Doc# OMA-Template-ChangeRequest-20080101-I.doc[image: image1.jpg]
Change Request

Doc# OMA-Template-ChangeRequest-20080101-I.doc
Change Request

Change Request

	Title:
	SessionID and Nonce fix
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	DRM

	Doc to Change:
	OMA-TS-SCE_GEN

	Submission Date:
	24 Oct 2008

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Seung-Jae Lee, LG Electronics, seungjae@LGE.COM

	Replaces:
	n/a

1 Reason for Change

For fixing sessionId and nonce description in current TS.
2 Impact on Backward Compatibility

none
3 Impact on Other Specifications

none
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

For DRM WG to agree this CR.
For Editors of DRM TS, LRM TS and DOM TS to remove sessionID parameter from the protocols if the protocol is not 4-pass message protocol.
6 Detailed Change Proposal

Change 1: In section 5.4 Nonce
A Nonce is defined by the following XML schema fragment:

<simpleType name="Nonce">

<restriction base="base64Binary">

<minLength value="14"/>

</restriction>

</simpleType>

The Nonce type is used to carry arbitrary values in the protocol messages. A nonce, as the name implies, must be used only once. For each message that requires a nonce element to be sent, a fresh nonce SHALL be generated randomly each time. Nonce values MUST be at least 14 octets long and are carried as a base64-encoded strings.
When a nonce value is sent in a response message (section 5.7), the value MUST be the value of the <nonce> element of the previous request message (section 5.6), if preceding request message does not contain nonce.
Change 2: In section 5.6 Request
A Requester sends a Request message to a Responder when executing a protocol. The following XML schema fragment defines a Request message:

<complexType name="Request" >

<sequence>

<element name="reqID" type="gen:Identifier"/>

<element name="resID" type="gen:Identifier"/>

<element name="nonce" type="gen:Nonce" minOccurs="0"/>

<element name="certificateChain" type="gen:CertificateChain" minOccurs="0"/>

<element name="reqInfo" type="gen:RequestInformation" minOccurs="0"/>

<element name="signature" type="base64Binary" minOccurs="0"/>

</sequence>

<attribute name="triggerNonce" type="gen:Nonce"/>

<attribute name="sessionID" type="gen:String64"/>

</complexType>
<complexType name="RequestInformation" abstract=”true”>

<sequence>

<any minOccurs="0" maxOccurs="unbounded" processContents="lax"/>

</sequence>

</complexType>
triggerNonce: This attribute, if present, MUST contain the value of the <nonce> element sent in a <trigger> message.
sessionID: This attribute, if present, contains a protocol session identifier that allows for several, concurrent Requester-Responder sessions. SessionID is generally used for protocols that consist of more than 2-pass (e.g. registration protocol).
reqID: This element contains the identity of the Requester. If the request message is part of a registration protocol, this element contains the identity that the Requester plans to register with. Otherwise, the Requester MUST set this value to equal the Requester’s ID that was stored in the ResContext during registration with the Responder.

resID: This element contains the identity of the intended Responder. The Requester MUST set this value to equal the <resID> that was stored in the ResContext during registration with this Responder. TBD: what if the Requestor has not registered with the Responder and hence there is no ResContext?
nonce: This element, if present, contains a nonce randomly generated by the Requester. Nonces are generated and used as specified in section 5.4.

certificateChain: This element, if present, contains the Requester’s certificate chain. It is sent unless it is indicated in the ResContext that the Responder has stored the necessary certificate information. When present, the parameter value SHALL be as described for the certificateChain parameter in the registration protocol of the protocol suite. TBD: How do you know which registration protocol?
reqInfo: This element, if present, contains additional information about the request message. This element is of type RequestInformation, which is abstract. Any concrete request should define a concrete RequestInformation element.
signature: This element, if present, is a signature over the message besides the <signature> element itself. Before a Requester has registered with a Responder, the <signature> element is generally a public key signature (the default is an RSA-PSS signature). After a Requestor has registered with a Responder, the <signature> element is generally a MAC signature using the negotiated algorithm (the default is an HMAC-SHA-1 signature) and the MK received during registration..
Change 3: In section 5.7 Response
A Responder sends a Response message to a Requestor after processing a Request message. The following XML schema fragment defines a Response message:

<complexType name="Response">

<sequence>

<element name="reqID" type="gen:Identifier"/>

<element name="resID" type="gen:Identifier"/>

<element name="nonce" type="gen:Nonce" minOccurs="0"/>

<element name="certificateChain" type="gen:CertificateChain" minOccurs="0"/>

<element name="ocspResponse" type="base64Binary" minOccurs="0"/>

<element name="resInfo" type="gen:ResponseInformation" minOccurs="0"/>

<element name="signature" type="base64Binary" minOccurs="0"/>

</sequence>

<attribute name="status" type="gen:String80" use="required"/>

<attribute name="errorMessage" type="gen:String1024"/>

<attribute name="errorRedirectURL" type="anyURI"/>

<attribute name="sessionID" type="gen:String64"/>

</complexType>
<complexType name="ResponseInformation" abstract=”true”>

<sequence>

<any minOccurs="0" maxOccurs="unbounded" processContents="lax"/>

</sequence>

</complexType>
status: This attribute is described in section 5.7.1 below.
errorMessage: This attribute is described in section 5.7.1 below.

errorRedirectURL: This attribute is described in section 5.7.1 below.

sessionID: This attribute, if present, contains a protocol session identifier.
reqID: This element identifies the Requester. The value of this element is copied from the <reqID> element in the received request message. If the Responder does not have a ReqContent for the Requester and the request is considered invalid, the Responder MUST respond with a response message with the status attribute set to “NotRegistered”.

resID: This element identifies the Responder. The Responder MUST set this value to equal the <resID> that was stored in the ResContext during registration with this Requester. If the Responder does not have a ResContext for the Requester, then it MUST choose a value as specified in Error! Reference source not found..

nonce: This element contains a nonce chosen by the Responder or a nonce received from the Requester. Nonces are generated and used as specified in section 5.3.12. TBD: Section 5.3.12 does NOT specify how nonces are used.
certificateChain: This element, if present, contains the certificate chain for the Responder. This element is present unless it is indicated in the ReqContext that the Responder has stored the necessary certificate information.
ocspResponse: This element, if present, contains an OCSP response for the Responder. TBD.

resInfo: This element, if present, contains additional information about the Response. This element is of type ResponseInformation, which is abstract. Any concrete response should define a concrete ResponseInformation element.
signature: This element, if present, is a signature over the message besides the <signature> element itself. Before a Requester has registered with a Responder, the <signature> element is generally a public key signature (the default is an RSA-PSS signature). After a Requestor has registered with a Responder, the <signature> element is generally a MAC signature using the negotiated algorithm (the default is an HMAC-SHA-1 signature) and the MK received during registration.
Change 4: In section 6.2 Hello Request
A Requester sends a Hello Request message to a Responder as the first message of a 4-pass registration protocol of a given protocols suite. The message MUST be a <helloRequest> element as defined in the following XML schema fragment:

<element name=”helloRequest” type=”gen:Request”/>

A Hello Request MUST be formatted as specified in the table below:

	element / attribute
	usage
	Value

	triggerNonce
	O
	As specified in section xyz

	
	
	

	reqID
	M
	As specified in section xyz

	resID
	M
	As specified in section xyz

	nonce
	O
	As specified in section 5.4

	certificateChain
	O
	TBD

	reqInfo
	M
	Specified below

…
Change 5: In section 6.3 Hello Response
A Responder send a Hello Response message to the Requester as the second message of a 4-pass registration protocol of a given protocol suite. The root element of the message MUST be a <helloResponse> element as defined in the following XML schema fragment:

<element name=”helloResponse” type=”gen:Response”/>

The response MUST be formatted per the table below:

	element / attribute
	usage
	value

	status
	M
	Default, as specified in section xyz

	sessionID
	M

	Specified below

	errorMessage
	O
	Default, as specified in section xyz

	errorRedirectURL
	O
	Default, as specified in section xyz

	reqID
	M
	Default, as specified in section xyz

	resID
	M
	Default, as specified in section xyz

	nonce
	M
	Default, as specified in section xyz

	resInfo
	M
	Specified below

Table 4: Hello Response Message Parameters

The Hello Response message MUST contain a <resInfo> element as defined by the following XML schema fragment:
<element name="resInfo" type="gen:HelloResInfo"/>

<complexType name="HelloResInfo">

<sequence>

<element name="selectedVersion" type="gen:Version"/>

<element name="selectedAlgorithms" type="SetOfAlgorithms" minOccurs="0"/>

<element name="trustedAuthorities" type="gen:KeyIdentifiers" minOccurs="0"/>

<element name="serverInfo" type="base64Binary" minOccurs="0"/>

<element name="deviceDetailsRequired" type=”gen:Empty”/>

<any minOccurs="0" maxOccurs="unbounded" processContents="lax"/

</sequence>
</complexType>
<complexType name=”Empty”/>
sessionID: This attribute contains a protocol session identifier set by the Responder.
selectedVersion: This element contains the selected protocol version. The selected version will be min (Requester suggested version, highest version supported by Responder). If the registration is successful, then this information is part of the ResContext and ReqContext.

…
Change 6: In section 6.4 Registration Request

A Requester sends a Registration Request message to a Responder as the third message in a 4-pass registration protocol of a given protocols suite. The root element of the message MUST be a <registrationRequest> element as defined in the following XML schema fragment:

<element name=”registrationRequest” type=”gen:Request”/>

A Registration Request message MUST be formatted as specified in the table below:

	element / attribute
	usage
	value

	triggerNonce
	TBD
	TBD

	sessionID
	M

	Specified below

	reqID
	M
	Default, as specified in section xyz

	resID
	M
	Default, as specified in section xyz

	nonce
	M
	Default, as specified in section xyz

	certificateChain
	O
	Default, as specified in section xyz

	reqInfo
	M
	Specified below

	signature
	M
	Specified below

Table 5: Registration Request Message Parameters

The Registration Request message MUST contain a <reqInfo> element as defined in section 6.4.1.

sessionID: This attribute contains the same value as included in the preceding Hello Response message.
signature: This element contains the signature over the Registration Request message besides the <signature> element itself. The signature is made using the negotiated public key algorithm and the Requester’s private key.
The Registration Responder MUST verify the signature on the Registration Request message.

Change 7: In section 6.5 Registration Response

A Registration Response message is sent from a Responder to a Requester as the last message in a 4-pass registration protocol of a given protocols suite. The root element of the message MUST be a <registrationResponse> element as defined in the following XML schema fragment:

<element name=”registrationResponse” type=”gen:Response”/>

The response MUST be formatted per the table below:

	element / attribute
	usage
	value

	status
	M
	Default, as specified in section xyz

	sessionID
	M

	Specified below

	errorMessage
	O
	Default, as specified in section xyz

	errorRedirectURL
	O
	Default, as specified in section xyz

	reqID
	M
	Default, as specified in section xyz

	resID
	M
	Default, as specified in section xyz

	nonce
	M
	Default, as specified in section 5.4

	certificateChain
	O
	Default, as specified in section xyz

	ocspResponse
	O
	Default, as specified in section xyz

	resInfo
	O
	Specified below

	signature
	M
	Specified below

Table 6: Registration Response Message Parameters

If the processing of the Registration Request message was successful (status=”Success”), then the Registration Response message MUST contain an <resInfo> element as defined in section 6.5.1.
sessionID: This attribute contains the same value as included in the preceding Registration Request message.
signature: This element contains the signature over the Registration Response message besides the <signature> element itself. The signature is made using the negotiated public key algorithm and the Responder's private key.
The Requester MUST verify this signature. A Requester MUST NOT accept the Registration protocol as successful unless the signature verifies, the Responder certificate chain has been successfully verified, and the OCSP response, if present, indicates that the Responder certificate status is good. If the registration fails, the Requester MUST NOT store a ResContext for this Responder.

�This seems to be a strange definition of resID. I think it needs to be adjusted.

�Is this correct?

�Is this correct?

�Is this correct?

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 3 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

