encryption algorithms supported by the LRM. If this intersection contains more than one encryption algorithm, the LRM MUST select the strongest one. The encryption algorithm is used to encrypt the REK to create the EncryptedData attribute data structure.

e. The LRM creates an Imported-RO that contains within the <rights> element the base64 encoded SHA-1 hash over the concatenation of the values of the RO_ID and ClientIdentifier attributes. The LRM inserts the Imported-RO into the ImportedRights attribute of the corresponding ROResp attribute data structure. The LRM proceed to process the next RO_ID.

8. If this request is not a retry, the LRM stores the RORespList indexed by the stid of the Imported-RO Request message until the Imported-RO Request message no longer exists in the Replay Cache. This allows the LRM to re-send the same RORespList if a retry Imported-RO Request message arrives at the LRM.
9. Generate the Signature attribute data structure. The data structure consists of a SigType attribute and a SigValue attribute. The value in the SigType attribute is the same as the value of the SigType attribute in the preceding Imported-RO Request message. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the Session Authentication Key derived from the Session Key in the LRM-Ticket to compute the keyed checksum.

6.2.3.2.5.2. Processing Imported-RO Response Message

The client MUST follow the following procedure to process the Imported-RO Response message. Note that the client does not send an error message back to the LRM. In some cases, the client will retry with another Imported-RO Request message:

1. Parse the message header. If the header parsing fails, pretend that the Imported-RO Response message were never received, i.e. continue waiting for a reply to the initial Imported-RO Request message until a timeout occurs and then retry.
2. Verify the protocol version number in the header. If this protocol version is not supported, pretend the message were never received.

3. The client looks for an outstanding Imported-RO Request message whose stid value matches the dtid header field in the Imported-RO Response message. If there is no match, the client proceeds as if the Imported-RO Response message were never received.

4. Verify that the retryCount in the preceding Imported-RO Request message matches the retryCount in the Imported-RO Response message. If it does not match, the client proceeds as if the reply message were never received.

5. Parse the rest of the Imported-RO Response message. If the message format is found to be illegal, pretend the message were never received.
6. Verify the signature attribute of the message (by using the Session Key in the LRM Ticket). If the keyed checksum does not verify, this message is dropped and the client proceeds as if the message were never received.
7. If DA-Signed Data is requested in the request but the response does not include a DASignedData attribute, a fatal error MUST be reported to the user. If DA-Signed Data is requested and the response includes a DASignedData attribute, parse and save the DA-Signed Data if there is no error.

8. If LRM’s certificate chain is requested in the request and the response does not include a CertificateChain attribute data structure, a fatal error MUST be reported to the user. If LRM’s certificate chain is requested and the response includes a CertificateChain attribute data structure, verify the certificate chain and in particular, verify that the subject name of the LRM certificate corresponds to the LRM that the DRM Agent is currently communicating with. Also, verify that the LRM certificate has the localRightsManagementDomain key purpose. If there is no error, save the LRM’s certificate chain.

9. For each ROResp attribute data structure in the RORespList attribute data structure of the response, the DRM Agent performs the following:

a. If the RORespStatus indicates an error, report the error to the user and proceed to process the next ROResp attribute data structure. If the RORespStatus indicates a “Status OK”, the DRM Agent proceeds to process the associated ImportedRights attribute.

b. Retrieve the LRM’s certificate from storage and use it to verify the <signature> element of the Imported-RO.

c. Verify that the value of the DASignedData attribute shows that the LRM whose signature is in the Imported-RO is associated with the DEA that issued the LRM Ticket to the client. If the DASignedData does not show this association, then a fatal error MUST be reported to the user, and the client MUST NOT retry.
d. If no errors are generated during the processing of this ROResp attribute data structure, then the DRM Agent stores the received Imported-RO. The DRM Agent also decrypts the EncryptedData attribute data structure to retrieve and stores the REK associated with the Imported-RO.

e. The DRM Agent proceeds to process the next ROResp attribute data structure.
6.2.3.3

6.2.3.3.1

·
·
·
·
·
·
c.
·
d.
·
6.2.3.3.1.1.

1.
2.
3.
4.
5.
6.
7.
8.
9.

6.2.3.3.1.2.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
6.2.3.3.2

·
·
·
·
·
·
e.
·
f.
·
6.2.3.3.2.1.

1.
2.
3.
4.
5.
6.

7.

8.
6.2.3.3.2.2.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.

6.2.3.4 RightsAuth-Protocol
This protocol is only applicable to an Imported-RO created by an LRM with a <move> permission that is <domain-size>-constrained [SCE REL TS].

Before the Imported-RO can be enabled at a DRM Agent following a Move transaction [SCE-A2A] with a DRM Requestor, the DRM Agent MUST obtain authorization from the DEA by sending an Authorization Request message to the DEA. The DRM Agent MAY request authorization for more than one Imported-RO in one request. These Imported-ROs may have been received from one or more DRM Requestors. The Authorization Request message is specified in Section 7.2.1.4.1. In order to formulate and transmit an Authorization Request message, the DRM Agent MUST be registered with the DEA and have a current Service Key.
After receiving the Authorization Request message, the DEA processes the requests (for each Imported RO) one by one to determine whether the Move is legitimate. The DEA responds to the DRM Agent with an Authorization Response that indicates the status of authorization for each of the Imported-ROs requested. The Authorization Response message is specified in Section 7.2.1.4.2.

After receiving the Authorization Response message, the DRM Agent processes the status responses one by one to determine whether authorization has been granted for each Imported-RO requested. The DRM Agent may only enable those Imported-ROs where authorization has been granted, and MUST NOT enable those Imported-ROs where authorization has not been granted.

The Authorization Request and Response transaction is illustrated in Figure 8 below.

[image: image5.emf]DRM Agent DEA

Auth Request

Auth Response

Figure 8 - Rights Authorization Protocol Messages

6.2.3.4.1 Authorization Request Message Details

The Authorization Request message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 30.
· Pvno – This field contains the value 1.0.
· stid – This field is set as discussed in Section 7.2.1.4.1.1.
· dtid – This field is set as discussed in Section 7.2.1.4.1.1.
· retryCount – This field is set as discussed in Section 7.2.1.4.1.1.

· Attributes – This data structure contains the following attributes: ClientIdentifier, ClientDRMtimeSeconds, SigTypeSet.
g. nbrOfAttrs – This field contains the value 3.
· AttributeStructures – This data structure contains a ROAuthRequestList attribute data structure.
h. nbrOfAttrStrs – This field contains the value 1.
· Signature – This attribute data structure specifies a digital signature of the message as discussed in Section 7.2.1.4.1.1.
6.2.3.4.1.1. Generating Authorization Request Message

The DRM Agent MUST perform the following steps to generate an Authorization Request message:

1. Generate a pseudo random number for the stid header field of the message.

2. Set the dtid header field of the message to 0.
3. Fill in the retryCount field. The value must be 0 for the initial message, 1 for the first retry, etc.

4. Fill in the ClientIdentifier attribute with the DRM Agent’s Identifier.

5. Fill in the ClientDRMtimeSeconds attribute.

6. Fill in the signature types supported by the DRM Agent (SigTypeSet)

7. For each of the Imported-RO that the DRM Agent wants to request for authorization from DEA, the DRM Agent inserts a ROAuthRequest attribute data structure to the ROAuthRequestList attribute data structure. The fields of each ROAuthRequest attribute data structure are constructed as follows:

a. Fill in the ClientIdentifier attribute with the DRM Requestor’s Identifier for this Imported-RO. For this purpose, the DRM Requestor’s Device ID is stored by the Destination DRM Agent as independently determined by the Destination DRM Agent at the time of the Move (i.e., based on a SAC context rather than a DRM Requestor indication of its Device ID).
b. Fill in the DateTime attribute as specified by the DRM Requestor when the Move is performed.

c. Fill in the Signature attribute data structure with the value provided by the DRM Requestor. This is a keyed checksum of [Source Device ID, Date-Time, Recipient Device ID, ROID] using the DRM Requestor’s Service Key.

d. Fill in the IsInitialMove attribute as specified by the DRM Requestor.

e. If this is an initial Move, append an ImportedRights attribute to the ROAuthRequest. The ImportedRights attribute contains the Imported-RO <rights> and <signature> elements. If this is not an initial move, append a RO_ID attribute to the ROAuthRequest. For this purpose, the RO_ID is extracted by the DRM Agent directly from the <rights> element (i.e., not from a DRM Requestor’s indication of this value).

f. Proceed to process the next Imported-RO.

8. Generate the Signature attribute data structure. The data structure consists of a SigType attribute and a SigValue attribute. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the DRM Agent’s Service Key to compute the keyed checksum.
After the DRM Agent sends out the Authorization Request message, it MUST save the value of the stid header field in order to later validate the matching Authorization Response message from the DEA. The DRM Agent MUST keep the stid until a configurable time out value. After the time out, the DRM Agent will no longer be able to process the corresponding Authorization Response message and MUST retry and increment the retryCount value.
6.2.3.4.1.2. Processing Authorization Request Message

The DEA MUST perform the following steps to verify the Authorization Request message:

1. Parse the message header. If the header parsing fails, drop the message and do not return an error.

2. Verify the protocol version number in the header. If this protocol version is not supported, send an error message (per section 6.1.4) with the DEA_ERR_BAD_PVNO error code (if the client’s Service Key is found in Step 4).

3. Parse the rest of the message. If the message format is found to be illegal, drop the message and do not return an error.
4. Based on the (outer) ClientIdentifier attribute in the Authorization Request message, the DEA looks up the Service Key of the client (DRM Agent) in the DEA storage. If no record is found, drop the message and do not return an error.
5. Verify the signature attribute using the client’s Service Key. If verification fails for any reason, drop the message and do not return an error.

6. Check the ClientDRMtimeSeconds attribute in the Authorization Request message. If the time is outside of the acceptable time window (typically +/- 5 minutes), this message is rejected and a message with the ERR_SKEW error code is returned.

7. If the ClientDRMtimeSeconds value is within an acceptable time window, compute a SHA-1 hash of the Authorization Request message and check if there is already a record with this hash value in the Replay Cache. (Each Replay Cache record consists of a request hash value and the ClientDRMtimeSeconds value. Only the entries corresponding to the acceptable time window, e.g. +/- 5 minutes are kept in the Replay Cache.) If the DEA finds a record in the Replay Cache with the same hash value, a replay attack is assumed and a message with the ERR_REPEAT error code is returned. If no such entries are found, the processing of the Authorization Request message continues as specified below.

8. At this point, the DEA MUST update the Replay Cache with the record corresponding to this Authorization Request message (containing message hash and value of ClientDRMtimeSeconds).

9. If no errors are generated during the processing of the Authorization Request message, then an Authorization Response message is generated.

6.2.3.4.2 Authorization Response Message Details
The Authorization Response message has the syntax described in Section 6.1. The fields of the message are as follows:

· msgType – This field contains the value 31.
· Pvno – This field contains the value 1.0.
· stid – This field is set as discussed in Section 7.2.1.4.2.1
· dtid – This field is set as discussed in Section 7.2.1.4.2.1
· retryCount – This field is set as discussed in Section 7.2.1.4.2.1
· Attributes – This data structure contains no attributes.
i. nbrOfAttrs – This field contains the value 0.
· AttributeStructures – This data structure contains a ROAuthResponseList attribute data structure.
j. nbrOfAttrStrs – This field contains the value 1.
· Signature – This attribute data structure specifies a digital signature of the message as discussed in Section 7.2.1.4.2.1.
6.2.3.4.2.1. Generating Authorization Response Message

The DEA MUST perform the following steps to generate an Authorization Response message:

1. Set the stid header field of the message to 0.

2. Set the dtid header field of the message to the same value of the stid header field from the preceding Authorization Request message (so that the response message is tied to the request message).
3. The retryCount from the preceding Authorization Request message is copied to the retryCount in this message.
4. For each of the ROAuthRequest attribute data structure in the Authorization Request, the DEA determines whether the DRM Agent can enable the RO and constructs a corresponding ROAuthResponse attribute data structure as follows:

a. Fill in the RO_ID attribute of the ROAuthResponse with the RO_ID in the corresponding ROAuthRequest attribute data structure. (Note that if this is an Initial Move, the RO_ID is retrieved from the <rights> element of the ImportedRights attribute.)

b. Based on the ClientIdentifier attribute (that contains the DRM Requestor’s Identifier) in the ROAuthRequest attribute data structure, the DEA looks up the Service Key of the DRM Requestor in the DEA storage. If no record is found, fill in the ROAuthStatus attribute with an error status and continue to process the next ROAuthRequest.

c. If this is an Initial Move, the DEA performs the following verifications:

i. Verify that there is no DEA record for that RO_ID

ii. Parse the <rights> element and verify that the LRM that generated the <signature> element is legitimately associated with the DEA per DA-Signed Data.

iii. Verify that the ClientIdentifier attribute in the ROAuthRequest matches the Import-recipient Device ID in the <rights> element.

iv. Verify the signature attribute in the ROAuthRequest (by comparing it with a keyed checksum computed over the data [DRM Requestor Device ID, DateTime, DRM Agent Device ID, RO_ID] using the DRM Requestor’s Service Key found in Step 4.b above).

v. Verify that DateTime attribute in the ROAuthRequest is earlier than the DEA’s current Date-Time.

If any of the above verifications fails, the DEA fills in the ROAuthStatus with an error status. If all verifications passed, the DEA fills in the ROAuthStatus with a status code of OK. In the latter case, the DEA also records the RO_ID, the value of m (the number of User Domain Devices that are allowed to utilize the RO, as indicated within the Imported-RO), the DRM Agent’s Identifier and the current Date-Time to the DEA storage.

d. If this is not an Initial Move, the DEA performs the following:

i. Based on the RO_ID, the DEA finds the Device ID of the Device that has made the most recent successful request and the Date-Time that this occurred as evidenced by the last Date-Time stored by the DEA for this RO_ID.

ii. Verify that the Device ID found is the same as the DRM Requestor Device ID as indicated in the ClientIdentifier attribute in the ROAuthRequest.

iii. Verify the signature attribute in the ROAuthRequest (by comparing it with a keyed checksum computed over the data [DRM Requestor Device ID, DateTime, DRM Agent Device ID, RO_ID] using the DRM Requestor’s Service Key found in Step 4.b above).

iv. Verify that Date-Time retrieved from the DEA record is earlier than the DateTime attribute in the ROAuthRequest. Also verify that DateTime attribute in the ROAuthRequest is earlier than the DEA’s current Date-Time.
v. If the value of m as indicated within the Imported-RO is less than the maximum allowable size of the User Domain per Domain Policy, the DEA tracks the Device IDs of those Devices that have utilized the Imported-RO. If the length of this list is smaller than m, the DEA updates the list by appending the Device ID of the DRM Agent if the DRM Agent Device ID is not already included in the list. The DEA also includes a DeviceList attribute data structure jn the ROAuthResponse. The DeviceList attribute data structure includes m-1 Device IDs (where the DRM Agent Device ID is excluded) if the length of the list is m, and is null otherwise. The DEA verifies that if the length of the list is equal to m then the DRM Agent Device ID is on the list. [This verification step is intended to prevent enabling a Move that occurred from a DRM Requestor in possession of a locally stored copy of the DeviceList to a DRM Agent that is not on the DeviceList. The reason the DEA sends the list of Device IDs in the Authorization Response message if the domain-size value m set in the Imported-RO by the LRM has been reached is so that the RO does not get "wasted" by Moving it to a DRM Agent that is not on the list, resulting in the DRM Agent being disallowed to enable the Rights when it does an Authorization Request.]
If any of the above steps fails, the DEA fills in the ROAuthStatus with a status of error. If all verifications passed, the DEA fills in the ROAuthStatus with a status code of OK. In the latter case, the DEA also updates its record corresponding to the particular RO_ID with the current requesting Device ID and Date-Time.

e. The DEA proceeds to process the next ROAuthRequest attribute data structure.
5. Generate the Signature attribute data structure. Specifically, the DEA chooses a keyed checksum algorithm based on the intersection of the list of algorithms specified in the SigTypeSet attribute in the preceding Authorization Request message with the list of keyed checksum algorithms supported by the DEA. The data structure consists of a SigType attribute and a SigValue attribute. The DEA then specifies the chosen keyed checksum algorithm identifier in the SigType attribute. The value in SigValue is calculated over the entire message except for the Signature attribute data structure. Use the client’s Service Key located from the client’s record of the DEA storage to compute the keyed checksum.

6.2.3.4.2.2. Processing Authorization Response Message

The DRM Agent MUST execute the following procedure to process the Authorization Response message. Note that the DRM Agent does not send an error message back to the DEA.
1. Parse the message header. If the header parsing fails, pretend that the Authorization Response message was never received, i.e. continue waiting for a reply to the initial Authorization Request message until a time-out occurs and then retry.
2. Verify the protocol version number in the header. If this protocol version is not supported, pretend the message was never received.

3. The DRM Agent looks for an outstanding Authorization Request message whose stid value matches the dtid header field in the Authorization Response message. If there is no match, the client proceeds as if the Authorization Response message were never received.

4. Verify that the retryCount in the preceding Authorization Request message matches the retryCount in the Authorization Response message. If it does not match, the client proceeds as if the reply message were never received.

5. Parse the rest of the Authorization Response message. If the message format is found to be illegal, pretend the message was never received.
6. Verify the signature attribute by using the DRM Agent’s Service Key. If the keyed checksum does not verify, this message is dropped and the DRM Agent proceeds as if the message were never received.
7. For each ROAuthResponse attribute data structure in the ROAuthResponseList attribute data structure, the DRM Agent performs the following:

a. Verify that the RO_ID corresponds to one of the Imported-ROs that the DRM Agent has requested for authorization in the Authorization Request.

b. If the ROAuthStatus indicates that the authorization status is OK, the DRM Agent enables the Imported-RO associated. If a DeviceList attribute data structure is included, the DRM Agent saves the DeviceList if not already present for that RO_ID.

c. If the ROAuthStatus indicates that the authorization status is Error, the DRM Agent MUST NOT enable the associated Imported-RO.

d. The DRM Agent proceeds to process the next ROAuthResponse.

(2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20070101-I]
(2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20070101-I]

_1271606559.vsd
Source DRM Agent

Destination DRM Agent

DEA

Ticket Request

Ticket Response

SAC Key Request

SAC Key Response

A2A Imp-RO Request

A2A Imp-RO Response

_1275476859.vsd
Device

DEA

Key Request

Key Response

Device Registration Response

Device Registration Request

_1274734427.vsd
DRM Agent

DEA

Auth Request

Auth Response

_1271486798.vsd
DEA

DRM Agent

LRM

Import Init Request

Ticket Request

Ticket Response

Imported-RO Request

Imported-RO Response

