Doc# OMA-DRM-2008-0417-CR_SCE_DRM_Move_UserDomainConstrained_RO_via_RI[image: image1.jpg]_enhancement
Change Request

Doc# OMA-DRM-2008-0417-CR_SCE_DRM_Move_UserDomainConstrained_RO_via_RI_enhancement
Change Request

Change Request

	Title:
	Move User Domain Constrained RO via RI enhancement
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA DRM

	Doc to Change:
	OMA-TS-SCE_DRM-V1_0-20080822-D

	Submission Date:
	25 September 2008

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	David Kravitz, Motorola, david.kravitz@motorola.com
Zhipeng Zhou, Huawei, zhouzp@huawei.com
Yi Cheng, Ericsson, yi.cheng@ericsson.com

	Replaces:
	none

1 Reason for Change

This CR proposes a solution to alleviate the transitive trust problem discussed at the Eindhoven meeting.
2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

For the DRM group to agree the CR.
6 Detailed Change Proposal

8.3 Move <userDomain>-constrained RO Protocol

The Move <userDomain>-constrained RO Protocol enables a DRM Agent to move User Domain RO(s) that have the <userDomain> constraint to another DRM Agent with the aid of an RI who is associated to the User Domain(s).

8.3.1 MoveUserDomainConstrainedRORequest
The MoveUserDomainConstrainedRORequest message is sent from a Source Device to an RI for transferring <userDomain>-constrained RO(s) to the RI. The message MUST be a <sceroapMoveUserDomainConstrainedRORequest> element as defined in the following XML schema fragment:

<element name="sceroapMoveUserDomainConstrainedRORequest" type="gen:Request" />
A MoveUserDomainConstrainedRORequest message MUST be formatted as specified in the table below:
	element / attribute
	usage
	value

	triggerNonce
	O
	Default, as specified in [SCE-GEN]

	sessionId
	O
	Default, as specified in [SCE-GEN]

	reqID
	M
	Source Device’s ID

	resID
	M
	RI’s ID

	nonce
	M
	Default, as specified in [SCE-GEN]

	time
	M
	Default, as specified in [SCE-GEN]

	certificateChain
	O
	Default, as specified in [SCE-GEN]

	reqInfo
	M
	Specified below

	signature
	M
	Specified below

Table X: MoveUserDomainConstrainedRORequest Message Parameters
The MoveUserDomainConstrainedRORequest message MUST contain a <reqInfo> element as defined by the following XML schema fragment:
<element name="reqInfo" type="sceroap:MoveUserDomainConstrainedRORequestInformation"/>

<complexType name="MoveUserDomainConstrainedRORequestInformation">
 <sequence>

 <element name="userDomainConstrainedROInfo" type="sceroap:UserDomainConstrainedROInfo" maxOccurs="unbounded" />

 <element name="enc_REK" type="xenc:EncryptedKeyType" />

 <element name=”sourceDeviceUserDomainAuthorization” type=”dom:UserDomainAuthorization” maxOccurs="unbounded" />
 <element name="recipientDeviceId" type="gen:Identifier" minOccurs="0" />
 <element name="mac" type="base64Binary" />
 </sequence>

</complexType>

<complexType name="UserDomainConstrainedROInfo">
 <sequence>
 <element name="rights" type="o-ex:rightsType" />
 <element name="signature" type="ds:SignatureType" />
 <element name="stateInfo" type="o-ex:constraintType" minOccurs="0" maxOccurs="unbounded" />
 </sequence>
</complexType>
userDomainConstrainedROInfo: This element carries information about the <userDomain>-constrained RO being transferred to the RI. It contains the following sub-elements:
rights: This element contains the <rights> element of the RO to be Moved.
signature : This element contains the <signature> element of the RO to be Moved.
stateInfo: This element is present if the RO to be Moved is stateful. It carries the Rights to be Moved to the Recipient Device, see section 7.2.
enc_REK: This element contains a wrapped concatenation of a MAC key, KMAC, and one or more protected RO Encryption Key, KREK (more specifically the KREK is XORed with a hash over the <moveIndication> element and the result wrapped with the User Domain Key before concatenation, see section 13.1.2 for details). The protected KREK that is concatenated first is for the first RO (corresponding to the first <userDomainConstrainedROInfo> element in the request); the protected KREK that is concatenated next is for the second RO (corresponding to the second <userDomainConstrainedROInfo> element in the request); etc. The <ds:KeyInfo> element SHALL be the <gen:X509SPKIHash> element, identifying the RI Public Key through the (SHA-1) hash of the DER-encoded subjectPublicKeyInfo value in the RI certificate.
sourceDeviceUserDomainAuthorization: This element provides proof to the RI that the Source Device is a member of the specified User Domain. The value of the <entityId> sub-element must equal that of the <reqID> element. There MUST be one <sourceDeviceUserDomainAuthorization> element per User Domain the RO(s) being Moved are bound to.
recipientDeviceId: This element identifies the Device that is the intended recipient of the RO(s) being Moved. If there is no preceding MoveUserDomainConstrainedROTrigger or the trigger does not include a <recipientInfo> element, this element SHALL be present. If there is a preceding trigger and the trigger includes a <recipientInfo> element, since the RI already knows the ID of the Recipient Device, this element SHALL NOT be present.
mac This element provides integrity protection through a MAC on the canonical version ([SCE-GEN]) of the <reqInfo> element (excluding the <mac> element), using the MAC key, KMAC, wrapped in the <enc_REK> element. The MAC algorithm SHALL be the same algorithm that was negotiated as part of the registration with the RI, i.e. the MAC algorithm stored in the ResContext for the RI.

signature: This element contains a public key signature over the message besides the <signature> element itself. It is made using the negotiated signature algorithm and using the private key of the Source Device.
Upon receipt of a MoveUserDomainConstrainedRORequest message, the RI MUST perform the processing specified in section 9.2.

8.3.2

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

9.2 Moving <userDomain>-constrained RO
9.2.1 Sending MoveUserDomainConstrainedRORequest
The Move <userDomain>-constrained RO protocol can be initiated either by receiving a MoveUserDomainConstrainedROTrigger or by user interaction with the Device (e.g. the User of the Source Device can select RO(s) to Move using a built-in menu in the phone).

To package a MoveUserDomainConstrainedRORequest message, the DRM Agent MUST proceed as follows:
1. let the User select <userDomain>-constrained RO(s) to be Moved. The DRM Agent MUST ensure that the selected RO(s) have a <move> permission containing no <system> constraint or a <move> permission containing a <system> constraint which identifies the Move <userDomain>-constrained RO via RI protocol. The DRM Agent MUST also ensure the RI´s ID is present in the <moveIndication> element.
2. mark the selected RO(s) as unusable. For stateful RO, if only a portion of the Rights is to be Moved, only that portion is marked as unusable.
3. generate a MoveUserDomainConstrainedRORequest message. For each of the User Domains the selected RO(s) are bound to, a corresponding <sourceDeviceUserDomainAuthorization> element MUST be included.
4. if there was a preceding MoveUserDomainConstrainedRO trigger, the DRM Agent sends the request message using the reqURL in the trigger. Else, the DRM Agent sends the request message to the riURL which is stored in the ResContext for the RI.
If any error occurred during sending the request message, the DRM Agent MAY resend the message. How many times the DRM Agent retries is left to implementation. In case of final failure, the DRM Agent MUST mark the RO(s) as usable.
9.2.2 Processing MoveUserDomainConstrainedRORequest
When an RI receives a MoveUserDomainConstrainedRORequest message, the RI MUST process the request message as follows:

1. check if there is a valid ReqContext for the requesting Device by checking the value of the <reqID> element in the request. If the ReqContext is unavailable or invalid e.g. expired, the RI MUST send to the Source Device a MoveUserDomainConstrainedROResponse message with the status attribute set to “NotRegistered”.
2. verify the <signature> element in the request message. If the verification is not successful, the RI MUST send to the Source Device a MoveUserDomainConstrainedROResponse message with the status attribute set to “SignatureError”.
3. verify the <mac> element as follows:

4a. unwrap <enc_REK> to recover KMAC (see section 13.1.2).

4b. calculate a MAC on the canonical version of the <reqInfo> element (excluding the <mac> element) using the KMAC. The MAC algorithm to use is defined in the ReqContext for the Source Device.
4c. check the calculated MAC value against the <mac> element. If the calculated value is not equal to the value of the <mac> element, the RI MUST send to the Source Device a MoveUserDomainConstrainedROResponse message with the status attribute set to “MACError”.
5. for each <userDomainConstrainedROInfo> element in the request message:
5a. the RI SHOULD check for the presence of its own ID in the <moveIndication> element. If not present, the RI MUST send to the Source Device a MoveUserDomainConstrainedROResponse message with the status attribute set to “MoveServiceNotProvided”.
5b. verify the <signature> sub-element and check whether the signature has been generated by the RI/LRM that is identified by the <userDomainAuthorization> element under <rights>

5c. validate the <userDomainAuthorization> element under <rights>
5d. check if the <rights> sub-element has the <move> permission that does not preclude the use of the Move <userDomain>-constrained RO via RI protocol (i.e. having no <system> constraint on the <move> permission or having a <system> constraint which identifies the Move <userDomain>-constrained RO via RI protocol)
5e. if the <stateInfo> sub-element is present, validate that the state information contained in <stateInfo> is consistent with the original state in the <rights> element
If any of the 5b-5e checks fails, the RI MUST send to the Source Device a MoveUserDomainConstrainedROResponse message with the status attribute set to “InvalidRO”. Note the RI May provide more detailed error information in the response by using the <errorMessage> attribute.
If for some reason (e.g. the RI doesn’t trust some RI(s) identified by the <moveIndication> element) the RI decides to not provide the Move service, the RI MUST send to the Source Device a MoveUserDomainConstrainedROResponse message with the status attribute set to “MoveServiceNotProvided”.

6. for each <sourceDeviceUserDomainAuthorization> element in the request message:

6a. verify the DEA signature

6b. check whether the <entityId> sub-element matches the <reqID> element in the request

6c. check the <notBefore> and <notAfter> sub-elements to see if the authorization is valid
6d. check whether the generation number in the <userDomainId> element is the same as the one in RI’s User Domain Context for that particular User Domain. If the Source Device’s generation is lower than RI’s, the RI MUST send to the Source Device a MoveUserDomainConstrainedROResponse message with the status attribute set to “LowUserDomainGeneration”. If the Source Device’s generation is higher than RI’s, the RI MUST send to the Source Device a MoveUserDomainConstrainedROResponse message with the status attribute set to “UserDomainNotSupported”.
If any of the above checks fails, the RI MUST send to
 the Source Device a MoveUserDomainConstrainedROResponse message with the status attribute set to “InvalidUserDomainAuthorization”. Otherwise, the RI checks whether itself has a valid User Domain Authorization issued by the DEA for this User Domain. If not the RI MUST send a response with the status attribute set to “UserDomainNotSupported”.

If in the request message there is no <sourceDeviceUserDomainAuthorization> element for a User Domain to which one or more of the RO(s) being Moved are bound, the RI MUST send a response with the status attribute set to “UserDomainAuthorizationRequired”.

If all the above steps are successful, the RI SHALL set the status attribute in the MoveUserDomainConstrainedROResponse message to “Success”. In this case, the RI SHALL also include a list of <RIUserDomainAuthorization> elements in the response message, one per User Domain the ROs being Moved are bound to.

When and only when all the <userDomainConstrainedROInfo> elements in the request have been successfully validated (including checking of the required User Domain Authorizations), the RI generates corresponding ROs for the Recipient Device. The RI SHALL use the key received in the <enc_REK> element as the RO Encryption Key (see section 13.1.2). If the RO is stateful, the RI SHALL set the value of stateful constraint in the <rights> element to the value given by the corresponding <stateInfo> element in the request message. If the <rights> element has a “count” constraint under the “move” permission, the RI SHALL decrease the value of the <o-dd:count> element by 1. The RI SHALL also put a <userDomainAuthorization> element into the <rights> element proving that it is authorized by the DEA for managing the User Domain. After that, the RI MUST generate a signature over the <rights> element. The RI SHALL put into the new RO the <moveIndication> element that was received in the request.
The RI conducts a 1-pass or 2-pass RO Acquisition protocol or a 4-pass Confirmed RO Acquisition protocol ([DRM-DRM-v2.1]) to issue generated RO(s) to the Recipient Device.
How the RI handles the case that it failed to issue the Rights Objects to the Recipient Device is beyond the scope of this specification.
9.2.3 Processing MoveUserDomainConstrainedROResponse
When a DRM Agent receives a MoveUserDomainConstrainedROResponse message, the DRM Agent MUST process the response message as follows:

1. check if the <reqID>, <resID>, <nonce> elements in the response message match the ones sent in the preceding request message. If any of these does not match, the DRM Agent SHALL mark all the RO(s) being Moved as usable and terminate the Move <userDomain>-constrained RO protocol.

2. verify the <signature> element in the response message. If the verification fails, the DRM Agent SHALL mark all the RO(s) being Moved as usable and terminate the Move <userDomain>-constrained RO protocol.

3. check the <status> attribute in the response message. If the value is not “Success”, the DRM Agent SHALL mark all the RO(s) being Moved as usable and terminate the Move <userDomain>-constrained RO protocol.
4. for each <RIUserDomainAuthorization> element in the response message:

4a. verify the DEA signature

4b. check whether the <entityId> sub-element matches the <resID> element in the response

4c. check the <notBefore> and <notAfter> sub-elements to see if the authorization is valid

If any of the above checks fails, the DRM Agent SHALL mark those RO(s) that are bound to this User Domain as usable.

If in the response message there is no <RIUserDomainAuthorization> element for a User Domain to which one or more of the RO(s) being Moved are bound, the DRM Agent SHALL mark those ROs as usable.
5. for each of the rest RO(s) being Moved:

· In case of Move of full Rights, remove the RO and associated State Information

· In case of Move of partial Rights, update the associated State Information by the amount of transferred rights. E.g. if 3 counts were remained before starting the Move <userDomain>-constrained RO protocol and 1 count was transferred to RI, then the DRM Agent updates the State Information to have 2 counts.

Change 1: Add section 13.1.2

13.1.2 Transporting KMAC and one or more Protected KREK under a RI Public Key

This section applies to the Move <userDomain>-constrained RO via RI protocol.
KREK ("Rights Object Encryption Key") is the wrapping key for the content-encryption key KCEK in Rights Objects. To prevent the RI from getting knowledge of KREK when Moving a <userDomain>-constrained RO via the RI, KREK is protected by using the User Domain Key (UDK) before transferred to the RI.
KMAC is a 128-bit long key generated randomly by the Source Device and used for key confirmation of the message carrying one or more protected KREK.
Let Hash16 denote the first 16 bytes of the SHA-1 hash of the <moveIndication> element. KREK is first XORed with Hash16 and the result then wrapped with the UDK using the AES-WRAP symmetric wrapping scheme [AES-WRAP]. Let PREK denote the protected KREK:
PREK = AES-WRAP(UDK, KREK XOR Hash16)
The asymmetric encryption scheme RSAES-KEM-KWS SHALL be used with the AES-WRAP symmetric-key wrapping scheme to securely transmit KMAC and one or more PREK’s to a recipient RI using the RI's RSA public key. An independent random value Z SHALL be chosen for each encryption operation. For the AES-WRAP scheme, KMAC and one or more PREK’s are concatenated to form K, i.e.:

KEK = KDF(I2OSP(Z, mLen), NULL, kekLen)

C2 = AES-WRAP(KEK, KMAC | PREK1 | … | PREKn) (n is the number of ROs being Moved, the PREK’s are concatenated in the same order as the corresponding <userDomainConstrainedROInfo> elements appear in the request)
C1 = I2OSP(RSA.ENCRYPT(PubKeyRI, Z), mLen)

C = C1 | C2
where kekLen SHALL be set to 16 (128 bits) and mLen is the length of the modulus of the RI’s RSA public key in octets.
After receiving C, the RI splits it into C1 and C2 and decrypts C1 using its private key (consisting of a private exponent d and the modulus m), yielding Z:

C1 | C2 = C

c1 = OS2IP(C1, mLen)

Z = RSA.DECRYPT(PrivKeyRI, c1) = c1d mod m
where OS2IP converts an octet string to a nonnegative integer and is defined in [PKCS-1].

Using Z, the RI can derive KEK, and from KEK unwrap C2 to yield KMAC and PREK1, …, PREKn.
KEK = KDF(I2OSP(Z, mLen), NULL, kekLen)

KMAC | PREK1 | … | PREKn = AES-UNWRAP(KEK, C2)

The following URI SHALL be used to identify this key transport scheme in <xenc:EncryptionMethod> elements:

http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-1#rsaes-kem-kdf2-kw-aes128
When creating corresponding RO for the recipient Device, the RI SHALL use PREK as the RO Encryption Key to form the <encKey> element of <roPayload> in subsequent RO Acquisition protocol.
The recipient Device SHALL check whether RI’s ID is present in the <moveIndication> element. If not the Device MUST reject the RO.

The recipient Device uses the relevant UDK to unwrap PREK. If the unwrapping fails the recipient Device MUST reject the RO. It then calculates Hash16 using the <moveIndication> element to recover KREK.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

