Doc# OMA-Template-ChangeRequest-20080101-I.doc[image: image3.jpg]
Change Request

Doc# OMA-Template-ChangeRequest-20080101-I.doc
Change Request

Change Request

	Title:
	Specify verification of CEK hash
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA-DRM

	Doc to Change:
	OMA-TS-SCE_A2A-V1_0-20080904-D

	Submission Date:
	16 October 2008

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Bert Greevenbosch, Fraunhofer IIS, bert.greevenbosch@iis.fraunhofer.de
David Kravitz, Motorola, David.Kravitz@motorola.com

	Replaces:
	n/a

1 Reason for Change

This CR, together with agreed CR 418R01, resolves comment REL-048:
	REL-048
	2008.04.10
	T
	5.5
	Source: Seung-Jae Lee, LG Electronics
Form: OMA-DRM-2008-0144
Comment: According to W3C XML Encryption spec, xenc:CipherData does not allow oma-dd:CEKHash element as a child element. And it is not clear why hash of CEK is required while CEK is encrypted and nobody can modify CEK.

Proposed Change: Remove the section 5.5
	Status: OPEN
AP 1016 David and Mercè to find a place where to put the CEKHash (REL-048)

In the CR, it is specified that when the DRM Requester sends one or multiple encrypted CEKs during a Share RO or Lend operation, it also sends the hashes of the other CEKs in the RO. If the RO contains a <cekHash> element, the DRM Agent can verify the validity of the received CEK, and its association with the RO.

2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The DRM WG is recommended to agree the CR.
6 Detailed Change Proposal

Change 1: Add new section 8.13
8.12 Encrypted CEK

EncryptedCek is used to send a CEK that is encrypted using an algorithm and key established during a MAKE transaction (see section 9.2). It is defined as follows:

EncryptedCek(){
 EncryptedData()
}
8.13 Hashed CEK

HashedCek is used to send the SHA-1 hash over the CEK. It is defined as follows:

HashedCek(){
 Hash()
}
8.14 Random Number

RandomNumber contains a string of random octets. It is defined as follows:

RandomNumber(){
 OctetString8() //Defined in section 8.1
}

Change 2: Add new section 8.19
8.18 Asset ID

AssetId contains an identifier for a DRM Content. It is defined as follows:

AssetId(){

 OctetString16() //Defined in section 8.1
}

8.19 CEK Info
CekInfo is used to send for each asset either the CEK in an EncryptedCek field (see section 8.12), or the SHA-1 hash over the CEK in an HashedCEK field. It has the following definition:

CekInfo() {
 noCEKs
16
uimsbf
 for(i=0; i<noAssets; i++) {
 AssetId()

 cekOrCekHash
1
bslbf
 rfu
7
bslbf
 if(cekOrCekHash == 0)
 EncryptedCek()
 else

 HashedCek()
 }

}

The fields are defined as follows:

· noCEKs - this field indicates the number of CEKs the CekInfo field describes.
For each CEK (or asset), there are the following fields:
· AssetId - this field contains the Asset ID from the Asset associated with the CEK.
· cekOrCekHash - if this bit has the value 0, an EncryptedCek field follows. If this bit has the value 1, a Hash field follows.
· rfu – this field is reserved for future use. It MUST be set to all zeros.
· EncryptedCek - this field contains the encrypted CEK for this asset. See section 8.12 for more details.
· HashedCek - this field contains the hash over the CEK for this asset. See section 8.13 for more details.
8.20 Rights Object Container

Change 3: Modify section 9.8 to include verification of the CEK hash

9.8 Share RO Operation

The Share RO operation is used by the DRM Requester to do Ad Hoc Sharing of a Rights Object. This operation MUST take place using a SAC. This operation MUST NOT be performed if the DRM Requester’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set or the DRM Agent’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set (see section A.1). The following figure illustrates the Share RO operation.

[image: image1.png]
Figure 9: Share RO Operation
In order for this operation to take place, the following MUST be performed:

1. The DRM Requester checks if the Rights Object has the <adhoc-share> permission and any constraints. If the Rights Object cannot be Ad Hoc Shared, the Share RO operation is terminated. In particular, the DRM Requester MUST check the following:

a. If the <banning-interval> constraint is present, then it ensures that the banning interval timer for this DRM Agent has elapsed. If the banning interval timer has elapsed, then the DRM Requester starts the banning interval timer for this DRM Agent with the value of the <banning-interval> constraint.

b. If the <max-concurrent> constraint is present, then it ensures that the number of DRM Agents it is currently performing Adhoc Sharing with is less than the <max-concurrent> value. If the number of DRM Agents is less, then the DRM Requester increments the concurrent counter of DRM Agents for this Rights Object.
2. The DRM Requester generates a ShareRoRequest.

3. The DRM Requester sends the ShareRoRequest to the DRM Agent, applying the replay protection mechanism described in section 7.3.

4. The DRM Agent processes the request as follows:

a. It processes the request for replay as described in section 7.3.

b. It validates the fields of the ShareRoRequest. If any field is invalid, it sets ShareRoResponse.Status to InvalidField and proceeds to step 5.

c. It verifies the integrity of the request. If the integrity check fails, it sets ShareRoResponse.Status to IntegrityVerificationFailed and proceeds to step 5.

d. It verifies the signature on the Rights Object, including the SourceCertificateChain field. If any of the verifications fails, it sets ShareRoResponse.Status to InvalidRightsObject and proceeds to step 5.
e. If the RO contains a <cekHash> element in a <context> element in a <party> element, it calculates, using the CEKs and CEK hashes, the CEKhash as defined in [SCE-REL]. If the value is different from the value in the <cekHash> element, it sets ShareROResponse.Status to InvalidRightsObject and proceeds to step 5.
f. It checks that the Rights Object has the <adhoc-share> permission. If it does not, it sets ShareRoResponse.Status to InvalidRightsObject and proceeds to step 5.

g. It checks if it has enough room to install the Rights Object. If it does not, it sets ShareRoResponse.Status to NotEnoughSpace and proceeds to step 5.

h. It installs the Rights Object per [OMADRMV2] except that the replay cache is not considered. It marks the Rights Object as “shared”, meaning that only the permissions under the <adhoc-share> permission can be granted.

i. It sets ShareRoResponse.Status to Success.
5. The DRM Agent sends the ShareRoResponse to the DRM Requester, applying the replay protection mechanism described in section 7.3.

6. The DRM Requester processes the response as follows:

a. It processes the response for replay as described in section 7.3.

b. If ShareRoResponse.Status is not Success, it determines if it can restart the Share RO operation at step 2. If it does not restart the operation, it performs the following:

i. If the Rights Object contains the <banning-interval> constraint, it causes the banning interval timer for this DRM Agent to elapse.

ii. If the Rights Object contains the <max-concurrent> constraint, it decrements the concurrent counter of DRM Agents.

iii. It terminates the Share RO operation.

c. At this point the Share RO operation has successfully completed.

Change 4: Include EncryptedCekOrCekHash field in the ShareRoRequest message

9.8.1 ShareRoRequest

A ShareRoRequest is sent as a protected request and its body is defined as follows:

Body(){
 RightsObjectContainer()
 CertificateChain()
 CekInfo()
}

The fields are defined as follows:

· RightsObjectContainer – this field contains a Rights Object as defined in section 8.18.

· CertificateChain – this field contains the certificate chain for the Rights Issuer or LRM that created the original Rights Object. This field is defined in section 8.8
· CekInfo – this field contains, per Asset, the Content Encryption Key (CEK), encrypted with the SK or the SHA-1 hash over the CEK. The field is defined in section 8.19.
Change 5: Modify section 9.9 to include verification of the CEK hash

9.9 Lend RO Operation

The Lend RO operation is used by the DRM Requester to do Lending of a Rights Object. This operation MUST take place using a SAC. This operation MUST NOT be performed if the DRM Requester’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set or the DRM Agent’s certificate does not have an extKeyUsage extension with oma-kp-sceDrmAgent key purpose set (see section A.1). The following figure illustrates the Lend RO operation.

[image: image2.png]
Figure 10: Lend RO Operation
In order for this operation to take place, the following MUST be performed:

1. The DRM Requester does the following:

a. It checks if the Rights Object has the <lend> permission and any constraints. If the Rights Object cannot be Lent, the Lend RO operation is terminated.

b. It marks the Rights Object as unusable.
c. It creates a Lending context for this RO that includes the ROID, the lendingHandle, the DRM Agent’s ID and a lending interval timer.

d. It generates a random lendingHandle and copies it to the Lending context and the LendRoRequest.
2. It starts the lending interval timer in the Lending context using the value of the <lending-interval> constraint. Note that once this lending interval timer expires, the DRM Requester marks the Rights Object as usable again.

3. The DRM Requester generates a LendRoRequest.

4. The DRM Requester sends the LendRoRequest to the DRM Agent, applying the replay protection mechanism described in section 7.3.

5. The DRM Agent processes the request as follows:

a. It processes the request for replay as described in section 7.3.

b. It validates the fields of the LendRoRequest. If any field is invalid, it sets LendRoResponse.Status to InvalidField and proceeds to step 6.

c. It verifies the integrity of the request. If the integrity check fails, it sets LendRoResponse.Status to IntegrityVerificationFailed and proceeds to step 6.

d. It verifies the signature on the Rights Object, including the SourceCertificateChain field. If any of the verifications fails, it sets LendRoResponse.Status to InvalidRightsObject and proceeds to step 6.

e. It checks that the Rights Object has the <lend> permission. If it does not, it sets LendRoResponse.Status to InvalidRightsObject and proceeds to step 6.
f. If the RO contains a <cekHash> element in a <context> element in a <party> element, it calculates, using the CEKs and CEK hashes, the CEKhash as defined in [SCE-REL]. If the value is different from the value in the <cekHash> element, it sets ShareROResponse.Status to InvalidRightsObject and proceeds to step 5.
g. It checks that the <lend> permission has an <lending-interval> constraint. If it does not, it sets LendRoResponse.Status to InvalidRightsObject and proceeds to step 6.

h. It checks if it has enough room to install the Rights Object. If it does not, it sets LendRoResponse.Status to NotEnoughSpace and proceeds to step 6.

i. It installs the Rights Object per [OMADRMV2] except that the replay cache is not considered. It marks the Rights Object as “lent”.

j. It creates a Lent context for this RO that includes the ROID, the lendingHandle, the DRM Requester’s ID and a lending timer.

k. It starts the lending timer in the Lent context with the value of the <lending-interval> constraint of the <lend> permission.

l. It sets LendRoResponse.Status to Success.
6. The DRM Agent sends the LendRoResponse to the DRM Requester, applying the replay protection mechanism described in section 7.3.

7. The DRM Requester processes the response as follows:

a. It processes the response for replay as described in section 7.3.

b. If LendRoResponse.Status is not Success, it determines if it can restart the Lend RO operation at step 2. If it does not restart the operation, the DRM Requester performs the following:

i. It marks the Rights Object as usable.

ii. It removes the Lending context, stopping the lending interval timer.

iii. It terminates the Lend RO operation.

c. At this point the Lend RO operation has successfully completed.

Note: the DRM Agent MUST NOT Lend the Rights Object it receives in this operation.

Change 6: Include EncryptedCekOrCekHash field in the LendRoRequest message.

9.9.1 LendRoRequest

A LendRoRequest is sent as a protected request and its body is defined as follows:

Body(){
 lendingHandle
32
uimsbf
 RightsObjectContainer()
 CertificateChain()
 CekInfo()
}

The fields are defined as follows:

· lendingHandle – this field contains a 32 bit unsigned integer assigned by the DRM Requester to identify the Rights Object being Lent. The DRM Requester can use this value in the Lend Release operation (see section 9.10) to release the Rights Object.

· RightsObjectContainer – this field contains a Rights Object as defined in section 8.18.

· CertificateChain – this field contains the certificate chain for the Rights Issuer or LRM that created the original Rights Object. This field is defined in section 8.8
· CekInfo – this field contains, per Asset, the Content Encryption Key (CEK), encrypted with the SK, or the SHA-1 hash over the CEK. The field is defined in section 8.19.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

