Doc# OMA-DRM-2008-0471-CR_SCE_GEN_add_Default_[image: image1.jpg]"sOMaQa

Open Mobile Alliance

Processing
Change Request

Doc# OMA-DRM-2008-0471-CR_SCE_GEN_add_Default_Processing
Change Request

Change Request

	Title:
	SCE GEN add Default Processing Rules
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA DRM

	Doc to Change:
	OMA-TS-SCE_GEN-V1_0-20081013-D

	Submission Date:
	23 October 2008

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Yi Cheng, Ericsson, yi.cheng@ericsson.com

	Replaces:
	none

1 Reason for Change

The DOM and LRM TS refer to the GEN TS for default processing of Trigger, Request and Response messages, but currently there’s no text on default processing in the GEN TS.
2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

For the DRM group to agree the CR.
6 Detailed Change Proposal

 Change 1
5.5 Trigger

A Responder may send a Trigger message to cause a Requestor to initiate a particular protocol. The following XML schema fragment defines a generic <trigger> message:

<element name="trigger" type="gen:Trigger"/>

<complexType name="Trigger">

<sequence>

<element name="body" type="gen:TriggerBody"/>

<element name="signature" type="base64Binary" minOccurs="0"/>

</sequence>

<attribute name="type" type="gen:String80" use="required"/>

<attribute name="version" type="gen:Version" use="required"/>

</complexType>

<complexType name="TriggerBody">

<sequence>

<element name="resID" type="gen:Identifier"/>

<element name="resAlias" type="gen:String80" minOccurs="0"/>

<element name="nonce" type="gen:Nonce" minOccurs="0"/>

<element name="reqURL" type="anyURI"/>

<element name="trgInfo" type="gen:TriggerInformation" minOccurs="0"/>

<any minOccurs="0" maxOccurs="unbounded" processContents="lax"/>

</sequence>

<attribute name="id" type="ID"/>

</complexType>

<complexType name="TriggerInformation" abstract=”true”>

<sequence>

<any minOccurs="0" maxOccurs="unbounded" processContents="lax"/>

</sequence>

</complexType>

type: This attribute is used to identify the trigger type which in turn specifies the targeted protocol. The trigger types defined in the SCE Enabler are specified either in this specification or in other SCE specifications.

version: This attribute is a <major.minor> version representation of the trigger. For this version of the specification, the value of this attribute SHALL be set to "1.0".

body: This element contains child elements described below.
resID: This element identifies the Responder. The Requester MUST use this value to verify that it has a valid ResContext with the Responder. If the Requester does not have a valid ResContext with the identified Responder then the Requester MUST initiate the registration protocol of the protocol suite before initiating the protocol indicated by the type attribute. If the implicitly triggered registration protocol does not lead to a valid ResContext with the identified Responder, then the Requester MUST discard the trigger.

resAlias: This element, if present, contains a string value that SHALL be used by the Requester whenever it refers to the Responder in a dialog with the user and it SHALL be saved in the ResContext for future use. An example for such a dialog would be the question whether or not the user would like to register with a certain Responder after receiving a trigger. The maximum length of this element SHALL be 80 bytes.

nonce: This element provides a way to couple triggers with protocol requests. If present, the Requester will use this value as the triggerNonce attribute of the request that is to be triggered (see section 5.5).

reqURL: This element contains the URL that MUST be used by the Requester to send the first request message of the triggered protocol.
trgInfo: This element, if present, contains additional information that is required by the triggered protocol. This element is of type TriggerInformation which is abstract. Thus, any concreted trigger that needs this element, MUST define a concrete TriggerInformation.
signature: This element, if present, is a signature over the trigger besides the <signature> element itself. Before a Requester has registered with a Responder, the <signature> element is generally a public key signature (the default is an RSA-PSS signature). After a Requestor has registered with a Responder, the <signature> element is generally a MAC signature using the negotiated algorithm (the default is an HMAC-SHA-1 signature) and the MK received during registration.
5.6 Request

A Requester sends a Request message to a Responder when executing a protocol. The following XML schema fragment defines a Request message:

<complexType name="Request" >

<sequence>

<element name="reqID" type="gen:Identifier"/>

<element name="resID" type="gen:Identifier"/>

<element name="nonce" type="gen:Nonce" minOccurs="0"/>

<element name="certificateChain" type="gen:CertificateChain" minOccurs="0"/>

<element name="reqInfo" type="gen:RequestInformation" minOccurs="0"/>

<element name="signature" type="base64Binary" minOccurs="0"/>

</sequence>

<attribute name="triggerNonce" type="gen:Nonce"/>

<attribute name="sessionID" type="gen:String64"/>

</complexType>
<complexType name="RequestInformation" abstract=”true”>

<sequence>

<any minOccurs="0" maxOccurs="unbounded" processContents="lax"/>

</sequence>

</complexType>
triggerNonce: This attribute, if present, MUST contain the value of the <nonce> element sent in a <trigger> message.
sessionID: TBD

reqID: This element contains the identity of the Requester. If the request message is part of a registration protocol, this element contains the identity that the Requester plans to register with. Otherwise, the Requester MUST set this value to equal the Requester’s ID that was stored in the ResContext during registration with the Responder.

resID: This element contains the identity of the intended Responder.
nonce: This element, if present, contains a nonce randomly generated by the Requester. Nonces are generated and used as specified in section 5.4.

certificateChain: This element, if present, contains the Requester’s certificate chain. If the request is a Registration Request, this element is sent unless the preceding Hello Response contained the Peer Key Identifier extension and its value identified the key in the Requester's current certificate. If the request is not a Registration Request or a Hello Request, this element is sent unless it is indicated in the ResContext that the Responder has stored the necessary certificate information. When present, the value of this element SHALL be a certificate chain including the Requester's certificate. The chain MUST not include the root certificate. The Requester’s certificate MUST come first in the list. Each following certificate MUST directly certify the one preceding it. If the Responder indicated trust anchor preferences in a previous Hello Response, the Requester MUST select a certificate and chain which chains back to one of the trust anchors indicated by the Responder. This mimics the features of [RFC3546]. The Responder MAY need to update this information based on the received certificate chain.

reqInfo: This element, if present, contains additional information about the request message. This element is of type RequestInformation, which is abstract. Any concrete request should define a concrete RequestInformation element.
signature: This element, if present, is a signature over the message besides the <signature> element itself. Before a Requester has registered with a Responder, the <signature> element is generally a public key signature (the default is an RSA-PSS signature). After a Requestor has registered with a Responder, the <signature> element is generally a MAC signature using the negotiated algorithm (the default is an HMAC-SHA-1 signature) and the MK received during registration..
5.7 Response

A Responder sends a Response message to a Requestor after processing a Request message. The following XML schema fragment defines a Response message:

<complexType name="Response">

<sequence>

<element name="reqID" type="gen:Identifier"/>

<element name="resID" type="gen:Identifier"/>

<element name="nonce" type="gen:Nonce" minOccurs="0"/>

<element name="certificateChain" type="gen:CertificateChain" minOccurs="0"/>

<element name="ocspResponse" type="base64Binary" minOccurs="0"/>

<element name="resInfo" type="gen:ResponseInformation" minOccurs="0"/>

<element name="signature" type="base64Binary" minOccurs="0"/>

</sequence>

<attribute name="status" type="gen:String80" use="required"/>

<attribute name="errorMessage" type="gen:String1024"/>

<attribute name="errorRedirectURL" type="anyURI"/>

<attribute name="sessionID" type="gen:String64"/>

</complexType>
<complexType name="ResponseInformation" abstract=”true”>

<sequence>

<any minOccurs="0" maxOccurs="unbounded" processContents="lax"/>

</sequence>

</complexType>
status: This attribute is described in section 5.7.1 below.
errorMessage: This attribute is described in section 5.7.1 below.

errorRedirectURL: This attribute is described in section 5.7.1 below.

sessionID: This attribute, if present, TBD.

reqID: This element identifies the Requester. The value of this element is copied from the <reqID> element in the received request message. If the Responder does not have a ReqContent for the Requester and the request is considered invalid, the Responder MUST respond with a response message with the status attribute set to “NotRegistered”.

resID: This element identifies the Responder. The Responder MUST set this value to equal the <resID> that was stored in the ResContext during registration with this Requester. If the Responder does not have a ResContext for the Requester, then it MUST choose a value as specified in Error! Reference source not found..

nonce: This element contains a nonce chosen by the Responder or a nonce received from the Requester. Nonces are generated and used as specified in section 5.4.
certificateChain: This element, if present, contains the certificate chain for the Responder. If the response is a Registration Response, this element is sent unless the preceding Registration Request contained the Peer Key Identifier extension, the extension was not ignored by the Responder, and its value identified the key in the Responder's current certificate. If the response is not a Registration Response or a Hello Response, this element is sent unless it is indicated in the ReqContext that the Requester has stored the necessary certificate information. When present, the value of this element SHALL be a certificate chain including the Responder's certificate. The chain MUST NOT include the root certificate. The Responder’s certificate must come first in the list. Each following certificate must directly certify the one preceding it. If the Requester indicated trust anchor preferences in a previous Registration Request, the Responder SHOULD select a certificate and chain which chains back to one of the trust anchors indicated by the Requester. This mimics the features of [RFC3546]. For security reasons the Requester MUST discard the Registration Response if the hash of the complete DER-encoded subjectPublicKeyInfo component in the received Responder certificate does not match the value of the ResID from the preceding Hello Response message.
ocspResponse: This element, if present, contains an OCSP response for the Responder. It SHALL be a complete set of valid OCSP responses for the Responder's certificate chain. The Requester MUST NOT fail due to the presence of more than one OCSP response element. This element will not be sent if the Requester sent the extension No OCSP Response in the preceding Request (and the Responder did not ignore that extension). An exception to this is when the Responder deems that the Requester's DRM Time is inaccurate. For the processing of this parameter, see further in Section 5.8.
resInfo: This element, if present, contains additional information about the Response. This element is of type ResponseInformation, which is abstract. Any concrete response should define a concrete ResponseInformation element.
signature: This element, if present, is a signature over the message besides the <signature> element itself. Before a Requester has registered with a Responder, the <signature> element is generally a public key signature (the default is an RSA-PSS signature). After a Requestor has registered with a Responder, the <signature> element is generally a MAC signature using the negotiated algorithm (the default is an HMAC-SHA-1 signature) and the MK received during registration.
Change 2 Add section 5.8

5.8 Default Processing
This section specifies the default processing of Trigger, Request and Response messages. Protocol-specific processing for individual protocols is specified in relevant technical specifications.
Default Processing of Trigger

Upon receipt of a message of type gen:Trigger, the Requester MUST perform the following:
If the <signature> element is present, verify this signature. If the verification fails the Requester SHOULD inform the user and MUST discard the trigger.
For triggers other than Registration triggers, the Requester MUST use the <resID> element to verify that it has a valid ResContext with the Responder. If the Requester does not have a valid ResContext with the identified Responder then the Requester MUST initiate the registration protocol of the protocol suite before initiating the protocol indicated by the <type> attribute. If the implicitly triggered registration protocol does not lead to a valid ResContext with the identified Responder, then the Requester MUST discard the trigger.

The Requester MUST use the URL specified by the <reqURL> element in the trigger when initiating the ROAP transaction. If the trigger holds a <nonce> element, the Requester MUST use the nonce value as the triggerNonce attribute of the request that is to be triggered.
Default Processing of Request
Upon receipt of a message of type gen:Request, the Responder MUST perform the following:
For requests other than Hello requests and Registration requests, check whether the Responder has a valid ReqContent for the Requester identified by the <reqID> element. If not, the Responder MUST return a response with the status attribute set to “NotRegistered”.
If the <triggerNonce> attribute is present, check whether the value matches the nonce in the last trigger the Responder sent to the Requester. If not, the Responder MUST discard the request and terminate the processing.
Check the <resID> element. If the value does not match any of the Responder’s identities, the Responder MUST discard the request and terminate the processing.
If the <time> element is present, check whether the time is accurate. If the Responder has access to an OCSP responder, the Responder MUST use the time obtained from the OCSP responder as its reference time in order to judge the inaccuracies in the Requester’s DRM Time. The Responder SHOULD allow for a reasonable drift in the Requester’s DRM Time.

5.9 If the Requester’s DRM time is deemed inaccurate and the request is not a Registration request, the Responder MUST return a response with the status attribute set to “RequesterTimeError” and terminate the processing. If the Requester’s DRM time is deemed inaccurate and the request is a Registration request and the Responder has access to an OCSP responder, the Responder MUST send an OCSP request to its responder and include the nonce sent by the Requester in the OCSP request. The nonce-based OCSP response returned from the OCSP responder MUST be included in the Registration Response message sent back to the Requester.
If the <signature> element is present, verify the signature. If the verification fails the Responder MUST return a response with the status attribute set to an appropriate value, i.e. “SignatureError”, “NoCertificateChain”, “InvalidCertificateChain”, or “TrustedRootCertificateNotPresent” and terminate the processing.
Default Processing of Response
Upon receipt of a message of type gen:Response, the Requester MUST perform the following:
Check the <reqID> element. If the value does not match any of the Requester’s identities, the Requester MUST discard the response and terminate the processing.
Check the <resID> element. If the Requester does not have a pending request to the identified Responder and the Requester does not have a valid ResContext for the identified Responder, the Requester MUST discard the response and terminate the processing.
If the <nonce> element is present, check whether the value matches the nonce in the preceding request the Requester sent to the Responder. If not, the Requester MUST discard the response and terminate the processing.

If the <ocspResponse> element is present, check whether the nonce in the OCSP response matches the nonce sent in the preceding Registration Request. If the nonces match, the Requester MUST validate the OCSP response and the expiry time of all certificates from the OCSP responders certificate chain using the time in the producedAt component of the OCSP response. If the validation is successful, the Requester MUST adjust the DRM Time for the current trust model to the time in the producedAt component of the OCSP response. The validation of the Registration Response (and of the Responder’s certificate expiry times) shall be performed afterwards by using this DRM Time.
If the <signature> element is present, verify the signature. If the verification fails the Responder MUST discard the response and terminate the processing.
Change 3

6.3 Hello Response

A Responder send a Hello Response message to the Requester as the second message of a 4-pass registration protocol of a given protocol suite. The root element of the message MUST be a <helloResponse> element as defined in the following XML schema fragment:

<element name=”helloResponse” type=”gen:Response”/>

The response MUST be formatted per the table below:

	element / attribute
	usage
	value

	status
	M
	Default, as specified in section 5.7

	sessionID
	M

	Default, as specified in section 5.7

	errorMessage
	O
	Default, as specified in section 5.7

	errorRedirectURL
	O
	Default, as specified in section 5.7

	reqID
	M
	Default, as specified in section 5.7

	resID
	M
	Default, as specified in section 5.7

	nonce
	M
	Default, as specified in section 5.4

	resInfo
	M
	Specified below

Table 4: Hello Response Message Parameters

The Hello Response message MUST contain a <resInfo> element as defined by the following XML schema fragment:
<element name="resInfo" type="gen:HelloResInfo"/>

<complexType name="HelloResInfo">

<sequence>

<element name="selectedVersion" type="gen:Version"/>

<element name="selectedAlgorithms" type="SetOfAlgorithms" minOccurs="0"/>

<element name="trustedAuthorities" type="gen:KeyIdentifiers" minOccurs="0"/>

<element name="serverInfo" type="base64Binary" minOccurs="0"/>

<element name="deviceDetailsRequired" type=”gen:Empty”/>

<any minOccurs="0" maxOccurs="unbounded" processContents="lax"/

</sequence>
</complexType>
<complexType name=”Empty”/>
selectedVersion: This element contains the selected protocol version. The selected version will be min (Requester suggested version, highest version supported by Responder). If the registration is successful, then this information is part of the ResContext and ReqContext.

selectedAlgorithms: This element contains the cryptographic algorithms (hash algorithm, signature algorithm, MAC algorithm and key transport algorithm) to use in subsequent interactions. If the Requester indicated support of only mandatory algorithms (i.e. left out the <supportedAlgorithms> element), or the Responder only supports the mandatory algorithms, then the Responder need not send this field. Otherwise, the Responder MUST provide this parameter and MUST identify one algorithm of each type. This information is part of the ResContext and ReqContext.

trustedAuthorities: This element is a list of Requester trust anchors recognised by the Responder. This parameter is optional. The parameter is not sent if the Responder already has the Requester certificate or otherwise is able to verify a signature made by the Requester. If the parameter is present but empty, it indicates that the Requester is free to choose any Requester certificate to authenticate itself. Otherwise the Requester MUST choose a certificate chaining back to one of the recognised trust anchors. Trust anchors are identified in the same manner as Requesters and Responders.

serverInfo: This element contains server-specific information that the Requester must return unmodified, in the Registration Request. The Requester must not attempt to interpret the value of this parameter. Requesters MUST support the Server Info element being of length 512 bytes and MAY support Server Info elements of length greater than 512 bytes. Responders SHOULD keep Server Info length to 512 bytes or less.

deviceDetailsRequired: This element, if present, is used by the Responder to indicate to the Requester that the Requester needs to provide detailed information about the Device (manufacturer, model and version) in the Registration Request message that follows.

�Is this correct?

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

