OMA-DRM-DRM-V2_0-20040228-D
Page 114 V(120)

	[image: image20.wmf]

audio

Image(1)

Image(2)

play

display

Print

3 times

Media

Objects

Mulitpart

DCF

<permission>

elements

<rights>

element

Reference by

Content

-

ID

	

	OMA DRM Specification V 2.0

	Draft Version 2.0 – 28 Feb 2004

	Open Mobile Alliance

	OMA-DRM-DRM-V2_0-20040228-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

CONTENTS

71.
Scope

82.
References

82.1
Normative References

92.2
Informative References

103.
Terminology and Conventions

103.1
Conventions

103.2
Definitions

113.3
Abbreviations

134.
Introduction

145.
Capability Negotiation

145.1 HTTP Headers

145.2 User Agent Profile

155.3 Issuer Responsibilities

166.
The Rights Object Acquisition Protocol (ROAP) Suite

166.1
Overview

166.1.1
The 4-pass Registration Protocol

176.1.2
The 2-pass Rights Object Acquisition Protocol

186.1.3
The 1-pass Rights Object Acquisition Protocol

196.1.4
The 2-pass Join Domain Protocol

196.1.5
The 2-pass Leave Domain Protocol

206.1.6
The ROAP Trigger

216.2
ROAP XML Schema basics

216.2.1
Introduction

216.2.2
A note on comparison of ROAP values

226.2.3
The Request type

226.2.4
The Response type

226.2.5
The Status type

236.2.6
The Extensions type

236.2.7
The Protected Rights Object payload type

256.2.8
The ROAP Trigger type

276.3
ROAP Messages

276.3.1
Notation

276.3.2
Registration Protocol

276.3.2.1
Device Hello

276.3.2.1.1
Message description

286.3.2.1.2
Message syntax

306.3.2.2
RI Hello

306.3.2.2.1
Message description

316.3.2.2.2
Message syntax

326.3.2.3
Registration Request

336.3.2.3.1
Message description

346.3.2.3.2
Message syntax

356.3.2.4
Registration Response

356.3.2.4.1
Message description

376.3.2.4.2
Message syntax

386.3.3
RO Acquisition

386.3.3.1
RO Request

386.3.3.1.1
Message description

396.3.3.1.2
Message syntax

406.3.3.2
RO Response

406.3.3.2.1
Message description

426.3.3.2.2
Message syntax

436.3.4
Domain Join/Leave Protocol

436.3.4.1
Join Domain Request

436.3.4.1.1
Message description

446.3.4.1.2
Message syntax

456.3.4.2
Join Domain Response

456.3.4.2.1
Message description

476.3.4.2.2
Message syntax

486.3.4.3
Leave Domain Request

486.3.4.3.1
Message description

496.3.4.3.2
Message syntax

496.3.4.4
Leave Domain Response

506.3.4.4.1
Message description

506.3.4.4.2
Message Syntax

516.3.5
Domain RO processing rules

516.3.5.1
Overview

516.3.5.2
Inbound Domain RO

516.3.5.2.1
Installing a Domain RO

516.3.5.2.2
Postprocessing after installing the Domain RO

526.3.5.3
Outbound DCF

526.4
Key Management

526.4.1
Cryptographic components

526.4.1.1
RSAES-KEM-KWS

526.4.1.2
KDF

536.4.1.3
AES-WRAP

536.4.2
Key transport mechanisms

536.4.2.1
Distributing KREK and KMAC under a device public key

546.4.2.2
Distributing KD and KMAC under a device public key

546.4.2.3
Distributing KREK and KMAC under a domain key KD

546.4.2.4
Distributing KCEK under a rights object encryption key KREK

546.4.3
Use of hash chains for Domain Key generation

556.5
Certificate status checking

556.5.1
Certificate status checking by RI

556.5.2
Certificate status checking by DRM Agents

556.6
Transport Mappings

556.6.1
HTTP/WSP Transport Mapping

556.6.1.1
Initiating the ROAP

566.6.1.2
HTTP Content Negotiation

576.6.1.3
HTTP Features

576.6.1.4
HTTP Authentication

576.6.1.5
RI Hello

576.6.1.6
RO Response

576.6.1.7
Example: Separate Delivery of DCF and Rights Object (Informative)

586.6.1.8
Example: Combined Delivery of DCF and Rights Object (Informative)

606.6.1.9
Example: Silent RO Acquisition Triggered by DCF Headers (Informative)

606.6.2
OMA Download OTA

616.6.2.1
Download Agent and DRM Agent Interaction

616.6.2.1.1
Downloading DRM Content

616.6.2.1.2
Downloading DRM Rights Objects

626.6.2.1.3
Downloading DRM Content and Rights Object Together

626.6.2.2
Example: Separate Delivery of DRM Content and Rights Object (Informative)

626.6.2.3
Example: Combined Delivery of Content DCF and Rights Object (Informative)

646.6.3
WAP Push

646.6.3.1
Push Application ID

656.6.3.2
Content Push

656.6.3.3
Service Indication/Service Loading

656.6.4
MMS

656.6.4.1
Example: MMS delivery of DCF within a SMIL presentation (Informative)

677.
Domains

677.1
Overview

677.2
Device joins domain

677.3
Domain RO Acquisition

687.4
Device leaves a domain

687.5
Support for Multiple Domains per Rights Issuer

687.6
Domain Revocation

708.
Protection of Content and Rights

708.1
Protection of Content Objects

708.2
Composite Content Objects and Associated Rights Objects

708.2.1
Multiple Rights for Composite Objects

708.2.1.1
Association of Permissions with Media Objects

718.2.1.2
Multiple Rights for Multipart DCFs

728.3
Protection of Rights Objects

728.4
Replay Protection of Stateful Rights Objects

728.4.1
Introduction

738.4.2
Replay Mechanism

748.4.3
Processing rules

748.4.3.1
Stateful ROs with RI Time Stamp (RITS)

748.4.3.2
Stateful ROs without RI Time Stamp (RITS)

758.4.4
Subscription Rights Object

758.4.5
Off-Device Storage of Content and Rights Objects

769.
Super Distribution

769.1
Preview

769.2
Transaction Tracking

779.3
DCF Integrity

7810.
Export

7810.1
Export Modes

7910.2
Secure Environment

7910.3
Compatibility with other DRM systems

7910.4
Streaming to other devices

8111.
Proxy / Store & Forward

8111.1
Proxy

8111.2
Store & Forward

8212.
Binding Rights to User Identities

8212.1
IMSI uid

8212.2
WIM uid

8212.2.1
DRM Agent behavior

8312.2.2
Support for WIM uid

8413.
Security Considerations

8413.1
Protection of key storage

85Appendix A.
ROAP Schema

93Appendix B.
ROAP protocol exchange examples

93B.1
Registration Protocol

93B.1.1
Device hello

93B.1.2
RI Hello

94B.1.3
Registration Request

94B.1.4
Registration Response

95B.2
Rights Object Acquisition

95B.2.1
RO Request

95B.2.2
RO Response

97B.2.3
Domain RO

98B.3
Domain Join Protocol

98B.3.1
Join Domain Request

99B.3.2
Join Domain Response

100B.4
Leave Domain Protocol

100B.4.1
Leave Domain Request

100B.4.2
Leave Domain Response

100B.5
Roap Trigger

102Appendix C.
Backward Compatibility with Release 1.0 (Normative)

103Appendix D.
Exporting to other DRMs (Informative)

103D.1
High-level Example : Exporting to Removable Media

105Appendix E.
Application to Services (Normative)

105E.1
Application to streaming services

105E.1.1
Application to the 3GPP Packet-Switched Streaming Service

107E.1.2
DCF Packaging of Streaming Session Descriptors (Informative)

109Appendix F.
Certificate Profiles and Requirements (Normative)

109F.1
DRM Agent Certificates

110F.2
Rights Issuer Certificates

111F.3
CA Certificates

111F.4
OCSP Responder Certificates

111F.5
User Certificates for Authentication

112Appendix G.
Interactions between the DRM Agent and the WIM (Informative)

112G.1
WIM operations in exercising “permission” to bind Rights Objects to the user identity

113G.2
PIN management

114Appendix H.
Static Conformance Requirements (Normative)

114H.1
Device Requirements

114H.2
Rights Issuer Requirements

115Appendix I.
Change History (Informative)

115I.1
Approved Version History

115I.2
Document History

FIGURES

17Figure 1: The 4-pass Registration Protocol

18Figure 2: The 2-pass Rights Object Acquisition Protocol

18Figure 3: The 1-pass Rights Object Acquisition Protocol

19Figure 4: The 2-pass Join Domain Protocol

20Figure 5: The 2-pass Leave Domain Protocol

21Figure 6: ROAP Trigger

57Figure 7: Separate Delivery of DCF and RO

59Figure 8: Combined Delivery of DCF and RO

60Figure 9: Silent RO Acquisition Triggered by DCF Headers

63Figure 10: Using Download OTA to deliver DRM Content and Rights Object

66Figure 11: Combined Delivery of DRM Content and Rights Object

74Figure 12: Multiple Rights for Multipart DCFs

81Figure 13: Exporting from OMA DRM

107Figure 14:. Export

109Figure 15: Generic principle of application of OMA DRM to streaming services

110Figure 16: Application of OMA DRM to the 3GPP Packet-Switched Streaming Service (Release 6). References in brackets indicate where the respective data format or protocol is specified

111Figure 17: Application of OMA DRM to the 3GPP Packet-Switched Streaming Service (Release 6) with streaming token packaged into DCF. Underlined text denotes differences to Figure 16.

116Figure 18: DRM UA and WIM Interaction

TABLES

16Table 1: User Agent Profile Attributes

28Table 2: Device Hello Message Parameters

31Table 3: RI Hello Message Parameters

34Table 4: Registration Request Message Parameters

37Table 5: Registration Response Message Parameters

39Table 6: RO Request Message Parameters

42Table 7: RO Response Message Parameters

44Table 8: Join Domain Request Message Parameters

46Table 9: Join Domain Response Message Parameters

49Table 10: Leave Domain Request Message Parameters

51Table 11: Leave Domain Response Message Parameters

107Table 12: Backward Compatibility with Release 1.0

1. Scope

Open Mobile Alliance (OMA) specifications are the result of continuous work to define industry-wide interoperable mechanisms for developing applications and services that are deployed over wireless communication networks.

The scope of OMA “Digital Rights Management” (DRM) is to enable the distribution and consumption of digital content in a controlled manner. The content is distributed and consumed on authenticated devices per the usage rights expressed by the content owners. OMA DRM work addresses the various technical aspects of this system by providing appropriate specifications for content formats, protocols, and rights expression languages.

A number of DRM specifications have already been defined within the OMA. See [DRM], [DRMCF] and [DRMREL]. These existing specifications are referred to within this document as “release 1”.

This scope for this specification is to define the protocols, messages and mechanisms necessary to implement the DRM system in the mobile environment. This specification addresses the specific requirements enumerated in the Release 2 Requirements document [DRMREQ-v2].

2. References

2.1 Normative References

	[3GPP PSS]
	Transparent end-to-end packet switched streaming service (PSS); 3GPP 26.234; Protocols and codecs - Release 5. http://www.3gpp.org/

	[3GPP TS 24.008]
	Technical Specification Group Core Network; Mobile radio interface layer 3 specification; Core Network Protocols; Stage 3(Release 5)

	[3GPP TS 31.102]
	Technical Specification Group Terminals; Characteristics of the USIM Application (Release 5).

	[3GPP TS 11.11]
	Specification of the Subscriber Identity Module -Mobile Equipment (SIM - ME) interface (Release 5)

	[AES]
	NIST FIPS 197: Advanced Encryption Standard (AES). November 2001.

URL:http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

	[CP]
	OMA Certificate and CRL Profiles, draft version 2003-02-16

	[CREQ]
	“Specification of WAP Conformance Requirements”. Open Mobile Alliance(. WAP‑221‑CREQ. URL:http//www.wapforum.org/ <to be replaced by an OMA ref when available>

	[DRM]
	“Digital Rights Management”, Open Mobile AllianceTM, OMA-Download-DRM-v1_0, http://www.openmobilealliance.org/

	[DRMARCH]
	DRM Architecture Specification, Open Mobile Alliance, OMA-Download_DRMARCH_v1_0

http://www.openmobilealliance.org/

	[DRMCF]
	“DRM Content Format”, Open Mobile AllianceTM, OMA-Download-DRMCF-v1_0, http://www.openmobilealliance.org/

	[DRMCF-v2]
	DRM Content Format, OMA, v2

	[DRMREL]
	“DRM Rights Expression Language”, Open Mobile AllianceTM, OMA-Download-DRMREL-v1_0, http://www.openmobilealliance.org/

	[DRMREL-v2]
	DRM Rights Expression Language, OMA, v2

	[DRMREQ-v2]
	DRM Requirements Specification, OMA, v2

	[HMAC]
	RFC 2104: HMAC: Keyed-Hashing for Message Authentication. H. Krawczyk, M. Bellare, and R. Canetti. Informational, February 1997.

http://www.ietf.org/rfc/rfc2104.txt

	[HTTP]
	RFC 2616. Hypertext Transfer Protocol – HTTP/1.1. J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee. June 1999. http://www.ietf.org/rfc/rfc2616.txt

	[MIME]
	RFC 2045. Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies. N. Freed & N. Borenstein. November 1996.

http://www.ietf.org/rfc/rfc2045.txt

	[OCSP]
	Online Certificate Status Protocol, http://www.ietf.org/rfc/rfc2560.txt

	[OCSP-MP]
	OMA Online Certificate Status Protocol (profile of [OCSP]), draft version 2002-08-09

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”. S. Bradner. March 1997.
http://www.ietf.org/rfc/rfc2119.txt

	[RFC2045]
	"Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies", N. Freed & N. Borenstein, November 1996, http://www.ietf.org/rfc/rfc2045.txt

	[RFC2234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell.
November 1997. URL:http://www.ietf.org/rfc/rfc2234.txt

	[RFC2387]
	“The MIME Multipart/Related Content-type”, E. Levinson, 1998, http://www.ietf.org/

	[RFC2396]
	“Uniform Resource Identifiers (URI): Generic Syntax”. T. Berners-Lee, R. Fielding, L. Masinter. August 1998. http://www.ietf.org/rfc/rfc2396.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”. R. Fielding, et al. June 1999.

http://www.ietf.org/rfc/rfc2616.txt.

	[RFC 2965]
	“HTTP State Management Mechanism”. D. Kristol, L. Montulli, October 2000

http://www.ietf.org/rfc/rfc2965.txt.

	[XML-DSIG]
	XML-Signature Syntax and Processing. D. Eastlake, J. Reagle, and D. Solo. W3C Recommendation, February 2002.

http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/

	[XML-Encryption]
	XML Encryption Syntax and Processing. D. Eastlake and J. Reagle. W3C Candidate Recommendation, December 2002.

http://www.w3.org/TR/2002/CR-xmlenc-core-20020802/

	[XML-Schema]
	XML Schema Part 1: Structures D. Beech, M. Maloney, and N. Mendelsohn. W3C Recommendation, May 2001.

http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/

XML Schema Part 2: Datatypes. P. Biron and A. Malhotra. W3C Recommendation, May 2001.

http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

	[WAPWIM]
	"Wireless Application Protocol Architecture Specification", Open Mobile Alliance(. OMA-WAP-WIM-v1_1-20021024-C

2.2 Informative References

	[DLOTA]
	“OMA Download version 1.0.” Open Mobile Alliance™. OMA-Download-OTA-V1_0. www.openmobilealliance.org/documents.html

	[DRMARCH-v2]
	“OMA DRM Architecture”, Open Mobile Alliance™. OMA-DRM-ARCH-V2_0. www.openmobilealliance.org/documents.html

	[PUSHOTA]
	“Push OTA Protocol Specification.” Open Mobile Alliance™. WAP-235-PushOTA. www.openmobilealliance.org/wapdownload.html

	[PUSHSI]
	“WAP Service Indication Specification.” Open Mobile Alliance™. WAP-167-ServiceInd. www.openmobilealliance.org/wapdownload.html

	[PUSHSL]
	“WAP Service Loading Specification.” Open Mobile Alliance™. WAP-168-ServiceLoad. www.openmobilealliance.org/wapdownload.html

	[UICC]
	“Smart cards; UICC-Terminal interface; Physical and logical characteristics (release 5)”, ETSI 102.221 , http://www.etsi.org

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

This specification uses schema documents conforming to W3C XML Schema [SCHEMA] and normative text to describe the syntax and semantics of XML-encoded ROAP messages.

Listing of Rights Object Acquisition Protocol (ROAP) schemas appear like this.

The following typographical conventions are used in the body of the text: <ROAPElement>, ROAPAttribute, ROAPDatatype, ASN.1ValueOrType.
3.2 Definitions

	Backup/Remote Storage
	Transferring Rights Objects and Content Objects to another location with the intention of transferring them back to the original Device.

	Billing Service Provider
	The entity responsible for collecting payment from a User.

	Combined Delivery
	A Release 1 method for delivering Protected Content and Rights Object. The Rights Object and Protected Content are delivered together in a single entity, the DRM Message.

	Composite Object
	A content object that contains one or more Media Objects by means of inclusion.

	Confidentiality
	The property that information is not made available or disclosed to unauthorized individuals, entities or processes. (From [ISO 7498-2])

	Content
	One or more Media Objects

	Content Issuer
	The entity making content available to the DRM Agent in a Device.

	Content Provider
	An entity that is either a Content Issuer or a Rights Issuer.

	
	

	Content subscription
	A subscription that a User has with a Content Provider for the purposes of paying for Protected Content purchased from that Content Provider and played on a Users Device.

	Device
	A Device is a user equipment with a DRM Agent. The Device MAY include a smartcard module (e.g. a SIM) or not depending upon implementation.

	Device Revocation
	The process of an RI indicating that a Device is no longer trusted to acquire ROs.

	Device Rights Object
	An RO dedicated for a particular Device by means of the Device Public Key.

	Domain
	A set of devices, which are able to share Domain Rights Objects. Devices in a Domain share a Domain Key. A Domain is defined and managed by an RI.

	Domain Identifier
	A unique string identifier of the Domain Key

	Domain Key
	A 128 bit symmetric cipher key

	Domain Generation
	A Counter reflecting the number of times the Domain has been revoked. The Domain Generation is a part of the Domain Identifier (the last two digits).

	Domain Context
	The Domain Context consists of information necessary for the Device to install Domain Rights Objects, such as Domain Key, Domain Identifier and Expiry Time.

	Domain Context Expiry Time
	An absolute time after which the Device is not allowed to install ROs for this Domain. Usage of ROs installed before the expiry time are not affected by the expiry.

	Domain Revocation
	The process of an RI indicating that a Domain Key is not trusted for protection of Domain ROs.

	Domain Rights Object
	An RO that is dedicated to devices in a particular domain by means of a Domain Key.

	DRM Agent
	The entity in the Device that manages Permissions for Media Objects on the Device.

	DRM Message
	An OMA DRM Release 1 term defined in [DRM]

	Forward Lock
	An OMA DRM Release 1 term defined in [DRM]

	Hash Chains
	A Method of derivation of Domain Keys of different Domain Generations.

	Integrity
	The property that data has not been altered or destroyed in an unauthorized manner. (ISO 7498-2)

	Join Domain
	The process of an RI including a Device in a Domain.

	Leave (De-Join) Domain
	The process of an RI excluding a non-revoked Device from a Domain.

	Media Object
	A digital work e.g. a ringing tone, a screen saver, a Java game or a Composite Object.

	Permission
	Actual usages or activities allowed (by the Rights Issuer) over Protected Content (From [ODRL 1.1])

	Play
	To create a transient, perceivable rendition of a resource (From [MPEG21 RDD])

	
	

	Protected Content
	Media Objects that are consumed according to a set of Permissions in a Rights Object.

	Restore
	Transferring the Protected Content and/or Rights Objects from an external location back to the Device from which they were backed up.

	Revoke
	Process of declaring a Device or Rights Issuer certificate as invalid.

	Rights Issuer
	An entity that issues Rights Objects to OMA DRM Conformant Devices.

	Rights Object
	A collection of Permissions and other attributes which are linked to Protected Content.

	Rights Object Acquisition Protocol (ROAP)
	A protocol defined within this specification. This protocol enables devices to request and acquire Rights Objects from a Rights Issuer.

	ROAP Trigger
	A URL that, when received by the Device, initiates the ROAP.

	Separate Delivery
	A Release 1 term defined in [DRM].

	Stateless Rights
	Stateless Rights are Rights Objects for which the Device does not have to maintain state information. For example, if a Rights Object uses the <datetime> constraint, it depicts Stateless Rights, because you don't need to maintain any usage information in order to enforce the constraint

	Stateful Rights
	Stateful Rights are Rights Objects for which the Device has to explicitly maintain state information, so that the constraints and permissions expressed in the RO can be enforced correctly. For example, a RO containing the <interval> constraints are considered Stateful Rights because the Device needs to keep track of the first use of the associated content.

	Superdistribution
	A mechanism that (1) allows a User to distribute Protected Content to other Devices through potentially insecure channels and (2) enables the User of that Device to obtain a Rights Object for the superdistributed Protected Content.

	User
	The human user of a Device. The User does not necessarily own the Device.

3.3 Abbreviations

	3GPP
	3rd Generation Partnership Project

	CA
	Certification Authority

	CEK
	Content Encryption Key

	CI
	Content Issuer

	DCF
	DRM Content Format

	DD
	Download Descriptor

	DRM
	Digital Rights Management

	GUID
	Globally Unique Identifier

	HTTP
	HyperText Transfer Protocol

	ISO
	International Standards Organization

	IMSI
	International Mobile Subscriber Identity

	LAN
	Local Area Network

	ME
	Mobile Equipment

	MMS
	Multimedia Messaging Service

	MPEG
	Moving Picture Expert Group

	OMA
	Open Mobile Alliance

	OMNA
	Open Mobile Naming Authority (see http://www.openmobilealliance.org/tech/omna/index.htm)

	OCSP
	Online Certificate Status Protocol

	OTA
	Over The Air (i.e. transfer over a wireless connection)

	PC
	Personal Computer

	PDA
	Personal Digital Assistant

	PDCF
	Packetized DRM Content Format

	PDU
	Protocol Data Unit

	PKI
	Public Key Infrastructure

	PKC
	Public Key Certificate

	PKC-ID
	PKC Identifier: the hash of the Public Key Certificate

	REK
	Rights Encryption Key

	RFC
	Request For Comments

	RI
	Rights Issuer

	RO
	Rights Object

	ROAP
	Rights Object Acquisition Protocol

	SCR
	Static Conformance Requirement

	SHA-1
	Secure Hash Algorithm

	SIM
	Subscriber Identity Module

	USIM
	Universal Subscriber Identity Module

	SMS
	Short Messaging Service

	TLS
	Transport Layer Security

	UA
	User Agent

	URI
	Uniform Resource Indicator

	URL
	Uniform Resource Locator

	UTC
	Coordinated Universal Time

	WIM
	Wireless Identity Module

	WLAN
	Wireless Local Area Network

4. Introduction

There is a growing need for a rights management system in the mobile industry so that the operators and content providers can make digital content available to consumers in a controlled manner. Digital Rights Management is a set of technologies that provide the means to control the distribution and consumption of the digital media objects. OMA has already published release 1 of the DRM specifications. The release 1 specifications provide some fundamental building blocks for a DRM system. But, they lack the complete security necessary for a robust, end-to-end DRM system that takes into account the need for secure distribution, authentication of Devices, revocation and other aspects. This specification addresses these missing aspects of the OMA DRM.

The OMA DRM enables content providers to grant permissions for media objects that define how they should be consumed. The DRM system is independent of the media object formats and the given operating system or run-time environment. The media objects controlled by the DRM can be a variety of things: games, ring tones, photos, music clips, video clips, streaming media, etc. A content provider can grant appropriate permissions to the user for each of these media objects. The content is distributed with cryptographic protection; hence, the Protected Content is not usable without the associated Rights Object on a Device. Given this fact, fundamentally, the users are purchasing permissions embodied in Rights Objects and the Rights Objects need to be handled in a secure and un-compromising manner.

The Protected Content can be delivered to the Device by any means (over the air, LAN/WLAN, local connectivity, removable media, etc.). But the Rights Objects are tightly controlled and distributed by the Rights Issuer in a controlled manner. The Protected Content and Rights Objects can be delivered to the Device by downloading them together, or by sending them separately. The system does not imply any order or “bundling” of these two objects. It is not within the scope of the DRM system to address the specific payment methods employed by the Rights Issuers.

For a detailed discussion of the overall system architecture, please refer to [DRMARCH-v2]. And, for a detailed discussion of the Rights Expression Language that is used to construct the Rights Objects, please refer to [DRMREL-2].
This specification is one part of a set of specifications developed by OMA to address the need for digital rights management. This specification defines the format and semantics of the cryptographic protocol, messages, processing instructions and certificate profiles that will, together enable an end-to-end system for protected content distribution. Section 5 lays out the specific requirements for capability advertisement and backwards compatibility with version 1.0. Section 6 describes the Rights Object Acquisition Protocol that is executed between a Device and a Rights Issuer system in order to issue Rights Objects to authenticated devices. The format, semantics and processing instructions for each of the ROAP messages is specified in detail here. Section 7 describes the domains functionality. The specific issues surrounding the processing of domain keys, and the revocation implications are discussed here. Section 8-12 deal with the various other aspects of this system: super distribution, proxy/store & forward, binding rights to user identities, & exporting to other DRMs. Finally, the appendices describe the certificate profiles, application to other sevices and related normative as well as informative topics.
5. Capability Negotiation

When Devices contact Content Issuers and Rights Issuers, the Devices need to advertise their capabilities. This allows Content Issuers and Rights Issuers to customize content, purchase options, and so forth based upon the features and functionalities of the Device, thereby improving the overall user experience. OMA DRM relies upon two mechanisms for advertising Device capabilities: HTTP headers [HTTP] and User Agent Profile [UAProf].

5.1 HTTP Headers

When a Device uses HTTP to communicate with Content Issuers and Rights Issuers, the Device MUST advertise support for the following media types using the HTTP Accept header:

· application/vnd.oma.drm.ro

(DRM Rights Object)

· application/vnd.oma.drm.dcf

(DRM Content Format)

· application/vnd.oma.drm.roap-pdu

(DRM ROAP PDUs)

· application/vnd.oma.drm.roap-trigger
(DRM ROAP Trigger)
A Device MUST advertise support for the following DRM packetised content formats, provided they are implemented in the Device:

· video/3gpp
(DRM packetised video content)

· audio/3gpp
(DRM packetised audio content)

In addition to the supported media types, Devices MUST advertise the DRM version using the “<major>.<minor>” format defined below. The version number advertised by OMA DRM v2 Devices MUST match the DRM Enabler Release version that the Device supports.

DRM Version = “DRM-Version” “:” *DIGIT “.” *DIGIT

5.2 User Agent Profile

OMA DRM v2 Devices SHOULD advertise supported DRM methods, permissions, constraints, media types,, version and if supported, its external DRM capabilities using UAProf. "External DRM" refers to a DRM system to which the Device is able to export OMA DRM protected content, for example, a DRM system used on a memory card. See Appendix D for an example.

If the Device supports UAProf, then the Device MUST advertise the attributes in the table below as indicated in the “MUST Advertise” column.

The attributes pertaining to an external DRM system MUST be included if the Device is capable of exporting OMA DRM protected content to such a system. The attributes MUST NOT be included if the Device is incapable thereof.
	UAProf Attribute
	Description
	Example Values
	MUST Advertise

	DrmClass
	DRM v1 Conformance Classes as defined in [DRM]
	"ForwardLock", "CombinedDelivery", "SeparateDelivery"
	“ForwardLock” plus other supported DRM v1 methods

	DrmPermissions
	Optional DRM permissions that are supported as defined in [DRMREL] or [DRMREL-v2]
	“play”, “display”, “execute”, “print”
	Supported permissions using the same syntax as defined in the REL specification.

	DrmConstraint
	Optional DRM permission constraints as defined in [DRMREL] or [DRMREL-v2]
	"datetime", "interval", “accumulated”
	Supported constraints using the same syntax as defined in the REL specification.

	DrmMediaTypes
	Media types the Device supports in a protected form
	"image/gif", "audio/midi", "video/3gpp"
	Media types supported inside a DCF, expressed as MIME media types [RFC2045].

	DrmVersion
	DRM Enabler Release version supported by the client
	“2.0”
	Supported DRM Enabler Release version in “<major>.<minor>” format.

	ExtDrmPermissions
	Permissions supported by the Device's external DRM
	
	Supported external permissions expressed as OMA DRM permissions as defined in [DRMREL‑v2]

	ExtDrmConstraints
	Constraints supported by the Device's external DRM
	
	Supported external constraints expressed as OMA DRM constraints as defined in [DRMREL‑v2]

	ExtDrmMediaTypes
	Media types supported by the external DRM
	"image/jpeg", "audio/aac"
	Media types supported by the external DRM, expressed as MIME media types [RFC2045].

	ExtDrmName
	Name of the external DRM
	"Very Secure Card"
	A textual name of the external DRM system. Well-defined names for external DRM systems are managed by OMNA.

Table 1: User Agent Profile Attributes

5.3 Issuer Responsibilities

When a Content Issuer or Rights Issuer receives a request from a Device indicating that the Device supports OMA DRM version 2.x (any minor version of the DRM v2 specs), the:

· Content Issuer MAY issue Forward Locked Content.

· Content Issuer MAY issue Combined Delivery Content only if the Device advertises support for Combined Delivery.

· Content Issuer MAY issue Separate Delivery Content only if the Device advertises support for Separate Delivery.

· Rights Issuer MAY issue a DRM v1 or DRM v2 Rights Object if the client advertises support for Separate Delivery.

· Content Issuer SHOULD issue DRM v2 content.

· Rights Issuer SHOULD send the ROAP Trigger to initiate the ROAP protocol (see section ROAP Trigger).
6. The Rights Object Acquisition Protocol (ROAP) Suite

6.1 Overview

The Rights Object Acquisition Protocol (ROAP) is the common name for a suite of DRM security protocols between a Rights Issuer (RI) and a DRM Agent in a Device. The protocol suite contains a 4-pass protocol for registration of a Device with an RI and two protocols by which the Device requests and acquires Rights Objects (RO). The 2-pass RO Request/Response protocol encompasses request and delivery of an RO whereas the 1-pass ROAP is only a delivery of an RO from an RI to a Device (e.g. messaging/push). The ROAP suite also includes 2-pass protocols for devices joining and leaving a domain; the Join Domain Request/Response protocol and the Leave Domain Request/Response protocol.

6.1.1 The 4-pass Registration Protocol

The Registration protocol is a complete security information exchange and handshake between the RI and the Device and is generally only executed at first contact, and also, when major changes have been made such as an update of the ROAP or DRM version, or when DRM time in Device is lost. This protocol includes negotiation of protocol parameters and protocol version, exchange of certificate preferences, optional exchange of certificates, mutual authentication of Device and RI, integrity protection of protocol messages and optional time synchronization.

Successful completion of the Registration protocol results in the establishment of an RI Context in the Device containing security related information of this Rights Issuer, including agreed protocol parameters, protocol version, and certificate preferences. An RI Context is necessary for execution of the other protocols in the ROAP suite: to acquire and install Device ROs and to join/leave domains. The RI may accept other methods for establishment of the RI Context than the 4-pass registration protocol, e.g. a well formed request message with correct parameters using the default algorithms. However, the Registration protocol is needed for fallback e.g. if Device DRM time is inaccurate, or if the RI Context needs to be updated.

[image: image2.emf]DeviceRights IssuerOCSP Responder

1

2

3

a

b

4

RegistrationRequest

RegistrationResponse

Device Hello

RI Hello

OCSP Request

OCSP Response

Figure 1: The 4-pass Registration Protocol

As illustrated in the figure above, optionally, the RI does a nonce-based OCSP request for its own certificate (using a nonce supplied by the Device) during the registration protocol. Whether or not to do the nonce-based OCSP request depends on if Device DRM time is out of sync with respect to synchronization as desired by the RI.

6.1.2 The 2-pass Rights Object Acquisition Protocol

The 2-pass ROAP protocol is the request/response protocol with which the Device acquires Rights Objects. This protocol variant includes request and delivery of RO, mutual authentication of Device and RI, establishment of necessary cryptographic information in the trusted device in order to process the RO and perform integrity check of RO and PDU. The protocol requires an RI Context in the Device e.g. as the result of a prior run of the Registration protocol.

[image: image3.emf]DeviceRights Issuer

1

2

RO Request

RO Response

Figure 2: The 2-pass Rights Object Acquisition Protocol

6.1.3 The 1-pass Rights Object Acquisition Protocol

The 1-pass ROAP protocol is designed to meet the messaging/push use case. There has to be an existing RI Context for the sending RI in the Device to be able to run this protocol. In contrast to previous protocol variants, it is initiated unilaterally by the RI and requires no interaction from the Device. One use case is distribution of Rights Objects at regular intervals, e.g. supporting a content subscription. The 1-pass protocol is essentially the last message of the 2-pass variant.

[image: image4.emf]DeviceRights Issuer

1

RO Response

Figure 3: The 1-pass Rights Object Acquisition Protocol

1-pass delivery of Domain ROs can alternatively be delivered stand-alone without use of the RO Response PDU.

6.1.4 The 2-pass Join Domain Protocol

The Join Domain protocol is a device initiated request/response protocol whereby a device requests to join an RI-defined domain and receives in the response the Domain Key and other information needed to share ROs in this domain (if successful) or an error message (if not successful). The protocol assumes an existing RI context with this RI.

Successful completion of the Join Domain protocol results in the establishment of a Domain Context in the Device containing security related information of this domain including a Domain Key. A Domain Context is necessary for the Device to be able to install and utilize Domain ROs.

[image: image5.emf]DeviceRights Issuer

1

2

JoinDomainRequest

JoinDomainResponse

Figure 4: The 2-pass Join Domain Protocol

6.1.5 The 2-pass Leave Domain Protocol

The Leave Domain protocol is a device initiated request/response protocol whereby a Device that has removed information about an RI-defined domain requests to leave it and receives an acknowledgement that it has left the domain or an error message.

[image: image6.emf]DeviceRights Issuer

1

2

LeaveDomainRequest

LeaveDomainResponse

Figure 5: The 2-pass Leave Domain Protocol

6.1.6 The ROAP Trigger

The suite of protocols included in the ROAP is initiated using the ROAP Trigger. The Rights Issuer sends the ROAP Trigger to the Device to initiate the ROAP. When the Device receives the ROAP Trigger it immediately initiates the ROAP transaction.
 Since the ROAP comprises several protocols, the ROAP Trigger provides an indication of which actual ROAP (Registration, RO acquisition, leave a domain, join a domain) is to be started by the Device. The ROAP Trigger also contains all the information needed by the Device, which it does not already have, to participate in the ROAP.

[image: image7.emf]Device

Rights

Issuer

ROAP Trigger {roRequest}

RO Request

RO Response

ROAP Trigger {joinDomain}

Join Domain Request

Join Domain Response

ROAP Trigger {leaveDomain}

Leave Domain Request

Leave Domain Response

Figure 6: ROAP Trigger

6.2 ROAP XML Schema basics

6.2.1 Introduction

Core parts of the XML schema for ROAP, found in Appendix A are explained in this section. Specific protocol message elements are defined in section ROAP Messages. Examples are found in Appendix B.
The XML format for ROAP messages have been designed to be extensible. However, it is possible that the use of extensions will harm interoperability and therefore any use of extensions should be carefully considered.

Types defined in this section are not ROAP messages; rather they provide building blocks that are used by ROAP messages.

6.2.2 A note on comparison of ROAP values

Some ROAP exchanges rely on the parties being able to compare received values with stored values. Unless otherwise noted, all elements in this document that have the XML Schema "string" type, or a type derived from it, MUST be compared using an exact binary comparison. In particular, ROAP implementations MUST NOT depend on case-insensitive string comparisons, normalization or trimming of white space, or conversion of locale-specific formats such as numbers.

The ROAP specification does not define a collation or sorting order for attributes or element values. ROAP implementations MUST NOT depend on specific sorting orders for values.
6.2.3 The Request type

All ROAP requests are defined as extensions to the abstract Request type.

<complexType name="Request" abstract="true"/>

6.2.4 The Response type

All ROAP responses are defined as extensions to the abstract Response type. The elements of the Response type therefore apply to all ROAP responses. All responses contain a status attribute that indicates whether the preceding request was successful or not.

<complexType name="Response" abstract="true">

 <attribute name="status" type="roap:Status" use="required"/>

</complexType >

6.2.5 The Status type

The Status simple type enumerates all possible error messages.
<simpleType name="Status">

<restriction base="string">

<enumeration value="Success"/>

<enumeration value="UnknownError"/>

<enumeration value=”Abort”/>

<enumeration value="NotSupported"/>

<enumeration value="AccessDenied"/>

<enumeration value="NotFound"/>

<enumeration value="MalformedRequest"/>

<enumeration value="UnknownRequest"/>

<enumeration value="UnknownCriticalExtension"/>

<enumeration value="UnsupportedVersion"/>

<enumeration value="UnsupportedAlgorithm"/>

<enumeration value="NoCertificateChain"/>

<enumeration value=”SignatureError”/>

<enumeration value="DeviceTimeError"/>

<enumeration value="InvalidRegistration"/>

<enumeration value="InvalidDCFHash"/>

<enumeration value="InvalidDomain"/>

<enumeration value="DomainFull"/>

</restriction>

</simpleType>

UnknownError indicates an internal RI system error.
Abort indicates that the RI rejected the Device’s request for unspecified reasons.
NotSupported indicates the Device made a request for a feature currently not supported by the RI.

AccessDenied indicates that the Device is not authorized to contact this RI at present.
NotFound indicates that the requested object was not found.

MalformedRequest indicates that the RI failed to parse the Device's request.

UnknownRequest indicates that the RI did not recognize the request type.

UnknownCriticalExtension indicates that a critical extension used by the Device was not supported or recognized by the RI.

UnsupportedVersion indicates that the Device used a ROAP protocol version not supported by the RI.

UnsupportedAlgorithm indicates that the Device suggested algorithms that are not supported by the RI (should not occur as long as all Devices and all RIs implement the mandatory algorithms).

NoCertificateChain indicates that the server could not verify the signature on a Device request due to not having access to the Device's certificate chain.

SignatureError indicates that the RI server could not verify the Device's signature.

DeviceTimeError indicates that a Device request was invalid due to the Device time being inappropriately synchronized. This triggers a full 4-pass Registration protocol

InvalidRegistration indicates that the Device tried to contact an RI with which it has not completed a valid registration (e.g., resulting in an invalid RI Context in the device)

InvalidDCFHash is sent when the RI detects an incorrect DCF hash value in a ROAP-RORequest message.

InvalidDomain indicates that the request was invalid due to an unrecognized Domain Identifier.

DomainFull indicates that no more devices are allowed to join the Domain.

Upon transmission or receipt of a message for which Status is not "Success", both the sending and the receiving parties shall immediately close the connection/terminate the protocol. RI systems and Devices are required to forget any session-identifiers, nonces, keys, and/or secrets associated with a failed run of the ROAP protocol.

6.2.6 The Extensions type

The Extensions type is a list of type-value pairs that define optional ROAP features supported by a Device or an RI. Extensions may be sent with any ROAP message. Please see ROAP message description sections in this document for applicable extensions. Unless an extension is marked as critical, a receiving party need not be able to interpret it, and a receiving party is always free to disregard any (non-critical) extensions.

<complexType name="Extensions">

 <sequence maxOccurs="unbounded">

 <element name="extension" type="roap:Extension"/>

 </sequence>

</complexType>

<complexType name="Extension" abstract="true">

 <attribute name="critical" type="boolean"/>

</complexType>

6.2.7 The Protected Rights Object payload type

The ProtectedRO type is a sequence of an <ro> element of type ROPayload and a <mac> element carrying a MAC value over the <ro> element.

Values of the ROPayload type carries (protected) REL elements and wrapped keys that can be used to decrypt encrypted portions of the REL elements. The ROPayload type is defined as a sequence consisting of a type version number identifier, an identifier for the RI, the REL element, an optional signature (signature MUST be present if the RO is for a domain), optional replay-protection elements (<guid> and <timeStamp>, see Section Replay Protection), and a wrapped concatenation <encKey> of an RO encryption key KREK and a MAC key, KMAC. (see the Key Management Section).

The <version> referred to here is a <major, minor> representation of the highest ROPayload version supported by the Device. For this version of the protocol, the ROPayload version SHALL be set to <1,0>. Minor version upgrades must always be backwards compatible. The ROPayload version must not be confused with the OMA DRM version, which is independently set. The reason for having different versions is to enable Domain ROs to be shared between devices with different OMA DRM protocol versions.

The <rel> element is of type <o-ex:RightsType> and MUST be conformant with [OMA DRM v2.0 REL].
The <signature> element is of type ds:SignatureType from [XMLDsig].

The <dcfHash> element, when present, contains a digest of the DCF associated with this Rights Object, and allows a Device to verify that the DCF has not been tampered with.

The <timeStamp> value must be given in Universal Coordinated Time (UTC).

The <encKey> element is of type xenc:EncryptedKeyType from [XMLEnc]. The Id attribute of this element shall be present and shall have the same value as the value of the URI attribute of the <ds:RetrievalMethod> element in any <ds:KeyInfo> elements inside the <rel> element. The <ds:KeyInfo> child element of the <encKey> element shall identify the wrapping key. In the case of a Rights Object intended for a device, the child of the <ds:KeyInfo> element will be of type roap:X509SPKIHash, identifying a particular DRM Agent's public key through the hash of the subjectPublicKeyInfo value in its certificate. In the case of a Rights Object intended for a domain, it will be of the type roap:DomainIdentifier, identifying the correct domain key. For examples of this, see Appendix B.
The attribute domainRO indicates if the RO is for a Domain (True) or for the Device (False).

The attribute id of the ROPayload type identifies the RO and will, when applicable, correspond to an <roID> value in a previous ROAP-RORequest. The id attribute is also used as a reference point for the MAC, see below. A <ds:Reference> element in the <ds:SignedInfo> element of the <mac> element of the enveloping roap:ProtectedRO type will refer to the id attribute's value.

The attribute stateful indicates if the RO contains stateful rights (i.e. needs replay protection). The id attribute MUST be globally unique when this attribute is present and set to true, in order to enable a Device to correctly enforce the replay protection.

For the <mac> element, the <ds:RetrievalMethod> shall be used to identify the key used to produce the MAC, and the URI attribute of this element SHALL have the same value as the Id attribute of the <ro> element's <encKey> element. For examples of this, see Appendix B.

To provide key confirmation, the MAC is calculated over the <ro> element, and together, the <ro> element and the <mac> element forms a roap:ProtectedRO value. In the case of a domain RO, the <ProtectedRO> element can be shared between devices either sent as a standalone message or inserted into a DCF.

<complexType name="ROPayload">

 <sequence>

 <element name="version" type="roap:Version"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="rel" type="o-ex:rightsType"/>

 <element name="signature" type="ds:SignatureType" minOccurs="0"/>

 <element name="dcfHash" type="base64Binary" minOccurs="0"/>

 <element name="timeStamp" type="dateTime" minOccurs="0"/>

 <element name="encKey" type="xenc:EncryptedKeyType"/>

 </sequence>

 <attribute name="domainRO" type="boolean"/>

 <attribute name="id" type="ID"/>

 <attribute name="stateful" type="boolean"/>

</complexType>

<!-- May be sent standalone (domain ROs) -->

<element name="protectedRO" type="roap:ProtectedRO
"/>

<complexType name="ProtectedRO">

 <sequence>

 <element name="ro" type="roap:ROPayload"/>

 <element name="mac" type="ds:SignatureType"/>

 </sequence>

</complexType>

6.2.8 The ROAP Trigger type

The MIME type for the ROAP Trigger is “application/vnd.oma.drm.roap-trigger”.

The schema for the ROAP Trigger is as follows:

<schema

 targetNamespace="urn:oma:bac:dldrm:roap-trigger-20040120"

 xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:roap-trigger="urn:oma:bac:dldrm:roap-trigger-20040120"

 xmlns:roap="urn:oma:bac:dldrm:roap-20040120"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xenc=http://www.w3.org/2001/04/xmlenc#
 elementFormDefault="unqualified"

 attributeFormDefault="unqualified">

<import namespace="urn:oma:bac:dldrm:roap-20040120" schemaLocation="roap.xsd"/>

<import namespace="http://www.w3.org/2000/09/xmldsig#"

 schemaLocation="http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/xmldsig-core-schema.xsd"/>

<import namespace="http://www.w3.org/2001/04/xmlenc#"

 schemaLocation="http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/xenc-schema.xsd"/>

<complexType name="RegistrationRequestTrigger">

 <sequence>

 <element name="riID" type="roap:Identifier"/>

 <element name="roapURL" type="anyURI"/>

 </sequence>

</complexType>

<complexType name="ROAcquisitionTrigger">

 <sequence>

 <element name="riID" type="roap:Identifier"/>

 <element name="roapURL" type="anyURI"/>

 <element name="domainID" type="roap:DomainIdentifier"

 minOccurs="0"/>

 <element name="roID" type="ID" maxOccurs="unbounded"/>

 </sequence>

</complexType>

<complexType name="DomainTrigger">

 <sequence>

 <element name="riID" type="roap:Identifier"/>

 <element name="roapURL" type="anyURI"/>

 <element name="domainID" type="roap:DomainIdentifier"/>

 </sequence>

 <attribute name="id" type="ID"/>

</complexType>

<!-- ROAP trigger -->

<element name="roapTrigger" type="roap-trigger:RoapTrigger"/>

<complexType name="RoapTrigger">

 <annotation>

 <documentation xml:lang="en">

 Message used to trigger the device to initiate the Rights Object

 Acquisition Protocol.

 </documentation>

 </annotation>

 <sequence>

 <choice>

 <element name="registrationRequest" type="roap-trigger:RegistrationRequestTrigger"/>

 <element name="roAcquisition" type="roap-trigger:ROAcquisitionTrigger"/>

 <element name="domainJoin" type="roap-trigger:DomainTrigger"/>

 <element name="domainLeave" type="roap-trigger:DomainTrigger"/>

 </choice>

 <element name="mac" type="ds:SignatureType" minOccurs="0"/>

 <element name="encKey" type="xenc:EncryptedKeyType" minOccurs="0"/>

 </sequence>

</complexType>

</schema>

The <riID> element MUST uniquely identify the rights issuer. The DRM Agent MUST use this value to verify that it has a valid RI Context with the Rights Issuer. If the DRM Agent does not have a valid RI Context with the identified Rights Issuer then the DRM Agent MUST initiate the Registration Protocol before initiating the protocol indicated in the <roapTrigger> element, except in the case of the RegistrationRequestTrigger.

The <domainID> element MAY be included in the ROAP Trigger. If included, the Device MUST incorporate the domain ID in the ROAP PDU that is sent in response to the trigger.

The <roID> element MAY be included in the ROAP Trigger by the RI to identify the RO to be acquired. The DRM Agent MUST include the <roID> in the RO Info portion of the RO Request PDU. The RI MAY specify more than one <roID> element to initiate download of multiple ROs. The DRM Agent MUST include all <roID> elements in the RO Request.

The DRM Agent MUST use the URL specified by the <roapURL> element when initiating the ROAP transaction. The <roapURL> is used in conjuction with the protocol indicated in the <roapTrigger> element as described below to determine which ROAP PDU to send. The Device MUST immediately start the appropriate protocol upon receipt of the ROAP Trigger. The Device MUST support HTTP (or WSP) for transporting ROAP PDUs as described in section 6.6.1 HTTP/WSP Transport Mapping. The Device MAY support other ROAP transport protocols.

The ROAP PDU the Device sends is determined by the protocol indicated in the <roapTrigger> element in the ROAP Trigger.

· If the <roapTrigger> element indicates a RegistrationRequest, the ROAP PDU MUST only contain a single valid DeviceHello PDU.

· If the <roapTrigger> element indicates a ROAcquisition, the ROAP PDU MUST only contain a single valid RO Request PDU.

· If the <roapTrigger> element indicates a DomainJoin, the ROAP PDU MUST only contain a single valid Domain Join PDU.

· If the <roapTrigger> element indicates a DomainLeave, the ROAP PDU MUST only contain a single valid Domain Leave PDU.

The Rights Issuer MAY authenticate the ROAP Trigger. If the ROAP trigger is authenticated, a MAC is included in the ROAP Trigger <mac> element. The RI MUST include a <mac> element if the protocol indicated by the <roapTrigger> element is “DomainLeave.” A Device SHOULD inform the user and MUST discard a received "DomainLeave" ROAP Trigger which is not authenticated. If a MAC is included in the ROAP Trigger, the Device MUST verify it prior to initiating the ROAP. If the Device cannot verify the MAC, the Device SHOULD inform the user and MUST discard the ROAP Trigger. The <ds:Reference> element of the <ds:SignedInfo> child element of the <mac> shall reference a DomainTrigger element by using the same value for the URI attribute as the value for the DomainTrigger's id attribute. The <ds:KeyInfo> child element of the <mac> element shall use its URI attribute of the <ds:RetrievalMethod> element to reference a wrapped MAC key in the <encKey> element.

The <encKey> element shall be present when the <mac> element is present and shall contain a MAC key wrapped with the current domain key. The value of the Id attribute of this element shall equal the value of the URI attribute of the <ds:RetrievalMethod> child element of the <mac> element as specified above.

If the DRM Agent has a valid RI Context with the Rights Issuer, and the DRM Agent has obtained user consent for silent rights retrieval for the rights issuer, then the DRM Agent SHOULD initiate the ROAP transaction without user interaction. If no RI Context exists between the Device and the Rights Issuer, the DRM Agent MUST notify the user before initiating the ROAP transaction.For an example of a ROAP trigger message, see Appendix B.

6.3 ROAP Messages

In this section, ROAP protocol suite messages, including their parameters, encodings and semantics are defined. The ROAP protocol messages are divided into three categories: ROAP trigger, Registration, RO Acquisition, & Domains.

6.3.1 Notation

In the message parameter tables below, "M" stands for a mandatory parameter and "O" stands for optional.

6.3.2 Registration Protocol

6.3.2.1 Device Hello

The ROAP-DeviceHello message is sent from the Device to the Rights Issuer to initiate the 4-pass Registration protocol. This message expresses device information/preferences.

6.3.2.1.1 Message description

	Parameter
	ROAP-DeviceHello

	Version
	M

	Device ID
	M

	Supported Algorithms
	O

	Extensions
	O

Table 2: Device Hello Message Parameters
Version is a <major, minor> representation of the highest OMA DRM
 version number supported by the Device. For this version of the protocol, Version SHALL be set to <2,0>. Minor version upgrades must always be backwards compatible.

Device ID identifies the Device, in one or several ways, to the RI. The only identifier currently defined is the SHA-1 hash of the Device's public key info, as it appears in the certificate (i.e. the SHA-1 hash of the complete DER-encoded subjectPublicKeyInfo component in the Device's certificate). Other identifiers are allowed but interoperability when using them is not guaranteed.

Supported Algorithms identifies the cryptographic algorithms (hash algorithms, MAC algorithms, signature algorithms and key wrap algorithms) that are supported by the device. Algorithms are identified using common URIs. The following algorithms and associated URIs MUST be supported by Devices and RIs:

· Hash algorithms:

· SHA-1: http://www.w3.org/2000/09/xmldsig#sha1
· MAC algorithms:

· HMAC-SHA-1: http://www.w3.org/2000/09/xmldsig#hmac-sha1
· Signature algorithms:

· RSA-PSS-Default: http://www.rsasecurity.com/rsalabs/xml/pkcs-1#rsa-pss-default
· Key transport algorithms:

· RSA-KEM: http://www.rsasecurity.com/rsalabs/xml/pkcs-1#rsa-kem
Use of other algorithm URIs is optional. Since all devices and all RIs must support the algorithms above, they need not be sent. Only URIs for algorithms not in this list needs to be sent in a ROAP-DeviceHello message.

Extensions: The following extensions are defined for the ROAP-DeviceHello message:

· Certificate Caching: Relates to Device certificate. Indicates to the RI that the Device has a capability to remember whether an RI has stored a Device certificate or not. (Note: This is not about whether the Device has stored information of RI certificates or not. For this, the Peer Key Identifier extension is used - see the ROAP-RegistrationRequest, ROAP-RORequest, and ROAP-JoinDomainRequest messages.) If the Device has capability to store information on whether the RI has stored a device certificate, then the Device MUST include the Certificate Caching extension set to “True” in the ROAP-DeviceHello message. (The semantics of setting this extension to “False” is the same as not including the extension at all.) If this extension is used, the RI can use the Peer Key Identifier or Certificate Caching extension in its ROAP-RIHello message to indicate what Device public key it has stored or what capabilities the RI has to store the Device certificate, respectively.

Note: It has been proposed to add a “Purpose” field to allow an extension of this general handshake protocol for other purposes than registration. This could be added as a separate parameter or as an Extension in ROAP-DeviceHello, but no other purposes have yet been identified.

6.3.2.1.2 Message syntax

The <deviceHello> element specifies a ROAP request that is the first message sent in a 4-pass ROAP session. It has complex type DeviceHello, which extends the basic Request type. The response to this request is specified by the <riHello> element, and together they implement the ROAP-DeviceHello and ROAP-RIHello messages.

<element name="deviceHello" type="roap:DeviceHello"/>

<complexType name="DeviceHello">

 <annotation>

 <documentation xml:lang="en">

 Message sent from Device to RI to establish an RI Context.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Request">

 <sequence>

 <element name="version" type="roap:Version"/>

 <element name="deviceID" type="roap:Identifier"

 maxOccurs="unbounded"/>

 <element name="supportedAlgorithm" type="anyURI"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="extensions" type="roap:Extensions"

 minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

The following schema fragment defines the Version type. As noted above, for this version of ROAP, its value shall be <major>2</major><minor>0</minor>.
<complexType name="Version">

 <complexContent>

<sequence>

 <element name="majorVersion" type="positiveInteger"/>

 <element name="minorVersion" type="positiveInteger"/>

 </sequence>

 </complexContent>

</complexType>
The following schema fragment defines the Identifier type and its alternatives. Any non-standard identifier value must be expressed in well-formed XML.

<complexType name="Identifier">

 <choice>

 <element name="keyIdentifier" type="roap:KeyIdentifier"/>

 <any namespace="##other" processContents="strict"/>

 </choice>

</complexType>

<complexType name="KeyIdentifier" abstract="true"/>

A key can be defined by use of a hash of the key. The hash shall be made over the DER-encoded SubjectPublicKeyInfo value from the applicable certificate.

<complexType name="X509SPKIHash">

 <complexContent>

 <extension base="roap:KeyIdentifier">

 <sequence>

 <element name="hash" type="base64Binary"/>

 </sequence>

 <attribute name="hashAlgorithm" type="anyURI"/>

 </extension>

 </complexContent>

</complexType>

<!-- The corresponding ds:KeyInfo type -->

<element name="X509SPKIHash" type="base64Binary"/>

The following extension is defined for the ROAP-DeviceHello message:

<complexType name="CertificateCaching">

 <complexContent>

 <extension base="roap:Extension">

 <attribute name="certCachingCapabilities" type="boolean"/>

 </extension>

 </complexContent>

</complexType>

6.3.2.2 RI Hello

The ROAP-RIHello message is the second message of the Registration protocol and is sent from the Rights Issuer to the Device in response to a ROAP-DeviceHello message. The message expresses RI preferences and decisions based on the values supplied by the Device.

6.3.2.2.1 Message description

	Parameter
	ROAP-RIHello

	
	Status = “Success”
	Status ≠ “Success”

	Status
	M
	M

	Session ID
	M
	-

	Selected Version
	M
	-

	RI ID
	M
	-

	Selected Algorithms
	O
	-

	RI Nonce
	M
	-

	Trusted Authorities
	O
	-

	Server Info
	O
	-

	Extensions
	O
	-

Table 3: RI Hello Message Parameters
Status indicates if the ROAP-DeviceHello request was successfully (Status = Success) handled or not. In the latter case an error code as specified in Section 6.2.5 is sent.

Session ID is a protocol session identifier set by the RI. This allows for several, concurrent, RI-Device sessions.

Selected Version is the selected OMA DRM version. The selected version will be min(Device suggested version, highest version supported by RI). This information is part of the RI Context.

RI ID identifies the RI to the Device. Available identifiers are the same as for the Device ID parameter in ROAP-DeviceHello messages. This information is part of the RI Context.

Selected Algorithms specifies the cryptographic algorithms (hash algorithm, signature algorithm, MAC algorithm and key transport algorithm) to use in subsequent ROAP interactions. If the Device indicated support of only mandatory algorithms (i.e. left out the supportedAlgorithms element), then the RI need not send this field. Otherwise, the RI MUST provide this parameter and MUST identify one algorithm of each type.

RI Nonce is a random nonce sent by the RI. Nonces MUST be randomly generated and MUST NOT be re-used.

Trusted Authorities is a list of trust anchors recognized by the RI. This parameter is optional. The parameter is not sent if the RI already has the Device's certificate or otherwise is able to verify a signature made by the Device. If the parameter is present but empty, it indicates that the Device is free to choose any Device certificate to authenticate itself. Otherwise the Device MUST choose a certificate chaining back to one of the recognized trust anchors. Trust anchors are identified by hashes of their public keys.

Server Info contains server-specific information that the device must return unmodified, in the ROAP-RegistrationRequest. The client must not attempt to interpret the value of this parameter.

Extensions: The following extensions are defined for the ROAP-RIHello message:

· Peer Key Identifier: An identifier for a Device key stored by the RI. If the identifier matches the Device's current key, it means the Device need not send its certificate chain in a later request message. Keys are identified in the same way as devices are(SHA-1 hash of DER-encoded subjectPublicKeyInfo component). If the RI has stored the Device public key the RI MUST use this extension in the ROAP-RIHello. This extension also informs the Device that the RI has the capability to store information about the Device certificates.

· Certificate Caching This extension relates to Device certificates. Indicates to the Device that the RI has the capability to store information about the Device certificate and that Device certificate chain sending is not necessary in subsequent 2-pass protocol instances. This extension is unnecessary if the Peer Key Identifier is used, since the latter contains even more specific information.
If the Certificate Caching extension was set to “True” in the ROAP-DeviceHello message and the RI has capabilities to store Device certificates, then the RI MUST send either the Peer Key Identifier or the Certificate Caching extension in the ROAP-RIHello message. If the Certificate Caching extension was not present or set to “False” in the ROAP-DeviceHello message, then the RI MUST NOT send the Certificate Caching extension in ROAP-RIHello. If the ROAP-RIHello contains a Peer Key Identifier extension, it SHOULD NOT contain a Certificate Caching indication.

Information about RI storing Device certificate information is part of the RI Context. If either the Peer Key Identifier or the Certificate Caching extension is sent, the RI must store necessary information about the Device certificate and the Device will note Certificate Caching in the RI Context.

6.3.2.2.2 Message syntax

The <riHello> element specifies a ROAP response that is sent in response to a <deviceHello> element. It has complex type RIHello.
<element name="riHello" type="roap:RIHello"/>

<complexType name="RIHello">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to a DeviceHello.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="selectedVersion" type="roap:Version"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="selectedAlgorithm" type="anyURI" maxOccurs="unbounded"

minOccurs="0"/>

 <element name="riNonce" type="roap:Nonce"/>

 <element name="trustedAuthorities" type="roap:KeyIdentifiers" minOccurs="0"/>

 <element name="serverInfo" type="base64Binary" minOccurs="0"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 </sequence>

 <attribute name="sessionId" type="hexBinary" use="required"/>

 </extension>

 </complexContent>

</complexType>

<simpleType name="Nonce">

 <restriction base='base64Binary'>

 <minLength value=''14"/>

 </restriction>

</simpleType>

<complexType name="KeyIdentifiers">

 <sequence maxOccurs="unbounded">

 <element name="keyIdentifier" type="roap:KeyIdentifier"/>

 </sequence>

</complexType>

The Certificate Caching extension is described previously. The following schema fragment defines the Peer Key Identifier extension:

<complexType name="PeerKeyIdentifier">

 <complexContent>

 <extension base="roap:Extension">

 <sequence>

 <element name="identifier" type="roap:KeyIdentifier"/>

 </sequence>

 </extension>

 </complexContent>

6.3.2.3 Registration Request

A Device sends the ROAP-RegistrationRequest message to an RI to request registration with the RI. The message is sent as the third message in the 4-pass Registration protocol.

6.3.2.3.1 Message description

	Parameter
	ROAP-RegistrationRequest

	Session ID
	M

	Device Nonce
	M

	Request Time
	M

	Certificate Chain
	O

	Trusted Authorities
	O

	Server Info
	O

	Extensions
	O

	Signature
	M

Table 4: Registration Request Message Parameters
Session ID SHALL be identical to the Session ID parameter of the preceding ROAP-RIHello message, otherwise the RI shall terminate the Registration protocol.

Device Nonce is a nonce chosen by the Device. Nonces SHALL be randomly generated and MUST NOT be re-used.

Request Time is the current DRM UTC time, as measured by the Device.
Certificate Chain: This parameter MUST be present unless the preceding ROAP-RIHello message contained the Peer Key Identifier extension and its value identified the key in the Device's current certificate. When present, the value of a Certificate Chain parameter shall be a certificate chain including the Device's certificate. The chain SHALL not include the root certificate. The Device certificate must come first in the list. Each following certificate must directly certify the one preceding it. If the RI indicated trust anchor preferences in the previous ROAP-RIHello message, the Device MUST select a Device certificate and chain which chains back to one of the trust anchors in the RI's list, if possible. This mimics the features of [RFC3546]. If the ROAP-RIHello message contained the Peer Key Identifier or the Certificate Caching extension, then the RI MUST store necessary information about the Device certificate. The RI may need to update this information based on the received Certificate Chain.

Trusted Authorities is a list of trust anchors recognized by the Device. If the parameter is empty, it indicates that the RI is free to choose any certificate. Trust anchors are identified by hashes of their public keys.

Server Info: As discussed above, this parameter will only be present if a Server Info parameter was present in the preceding ROAP-RIHello message. In that case, the Server Info parameter MUST be present and MUST be identical to the Server Info parameter received in the preceding ROAP-RIHello message.

Extensions: The following extensions are defined for the ROAP-RegistrationRequest message:

· Peer Key Identifier: An identifier for an RI certificate stored in the Device. If the identifier matches the RI's current certificate, it means the RI need not send down its certificate chain in its response message. Certificates are identified by reference.

· No OCSP Response: This extension allows the Device to indicate to the RI that there is no need to send an OCSP Response since the Device has cached a valid OCSP Response for this RI.

· OCSP Responder Key Identifier: This extension identifies an OCSP responder key stored in, and trusted by, the Device and is used to save bandwidth. If the identifier matches the key in the certificate used by the RI's OCSP responder, the RI MAY remove the OCSP Responder certificate chain from the OCSP response before providing the OCSP response to the Device.

If the Device has stored information about the RI certificate, the Device MUST send the Peer Key Identifier extension. If the Device has a valid OCSP Response, the Device MUST send the No OCSP Response extension. If the Device has stored and trusts the OCSP responder key used by this RI, the Device MUST send the OCSP Responder Key Identifier extension.

Signature is a signature on data sent so far in the protocol. The signature is made using the Device's private key on a hash of the two previous messages (ROAP-DeviceHello, ROAP-RIHello) and all parameters of this message (besides the Signature parameter itself). The signature method is as follows:

· The previous messages and the current one except the Signature element is canonicalized using the exclusive canonicalization method defined in [xc14n].

· The three messages are concatenated in their chronological order, starting with the ROAP-DeviceHello message. The resulting data d is considered as input to the signature operation.

· The signature is calculated on d in accordance with the rules of the negotiated signature scheme.

6.3.2.3.2 Message syntax

The <RegistrationRequest> element specifies the ROAP-RegistrationRequest primitive. It has complex type RegistrationRequest, which extends the basic Request type. The response to this request is specified by the <RegistrationResponse> element, and together they implement the ROAP-RegistrationRequest and ROAP-RegistrationResponse messages.

<element name="registrationRequest" type="roap:RegistrationRequest"/>

<complexType name="RegistrationRequest">

 <annotation>

 <documentation xml:lang="en">

 Message sent from Device to RI to request registration.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Request">

 <sequence>

 <element name="nonce" type="roap:Nonce"/>

 <element name="time" type="dateTime"/>

 <element name="certificateChain" type="roap:CertificateChain"

 minOccurs="0"/>

 <element name="trustedAuthorities" type="roap:KeyIdentifiers"

 minOccurs="0"/>

 <element name="serverInfo" type="base64Binary" minOccurs="0"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 <attribute name="sessionId" type="hexBinary" use="required"/>

 </extension>

 </complexContent>

</complexType>

The following schema fragment defines the CertificateChain type:

<complexType name="CertificateChain">

 <sequence maxOccurs="unbounded">

 <element name="certificate" type="base64Binary"/>

 </sequence>

</complexType
The following schema fragment defines the extensions defined for the ROAP-RegistrationRequest message (besides the Peer Key Identifier extension already defined earlier in this document):

<complexType name="NoOCSPResponse">

 <complexContent>

 <extension base="roap:Extension">

 <attribute name="NoOCSPResponse" type="boolean"/>

 </extension>

 </complexContent>

</complexType>

<complexType name="OCSPResponderKeyIdentifier">

 <complexContent>

 <extension base="roap:Extension">

 <sequence>

 <element name="identifier" type="roap:KeyIdentifier"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

6.3.2.4 Registration Response

The ROAP-RegistrationResponse message is sent from the Rights Issuer to the Device in response to a ROAP-RegistrationRequest message. This message completes the Registration protocol, and if successful, enables the Device to establish an RI Context for this RI.

6.3.2.4.1 Message description

	Parameter
	ROAP-RegistrationResponse

	
	Status = “Success”
	Status ≠ “Success”

	Status
	M
	M

	Session ID
	M
	M

	Certificate Chain
	O
	-

	OCSP Response
	O
	-

	Extensions
	O
	-

	Signature
	M
	-

Table 5: Registration Response Message Parameters
Status indicates if the ROAP-RegistrationRequest message was successfully (Status = Success) handled or not. In the latter case an error code as specified in Section 6.2.5 is sent.

Session ID SHALL be identical to the Session ID of the preceding ROAP-RegistrationRequest (and ROAP-RIHello) message. If the Session ID of ROAP-RegistrationResponse does not equate with the Session ID of the corresponding ROAP-RIHello, the Device MUST terminate the protocol.
Certificate chain: This parameter MUST be present unless the preceding ROAP-RegistrationRequest message contained the Peer Key Identifier extension, and the extension was honored by the RI, and its value identified the RI's current key. When present, the value of a Certificate Chain parameter shall be certificate chain including the RI's certificate. The chain MUST NOT include the chain's root certificate. The RI certificate must come first in the list. Each following certificate must directly certify the one preceding it. If the Device indicated trust anchor preferences in its ROAP-RegistrationRequest message, the RI MUST select a certificate and chain which chains back to one of the trust anchors in the Device's list, if possible
. This mimics the features of [RFC3546]. The Device MUST verify the certificates in the RI certificate chain. The Device MAY store RI certificate verification data indicating that an RI certificate chain has been verified. The purpose of this is to avoid repeated verification of the same certificate chain. The RI certificate verification data MUST uniquely identify the RI certificate and MUST be integrity protected. The Device SHOULD check if the RI certificate chain received in this parameter corresponds to stored RI certificate verification data. If so, the Device SHOULD NOT verify the RI certificate chain. If an RI certificate is recieved that is not in the RI certificate verification data of this RI, and the registration was successful, and if the expiry time of the received RI certificate is later than the RI Context for this RI, then the Device SHOULD make the RI cerficate verification data to that of the received RI certificate and set the RI context expiry time to that of the received RI certificate expiry time.

OCSP Response SHALL be a valid OCSP response for the RI's certificate. This parameter will not be sent if the Device sent the Extension No OCSP Response in the preceding ROAP-RegistrationRequest (and the RI was able to interpret that extension). An exception to this is when the RI detects that the Device's DRM time is out of sync.. If the OCSP Response is received, the Device MUST verify that the RI certificate is not revoked; otherwise the registration was not successful.
The RI SHOULD always provide the most recent OCSP Response to the Device (regardless of whether it contains a device-supplied nonce or not, but MAY use a regularly updated time-based OCSP Response. If a Device's DRM time is out of sync then the RI MUST perform a nonce-based (using the Device's nonce) OCSP request and provide the Device with the returned OCSP response.

Extensions: The following extensions are defined for the ROAP-RegistrationResponse message.

· Domain Name Whitelist: This extension allows an RI to specify a list of fully qualified domain names as defined in [RFC 2396]. The Device MUST store the domain names along with the RI Context information that it stores for the RI sending the Registration Response. The Device MUST be able to use these domain names for processing DCFs containing the Silent header or a Preview header with method “preview-rights” and a specified preview URL, as defined in section 6.6.1.1 of this document. The Device MUST treat each domain name received in the Domain Name Whitelist as if it were a fully qualified domain name that had been extracted from a RI URL according to the conditions defined in section 6.6.1.1 of this document. The Device MUST be capable of storing a minimum of 5 domain names for each RI Context supported on the Device."

Signature is a signature on data sent in the protocol. The signature is made using the RI's private key on a hash of the previous message (ROAP-RegistrationRequest) and all elements of this message (besides the Signature element itself). The signature method is as follows:

· The previous message and the current one except the Signature element is canonicalized using the exclusive canonicalization method defined in [xc14n].

· The two messages are concatenated in their chronological order, starting with the ROAP-RegistrationRequest message. The resulting data d is considered as input to the signature operation.

· The signature is calculated on d in accordance with the rules of the negotiated signature scheme

The Device MUST calculate the signature in this way and compare with the Signature received in the ROAP-RegistrationResponse message. If equal, and if the RI certificate chain has been successfully verified and if the OCSP response indicates RI cerificate is not revoked, then, the registration was successful and the Device SHOULD store the RI Context for this RI. If not, the registration failed and the Device MUST NOT store the RI Context for this RI.

The RI Context SHALL contain RI ID, Selected Version, Selected Algorithms, and a Certificate Caching indication if the RI has stored the Device certificate or not (all this information is carried in the ROAP-RIHello message). The RI Context MAY also contain RI certificate information, OCSP Responder Key and OCSP Response. The RI Context SHALL also contain an RI Context Expiry Time, which is defined to be the RI certificate expiry time. If the RI Context has expired, the Device MUST NOT execute any other protocol than the 4-pass Registration protocol with this RI, and upon detection of RI Context expiry the Device SHOULD initiate the Registration protocol. The device SHALL have at most one RI Context with each RI. An existing RI Context SHALL be replaced with a newly established RI Context after successful registration with the same RI.

6.3.2.4.2 Message syntax

The <RegistrationResponse> element specifies the ROAP-RegistrationResponse primitive, and constitutes the last message in the Registration protocol. It has complex type RegistrationResponse, which extends the basic Response type.

<element name="registrationResponse" type="roap:RegistrationResponse"/>

<complexType name="RegistrationResponse">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to a

 registrationRequest message.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="certificateChain" type="roap:CertificateChain"

 minOccurs="0"/>

 <element name="ocspResponse" type="base64Binary" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 <attribute name="sessionId" type="hexBinary" use="required"/>

 </extension>

 </complexContent>

</complexType>

6.3.3 RO Acquisition

6.3.3.1 RO Request

The ROAP-RORequest message is sent from the Device to the RI to request Rights Objects. This message is the first message of the 2-pass protocol to acquire Rights Objects.

6.3.3.1.1 Message description

	ROAP-RORequest

	Parameter
	Mandatory/Optional

	Device ID
	M

	Domain ID
	O

	RI ID
	M

	Device Nonce
	M

	Request Time
	M

	RO Info
	M

	Certificate Chain
	O

	Extensions
	O

	Signature
	M

Table 6: RO Request Message Parameters
Device ID identifies the requesting Device, similar to the ROAP-DeviceHello message.

Domain ID, when present, identifies the domain for which the requested ROs shall be issued.

RI ID identifies the authorizing RI.

Device Nonce is a nonce chosen by the Device. Nonces SHALL be randomly generated and MUST NOT be re-used.

Request Time is the current DRM UTC time, as seen by the Device.
RO Info identifies the requested Rights Object(s). The parameter consists of a (non-empty) set of Rights Object identifiers identifying the requested Rights Objects, and for each RO identifier an optional hash of the DCF associated with the requested RO.

Certificate Chain: This parameter is sent unless it is indicated in the RI Context that this RI has stored the necessary information in the Device certificate. When present, the parameter value SHALL be as described for the Certificate Chain parameter in the ROAP-RegistrationRequest message.

Extensions: The following extensions are defined for the ROAP-RORequest message:
· Peer Key Identifier: An identifier for an RI key stored in the Device. If the identifier matches the RI's current key, it means the RI need not send down its certificate chain in its response message.

· No OCSP Response: This extension allows the Device to indicate to the RI that there is no need to send an OCSP Response since the Device has cached a valid OCSP Response for this RI.

· OCSP Responder Key Identifier: This extension identifies an OCSP responder key stored in the Device. If the identifier matches the key in the certificate used by the RI's OCSP responder, the RI MAY remove the OCSP Responder certificate chain from the OCSP response before providing the OCSP response to the Device.

· Transaction Identifier: Allows a Device to provide RI with information for tracking of transactions, for example relating to loyalty programs (an example of this could be reward scheme information from the DCF scheme).

If the Device has stored the RI certificate, the Device MUST send the Peer Key Identifier extension. If the Device has a valid OCSP Response, the Device MUST send the No OCSP Response extension. If the Device has stored and trusts the OCSP responder key used by this RI, the Device MUST send the OCSP Responder Key Identifier extension.
Signature is a signature on this message (besides the Signature element itself). The signature method is as follows:

· The message except the Signature element is canonicalized using the exclusive canonicalization method defined in [xc14n].

· The result of the canonicalization, d, is considered as input to the signature operation.

· The signature is calculated on d in accordance with the rules of the negotiated signature scheme

6.3.3.1.2 Message syntax

The <roRequest> element specifies the ROAP-RORequest primitive. It has complex type RORequest, which extends the basic roap:Request type. The response to this request is specified by the <roResponse> element, and together they implement the ROAP-RORequest and ROAP-ROResponse messages.

<element name="roRequest" type="roap:RORequest"/>

<complexType name="RORequest">

 <annotation>

 <documentation xml:lang="en">

 Message sent from Device to RI to request an RO.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Request">

 <sequence>

 <element name="deviceID" type="roap:Identifier"/>

 <element name="domainID" type="roap:DomainIdentifier"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="nonce" type="roap:Nonce"/>

 <element name="time" type="dateTime"/>

 <element name="roInfo">

 <complexType>

 <sequence maxOccurs="unbounded">

 <element name ="roID" type="ID"/>

 <element name="dcfHash" type="base64Binary" minOccurs="0"/>

 </sequence>

 </complexType>

 </element>

 <element name="certificateChain" type="roap:CertificateChain"

 minOccurs="0"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

The following schema fragment defines the Transaction Identifier extension:

<complexType name="TransactionIdentifier">

 <complexContent>

 <extension base="roap:Extension">

 <sequence>

 <element name="id">

 <simpleType>

 <restriction base="string">

 <length value="16"/>

 </restriction>

 </simpleType>

 </element>

 </sequence>

 </extension>

 </complexContent>

</complexType>
6.3.3.2 RO Response

The ROAP-ROResponse message is sent from the RI to the Device either in response to a ROAP-RORequest message (two-pass variant) or by RI initiative (one-pass variant). It carries the protected ROs.

6.3.3.2.1 Message description

	Parameter
	ROAP-ROResponse

	
	2-pass

Status = Success
	2-pass

Status ≠ Success
	1-pass

	Status
	M
	M
	M

	Device ID
	M
	-
	M

	RI ID
	M
	-
	M

	Device Nonce
	M
	-
	-

	Protected ROs
	M
	-
	M

	Certificate Chain
	O
	-
	O

	OCSP Response
	O
	-
	M

	Extensions
	O
	-
	O

	Signature
	M
	-
	M

Table 7: RO Response Message Parameters
Status indicates if the request was successfully handled or not. In the latter case an error code specified in Section 6.2.5 is sent.

Device ID identifies the requesting Device, in the same manner as in the ROAP-DeviceHello message.

RI ID identifies the RI.
Device Nonce is the nonce that was sent by the Device. The parameter, if present, (2-pass) MUST be identical to the corresponding parameter in ROAP-RORequest.

Protected RO(s) are the Rights Objects (in the form of <ProtectedRO> elements), in which sensitive information (such as CEK) is encrypted using the REK.

Certificate Chain: This parameter MUST be present unless the preceding ROAP-RORequest message contained the Peer Key Identifier extension, the extension was honored by the RI, and its value identified the RI's current key. When present, the value of a Certificate Chain parameter shall be as described for the Certificate Chain parameter of the ROAP-RegistrationResponse message

The Device MUST verify the certificates in the RI certificate chain. The Device MAY store RI certificate verification data indicating that an RI certificate chain has been verified. The purpose of this is to avoid repeated verification of the same certificate chain. The RI certificate verification data MUST uniquely identify the RI certificate and MUST be integrity protected. The Device SHOULD check if the RI certificate chain received in this parameter corresponds to stored RI certificate verification data. If so, the Device SHOULD NOT verify the RI certificate chain. If an RI cerificate is recieved that is not in the RI certificate verification data of this RI, and the registration was successful, and if the expiry time of the received RI certificate is later than the RI Context for this RI, then the Device SHOULD make the RI certificate verification data to that of the received RI certificate and set the RI context expiry time to that of the received RI certificate expiry time.
OCSP Response SHALL be a valid OCSP response for the RI's certificate. This parameter will not be sent if the Device sent the Extension No OCSP Response in the preceding ROAP-RegistrationRequest (and the RI was able to interpret that extension). An exception to this is when the RI detects that the Device's clock is out of sync. If the OCSP Response is received, the Device MUST verify that the RI certificate is not revoked; otherwise the rights object acquisition was not successful.
Extensions: The following extensions are defined for the ROAP-ROResponse message:
· Transaction Identifier: Allows an RI to provide a Device with information for tracking of transactions, for example relating to loyalty programs (an example of this could be reward scheme information from the DCFscheme).

Signature is a signature on data sent in the protocol. The signature is computed using the RI's private key and all elements of this message (besides the Signature element itself). The signature method is as follows:

· All elements except the Signature element are canonicalized using the exclusive canonicalization method defined in [xc14n].

· The resulting data d is considered as input to the signature operation.

· The signature is calculated on d in accordance with the rules of the negotiated signature scheme

The Device MUST calculate the signature in this way and compare with the Signature received in the ROAP-ROResponse message. If equal, and if the RI certificate chain has been successfully verified and if the OCSP response indicates RI cerificate is not revoked, the RO Acquisition protocol was successful. If not, the RO Acquisition protocol failed and the Device MUST NOT install the RO.

If the Protected RO contains a <guid> and optional <timeStamp> element then the Device MUST apply the RO Replay protection mechanism before installing the RO (see Replay Protection Section).
6.3.3.2.2 Message syntax

The <roResponse> element specifies the ROAP-ROResponse primitive. It has complex type ROResponse, which extends the basic Response type.

<element name="roResponse" type="roap:ROResponse"/>

<complexType name="ROResponse">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to an RORequest.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="deviceID" type="roap:Identifier"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="nonce" type="roap:Nonce"/>

 <element name="protectedRO" type="roap:ProtectedRO" maxOccurs="unbounded"/>

 <element name="certificateChain" type="roap:CertificateChain"

 minOccurs="0"/>

 <element name="ocspResponse" type="base64Binary" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="extensions" type="roap:Extensions"

 minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

The Protected RO type is defined in Section The Protected Rights Object payload type
6.3.4 Domain Join/Leave Protocol

6.3.4.1 Join Domain Request

The ROAP-JoinDomainRequest message is sent from the Device to the RI. This message is the first message in the 2-pass protocol to join a device to a domain.

6.3.4.1.1 Message description

	ROAP-JoinDomainRequest

	Parameter
	Mandatory/Optional

	DeviceID
	M

	RI ID
	M

	Device Nonce
	M

	Request Time
	M

	Domain Identifier
	M

	Certificate Chain
	O

	Extensions
	O

	Signature
	M

Table 8: Join Domain Request Message Parameters
Device ID identifies the requesting Device.

RI ID identifies the authorizing RI.

Device Nonce is a nonce chosen by the Device. Nonces shall be randomly generated and MUST NOT be re-used.

Request Time is the current DRM UTC time, as seen by the Device.
Domain Identifier shall identify the domain the device wishes to join.

Certificate Chain: This parameter is sent unless Certificate Caching is indicated in the RI Context with this RI. When present, the parameter value shall be as described for the Certificate Chain parameter in the ROAP-RegistrationRequest message.

Extensions: The following extensions are defined for the ROAP-JoinDomainRequest message:
· Peer Key Identifier: An identifier for an RI key stored in the Device. If the identifier matches the RI's current key, it means the RI need not send down its certificate chain in its response message.

· No OCSP Response: This extension allows the Device to indicate to the RI that there is no need to send an OCSP Response since the Device has cached a valid OCSP Response for this RI.

· OCSP Responder Key Identifier: This extension identifies an OCSP responder key stored in the Device. If the identifier matches the key in the certificate used by the RI's OCSP responder, the RI MAY remove the OCSP Responder certificate chain from the OCSP response before providing the OCSP response to the Device.

· Hash Chain Support: When this extension is set to “True,” it signals that the client supports a technique of generating Domain Keys through hash chains, see the Domains Section.

If the Device has stored information about the RI certificate, the Device MUST send the Peer Key Identifier extension. If the Device has a valid OCSP Response, the Device MUST send the No OCSP Response extension. If the Device has stored and trusts the OCSP responder key used by this RI, the Device MUST send the OCSP Responder Key Identifier extension. If the Device supports hash-chained domain keys the Device MUST send the Hash Chain Support extension.
Signature is a signature on this message (excluding the Signature element itself). The signature method is as follows:

· The message except the Signature element is canonicalized using the exclusive canonicalization method defined in [xc14n].

· The result of the canonicalization, d, is considered as input to the signature operation.

· The signature is calculated on d in accordance with the rules of the negotiated signature algorithm.

6.3.4.1.2 Message syntax

The <joinDomainRequest> element specifies the ROAP-JoinDomainRequest primitive. It has complex type roap: DomainRequest, which extends the basic roap:Request type. Note that this type is used both for join and leave domain request messages. The response to this request is specified by the <joinDomainResponse> element, and together they implement the Join Domain protocol (the notMember attribute is only used in ROAP-LeaveDomainRequest messages).

<element name="joinDomainRequest" type="roap:DomainRequest">

<complexType name="DomainRequest">

 <annotation>

 <documentation xml:lang="en">

 General PDU for sending domain-related requests from a Device to

 an RI.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Request">

 <sequence>

 <element name="deviceID" type="roap:Identifier"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="nonce" type="roap:Nonce"/>

 <element name="time" type="dateTime"/>

 <element name="domainID" type="roap:DomainIdentifier"/>

 <element name="certificateChain" type="roap:CertificateChain"

 minOccurs="0"/>

 <element name="extensions" type="roap:Extensions"

 minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 <attribute name="notMember" type="boolean"/>

 </extension>

 </complexContent>

</complexType>

The following schema fragment defines the DomainIdentifier type. The last two characters (digits) represent the Domain Generation (see the Domains Section for further information). RIs will always respond with the Domain Key corresponding to the most recent Domain Generation and, if Hash Chains is not supported then all earlier ones for this domain.

<simpleType name="DomainIdentifier">

 <restriction base="string">

 <pattern value=".{1,18}\d{2}"/>

 </restriction>

</simpleType>

The following schema fragment defines the "Hash Chain Support" extension:

<complexType name="HashChainSupport">

 <complexContent>

 <extension base="roap:Extension">

 <attribute name="supported" type="boolean"/>

 </extension>

 </complexContent>

</complexType>
6.3.4.2 Join Domain Response

The ROAP-JoinDomainResponse message is sent by an RI to a device in response to a ROAP-JoinDomainRequest message. This message is the second message in the 2-pass protocol to join a device to a domain.

6.3.4.2.1 Message description

	Parameter
	ROAP-JoinDomainResponse

	
	2-pass

Status = Success
	2-pass

Status ≠ Success
	1-pass

	Status
	M
	M
	M

	Device ID
	M
	-
	M

	RI ID
	M
	-
	M

	Device Nonce
	M
	-
	-

	Domain Info
	M
	-
	M

	Certificate chain
	O
	-
	O

	OCSP Response
	O
	-
	M

	Extensions
	O
	-
	O

	Signature
	M
	-
	M

Table 9: Join Domain Response Message Parameters
Status indicates if the request was successfully handled or not. In the latter case an error code as specified in Section 6.2.5 is sent.

Device ID identifies the requesting Device, in the same manner as in the ROAP-DeviceHello message.

RI ID identifies the RI.
Device Nonce is the nonce that was sent by the Device. The parameter, if present, (2-pass) MUST be identical to the corresponding parameter in ROAP-RORequest.

Domain Info is the domain information, in which sensitive information (such as Domain Key(s)) is encrypted using the Device's public key. See Domains Section.
Certificate Chain: This parameter MUST be present unless the preceding ROAP-JoinDomainRequest message contained the Peer Key Identifier extension, the extension was honored by the RI, and its value identified the RI's current key. When present, the value of a Certificate Chain parameter shall be as described for the Certificate Chain parameter of the ROAP-RegistrationResponse message.

The Device MUST verify the certificates in the RI certificate chain. The Device MAY store RI certificate verification data indicating that an RI certificate chain has been verified. The purpose of this is to avoid repeated verification of the same certificate chain. The RI certificate verification data MUST uniquely identify the RI certificate and MUST be integrity protected. The Device SHOULD check if the RI certificate chain received in this parameter corresponds to stored RI certificate verification data. If so, the Device SHOULD NOT verify the RI certificate chain. If an RI cerificate is recieved that is not in the RI certificate verification data of this RI, and the registration was successful), and if the expiry time of the received RI certificate is later than the RI Context for this RI, then the Device SHOULD make the RI certificate verification data to that of the received RI certificate and set the RI context expiry time to that of the received RI certificate expiry time.
OCSP Response SHALL be a valid OCSP response for the RI's certificate. This parameter will not be sent if the Device sent the Extension No OCSP Response in the preceding ROAP-RegistrationRequest (and the RI was able to interpret that extension). An exception to this is when the RI detects that the Device's clock is out of sync. If the OCSP Response is received, the Device MUST verify that the RI certificate is not revoked, otherwise the DomainJoinRequest was not successful.
Extensions: The following extensions are currently defined for the ROAP-JoinDomainResponse message:

· Hash Chain Support: This extension set to “True” means the RI is using the technique of generating Domain Keys through hash chains described in the Domains Section. The RI MUST NOT include this extension in the ROAP-JoinDomainResponse unless it was received set to “True” in the ROAP-JoinDomainRequest. If the Device receives the Hash Chains Supported extension set to “True”, then it needs only store the latest Domain Key for a given domain.

Signature is a signature on this message (besides the Signature element itself). The signature method is as follows:

· The message except the Signature element is canonicalized using the exclusive canonicalization method defined in [xc14n].

· The result of the canonicalization, d, is considered as input to the signature operation
· The signature is calculated on d in accordance with the rules of the negotiated signature algorithm.

The Device MUST calculate the signature in this way and compare with the Signature received in the ROAP-JoinDomainResponse message. If equal, and if the RI certificate chain has been successfully verified and if the OCSP response indicates RI cerificate is not revoked, then, the Join Domain protocol was successful and the Device SHOULD store the Domain Context for this domain. If not, the Join Domain protocol failed and the Device MUST NOT store a Domain Context for this domain.

The Domain Context SHALL contain the Domain ID (which includes the Domain Generation), the Domain Context Expiry Time, and if applicable, an indication that the RI supports hash chained Domain Keys. If the Device and RI both support hash chains, the Domain Context SHALL contain the Domain Key corresponding to the highest known generation, otherwise the Domain Context SHALL contain all Domain Keys of all Domain Generations. The Domain Context SHALL also contain the RI Public Key for the case when the Domain Context Expiry Time extends beyond the RI Context Expiry Time.

A device MUST NOT install any Domain ROs for a domain whose context has expired. A device MAY have several Domain Contexts with an RI.

6.3.4.2.2 Message syntax

The <joinDomainResponse> element specifies the ROAP-JoinDomainResponse primitive. It has complex type JoinDomainResponse, which extends the basic Response type.

<element name="joinDomainResponse" type="roap:JoinDomainResponse"/>

<complexType name="JoinDomainResponse">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to a

 JoinDomainRequest.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="deviceID" type="roap:Identifier"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="nonce" type="roap:Nonce"/>

 <element name="domainInfo" type="roap:DomainInfo"/>

 <element name="certificateChain" type="roap:CertificateChain"

 minOccurs="0"/>

 <element name="ocspResponse" type="base64Binary" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="extensions" type="roap:Extensions"

 minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

The following schema fragment defines the DomainInfo type:

<complexType name="DomainInfo">

 <sequence>

 <element name="notAfter" type="dateTime"/>

 <element name="domainKey" type="roap:ProtectedDomainKey"

 maxOccurs="unbounded"/>

 </sequence>

</complexType>

The <notAfter> element expresses, in UTC, the expiry time of the Domain Context. The special value 9999-12-31T00:00:00Z indicates infinite lifetime of the Domain Context.

The <domainKey> element contains the wrapped domain key and a key-confirming MAC key, see below.

<complexType name="ProtectedDomainKey">

 <sequence maxOccurs="unbounded">

 <element name="encKey" type="xenc:EncryptedKeyType"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="mac" type="base64Binary"/>

 </sequence>

</complexType>

The <encKey> element contains a Domain Key, KD, and a MAC key, KMAC, wrapped as specified in the Key Management Section. The value of the <encKey> element's Id attribute must equal the value of a <domainIdentifier> element in a preceding ROAP-JoinDomainRequest message. If Hash Chains are supported by both Device and RI, only the Domain Key corresponding to the most recent Domain Generation SHOULD be included, otherwise all Domain Keys for all Domain Generations MUST be included (including their identifiers as Id attributes). The child of the <ds:KeyInfo> element inside the <encKey> element SHALL be of type roap:X509SPKIHash, identifying a particular DRM Agent's public key through the hash of the subjectPublicKeyInfo value in its certificate.
The <riID> element is necessary for key confirmation purposes. It shall have the same value as the <riID> element of the ROAP-JoinDomainResponse message itself.

The <mac> element provides key-confirmation through a MAC on the canonical [xc14n] version of the <domainKey> element (excluding the <mac> element itself) using the MAC key KMAC wrapped in the <encKey> element. The MAC algorithm to use is defined by the RI Context.

6.3.4.3 Leave Domain Request

The ROAP-LeaveDomainRequest message is sent from the Device to the RI. This message is the first message in the 2-pass protocol for removing a device from a domain.

6.3.4.3.1 Message description

	ROAP-LeaveDomainRequest

	Parameter
	Mandatory/Optional

	DeviceID
	M

	RI ID
	M

	Device Nonce
	M

	Request Time
	M

	Domain Identifier
	M

	Not Member
	O

	Certificate Chain
	O

	Extensions
	O

	Signature
	M

Table 10: Leave Domain Request Message Parameters
Device ID identifies the requesting Device.

RI ID identifies the authorizing RI.

Device Nonce is a nonce to ensure RI liveness.
Request Time is the current DRM UTC time, as seen by the Device.

Domain Identifier identifies the domain.

Not Member: This parameter, when present, indicates to the RI that the Device does not consider itself a member of this domain (even though it is sending a request for the RI to remove it from the domain). This could happen, for example, if the device already has left the domain, but receives a new trigger to leave it (perhaps because the RI never received the previous ROAP-LeaveDomainRequest).

Certificate Chain: This parameter is sent unless Certificate Caching is indicated in the RI Context with this RI. When present, the parameter value shall be as described for the Certificate Chain parameter in the ROAP-RegistrationRequest message.

Extensions: This version of ROAP does not define any extensions for the ROAP-LeaveDomainRequest message.
Signature is a signature on this message (excluding the Signature element itself). The signature method is as follows:

· The message except the Signature element is canonicalized using the exclusive canonicalization method defined in [xc14n].

· The result of the canonicalization, d, is considered as input to the signature operation.

· The signature is calculated on d in accordance with the rules of the negotiated signature algorithm.

The Device MUST ensure that the Domain Context of the corresponding domain is deleted before sending the JoinDomainRequest to the RI.

If the Device is not a member of the particular domain and thus does not have the Domain Context which it is asked to delete, the Device MUST indicate this by setting the Not Member parameter to “True” and include it in the ROAP-LeaveDomainRequest message.

6.3.4.3.2 Message syntax

The <leaveDomainRequest> element specifies the ROAP-LeaveDomainRequest primitive. It has complex type roap:DomainRequest, which extends the basic roap:Request type. The response to this request is specified by the <leaveDomainResponse> element, and together they implement the leave domain protocol.

<element name="leaveDomainRequest" type="roap:DomainRequest"/>

6.3.4.4 Leave Domain Response

The ROAP-LeaveDomainResponse message is sent by an RI to a Device in response to a ROAP-LeaveDomainRequest message. This message is the second message in the 2-pass protocol for removing a device from a domain.

6.3.4.4.1 Message description

	ROAP-LeaveDomainResponse

	Parameter
	Mandatory/Optional

	
	Status = "Success"
	Status ≠ "Success"

	Status
	M
	M

	Device Nonce
	M
	-

	Domain Identifier
	M
	-

	Extensions
	O
	-

Table 11: Leave Domain Response Message Parameters
Status indicates if the request was successfully handled or not. In the latter case an error code defined in section 6.2.5 is sent.

Device Nonce is the nonce sent by the device. It is used by the Device to identify the corresponding LeaveDomainRequest in the case of simultaneous outstanding LeaveDomainResponses.
Domain Identifier identifies the domain from which the RI removed the Device. The Domain Generation part of the Domain Identifier is ignored.

Extensions: No extensions are defined for the ROAP-LeaveDomainResponse message.

The RI sends the LeaveDomainResponse after having deleted the association of this device and the domain. If a device doesn’t receive a response to the LeaveDomainRequest, the Device SHOULD retry two times. If there still is no response, the Device SHOULD notify the user.

6.3.4.4.2 Message Syntax

The <leaveDomainResponse> element specifies the ROAP-LeaveDomainResponse primitive. It has complex type LeaveDomainResponse, which extends the basic Response type.

<element name="leaveDomainResponse" type="roap:LeaveDomainResponse"/>

<complexType name="LeaveDomainResponse">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to a

 leaveDomainRequest

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="nonce" type="roap:Nonce"/>

 <element name="domainID" type="roap:DomainIdentifier"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

6.3.5 Domain RO processing rules

6.3.5.1 Overview

As a general principle, the processing rules for inbound Domain ROs are agnostic to the origin of the Domain RO i.e. it does not matter whether the Domain RO was delivered OTA from a RI or copied from another Device. There is no binding to a specific transport mechanism or protocol.

Domain ROs MAY be delivered to the Device either inside a DCF file, as a separate standalone object with a specific MIME type of its own, or as part of a MIME multipart/related message [RFC2387]. As part of the installation of an RO, the Device must make a number of checks for all Domain ROs that are to be used by the Device, including integrity and authenticity checks and replay attack related checks as described below.

6.3.5.2 Inbound Domain RO

The Device MUST support receiving a Domain RO as a separate object.

The Device MUST support receiving a Domain RO inside a DCF.

Before installing and using a Domain RO to render the media objects inside the associated DCF the Device MUST process the Domain RO as defined in chapter 6.3.5.2.1.

6.3.5.2.1 Installing a Domain RO

The Device MAY install a Domain RO only if it belongs to the domain identified by the Domain Identifier inside the Domain RO. If the Device does not belong to the domain, it MAY attempt to join the domain using the mechanism defined in ROAP Protocol Suite. The Device MUST NOT attempt to join the domain without user’s consent.

The Device MUST successfully verify the signature of the Domain RO using the RI’s Public Key.

If the <guid> and optional <timeStamp> element are present in the ProtectedRO, then the Device MUST perform the replay protection related checks defined in the corresponding chapter.

If the Domain Context has expired (indicated by the Domain Context Expiry Time) the Device MUST NOT install ROs for this domain and the Device SHOULD delete this Domain Context.

6.3.5.2.2 Postprocessing after installing the Domain RO

These processing rules apply for Domain ROs that were not received inside a DCF i.e. the Domain RO was received separately from the DCF.

The Device MAY skip further post-processing if it concludes, using an algorithm not defined in this specification, that sending the installed Domain RO to other devices does not add value for the end user. One such case could be that the Domain Context Expiry Time has expired.

The Device MUST attempt to find the DCF associated with the installed Domain RO. If that fails the Device MUST discontinue post-processing for the time being but SHOULD continue the post-processing if it finds the associated DCF later on e.g. when rendering the DCF or when sending it out from the Device.

If the Device finds multiple DCF instances associated to the installed Domain RO, it SHOULD apply the processing rules defined below for each one of them.

6.3.5.3 Outbound DCF

For outbound DCFs the Device SHOULD continue a possibly discontinued postprocessing as defined in chapter 6.3.5.2.2 before sending the DCF from the Device.

If the DCF already contains Domain RO(s), the Device MUST remove the Domain ROs corresponding to domains which the Device is not member of.

The Device SHOULD insert a copy of the installed Domain RO into the DCF [DRMDCF-v2].
However, the Device MAY choose not to insert a Domain RO if it concludes, using an algorithm not defined in this specification, that replacing does not add value for the end user (for example, if the installed Domain RO is more restrictive, the Domain RO has already been consumed, etc).

6.4 Key Management

6.4.1 Cryptographic components

6.4.1.1 RSAES-KEM-KWS

RSA-KEM-KWS is an asymmetric encryption scheme defined in [X9.44] and [IETF-KEM] and based on the "generic hybrid cipher" in [ISO/IEC 18033]. In this scheme, the sender uses the recipient's public key to securely transfer symmetric-key material to the recipient. Specifically, given the recipient's public RSA key P, consisting of a modulus m and a public exponent e, the sender generates a value Z as a statistically uniform random integer in the interval [0,…,m-1]. The value Z is then converted to a key-encryption key KEK as follows:

KEK = KDF(Z, NULL, kekLen)

where KDF is defined below, NULL is the empty string, and kekLen shall be set to the desired length of KEK (in octets).

Given KEK, a key-wrapping scheme WRAP and the symmetric key material K to be transported, the sender wraps K to get ciphertext C2:

C2 = WRAP(KEK, K)

After this, the sender encrypts Z using the recipient's public RSA key P to yield C1:

C1 = RSA.ENCRYPT(P,Z) = Ze mod m
The scheme output is C = C1 | C2 which is transmitted to the recipient. The decryption operation follows straightforwardly: the recipient recovers Z from C1 using the recipient’s private key, converts Z to KEK, and then unwraps C2 to recover K.

6.4.1.2 KDF

KDF is equivalent to the key derivation function KDF2 defined in [X9.44] (and KDF in [X9.42], [X9.63]). It is defined as a simple key derivation function based on a hash function. For the purposes of this specification, the hash function shall be SHA-1.

KDF takes three parameters: the shared secret value Z: an octet string of (essentially) arbitrary length, otherInfo: other information for key derivation, an octet string of (essentially) arbitrary length (may be the empty string), and kLen: intended length in octets of the keying material. kLen shall be an integer, at most (232 – 1)hLen where hLen is the length of the hash function output. The output from KDF is the key material K, an octet string of length kLen. The operation of KDF is as follows:

1) Let T be the empty string.

2) For counter from 1 to (kLen / hLen (, do the following:

Let D = 4-byte, unsigned big-endian representation of counter

Let T = T || Hash (Z || D || otherInfo).

3) Output the first kLen octets of T as the derived key K.

6.4.1.3 AES-WRAP

AES-WRAP is the symmetric-key wrapping scheme based on AES defined in [AES-WRAP]. It takes as input a key-encryption key KEK and key material K to be wrapped. The scheme outputs the result C of the wrapping operation:

C = AES-WRAP(KEK, K)

6.4.2 Key transport mechanisms

6.4.2.1 Distributing KREK and KMAC under a device public key

This section applies when protecting a Rights Object for a device.

KREK and KMAC are each 128-bit long AES keys generated randomly by the sender. KREK ("rights object encryption key") is the wrapping key for the content-encryption key KCEK in rights objects. KMAC is used for key confirmation of the message carrying KREK.

The asymmetric encryption scheme RSAES-KEM-KWS shall be used with the AES-WRAP symmetric-key wrapping scheme to securely transmit KREK and KMAC to a recipient device using the device's RSA public key. An independent random value Z shall be chosen for each encryption operation. For the AES-WRAP scheme, KREK and KMAC are concatenated to form K, i.e.:

C1 = RSA.ENCRYPT(PubKeyDevice, Z)

KEK = KDF(Z, NULL, kekLen)

C2 = AES-WRAP(KEK, KREK | KMAC)

C = C1 | C2
where kekLen shall be set to 16 (128 bits). In this way, AES-WRAP is used to wrap 256 bits of key data (KREK | KMAC) with a 128-bit key-encryption key (KEK).

After receiving C, the DRM Device splits it into C1 and C2 and decrypts C1 using its private key, yielding Z:

C1 | C2 = C
Z = RSA.DECRYPT(PrivKeyDevice, C1)
Using Z, the device can derive KEK, and from KEK unwrap C2 to yield KREK and KMAC.:

KREK | KMAC = AES-UNWRAP(KEK, C2)
The following URI shall be used to identify this key transport scheme in <xenc:EncryptionMethod> elements:

http://www.rsasecurity.com/rsalabs/xml/pkcs-1#rsaes-kem-kdf2-kw-aes128
6.4.2.2 Distributing KD and KMAC under a device public key

This section applies when provisioning a device with a domain key, KD.
KD is the symmetric key-wrapping key used when protecting KREK and KMAC in a rights object issued to a domain D. KD is a 128-bit long AES keys generated randomly by the sender and shall be unique for each domain D. KMAC is used for key confirmation of the message carrying KD.

In this case, exactly the same procedure as in the previous section shall be used, the only difference being the replacement of KREK with KD.

6.4.2.3 Distributing KREK and KMAC under a domain key KD

This section applies when protecting a Rights Object for a domain.

The key-wrapping scheme AES-WRAP shall be used. KEK in AES-WRAP shall be set to KD and K to the concatenation of KREK and KMAC, i.e.:

C = AES-WRAP(KD, KREK | KMAC)

After receiving C, the DRM Device decrypts C using KD:
KREK | KMAC = AES-UNWRAP(KD, C)

The following URI shall be used to identify this key transport scheme in <xenc:EncryptionMethod> elements:

http://www.w3.org/2001/04/xmlenc#kw-aes128
6.4.2.4 Distributing KCEK under a rights object encryption key KREK
A content-encryption key, KCEK, will be a randomly generated 128-bit AES key. It will be wrapped using a rights object encryption key, KREK by use of AES-WRAP. KREK keys derived as above shall be used as the key-wrapping keys:

C = AES-WRAP(KREK, KCEK)

After receiving C, the DRM Device decrypts C using KREK:
KCEK = AES-UNWRAP(KREK, C)

The following URI shall be used to identify this key transport scheme in <xenc:EncryptionMethod> elements:

http://www.w3.org/2001/04/xmlenc#kw-aes128
6.4.3 Use of hash chains for Domain Key generation

To simplify Domain Key management when several generations of a domain are expected, an RI may elect to make use of hash chains, and derive later Domain Keys from earlier ones. The procedure to do this is as follows: When creating the domain, the RI generates a master domain key, KM. The RI then hashes (using SHA-1) KM at least as many times n as the RI believes there will be generations of the domain. The result, KD1 = hashn(KM) = sha1(sha1(…(sha1(KM))) is then distributed as described in section 6.3.4.2 as the first key for domain D. When a device in a domain has been revoked, or the RI otherwise decides to create a new domain generation (shift domain key), the RI computes and distributes KD2 = hashn-1(KM). Devices supporting this mechanism therefore only need to store KDi, for the latest received domain generation i, since for any earlier generation j (j < i), KDj = hashi-j(KDi). RIs supporting this mechanism only need to store the current generation number i, the maximum number of generations n, and the domain master key KM.

Support for this mechanism is optional, both for RIs and Devices.

6.5 Certificate status checking

6.5.1 Certificate status checking by RI

For each request signed by the Device that requires the RI to perform substantial processing, the RI MUST check the signature and the revocation status of the Device certificate.

6.5.2 Certificate status checking by DRM Agents

For each message signed by the RI, the Device MUST check the signature and if possible MUST check the certificate status of Rights Issuer certificates. The means to do this are specified in the ROAP description above.

In particular whenever an OCSP Response is received by the Device, it MUST be verified that the RI certificate is not revoked. DRM Agents MUST support all client requirements in [OMA-OCSP-MP] with the following exceptions:

· DRM Agents need not be able to generate OCSPRequests

· Clients need only to handle OCSPResponses with one SingleResponse value

· Clients need not support the authorityInfoAccess certificate extension (as they will not contact OCSP responders directly)

· DRM Agents need not support OCSP over HTTP/1.1 (as they will not contact OCSP responders directly)

Clients MUST be able to match a nonce sent for OCSP purposes in the ROAP protocol with a nonce in the received OCSPResponse.

6.6 Transport Mappings

The following sections describe how ROAP PDUs are delivered using typical delivery protocols, the most common being HTTP,

6.6.1 HTTP/WSP Transport Mapping

6.6.1.1 Initiating the ROAP

The ROAP is initiated when the ROAP Trigger XML document is received by the Device. When the ROAP Trigger is received, the Device MUST initiate an HTTP/WSP POST with the appropriate ROAP PDU in the body of the message as defined in the Roap Trigger section..

In the case where a DRM Agent receives a ROAP Trigger where the protocol indicated in the <roapTrigger> element is RegistrationRequestTrigger the DRM Agent MUST use the value of the <riID> element to verify that it has a valid RI Context with the Rights Issuer. If the DRM Agent does not have a valid RI Context with the identified Rights Issuer then the DRM Agent MUST ask the user if they wish to connect to the RI. If the DRM Agent has a valid RI Context with the identified Rights Issuer then the DRM Agent MUST send a DeviceHello PDU, this MAY be without acquiring consent from the user.

If the DRM Agent receives a DCF with a Silent header with a specified silent-url or a Preview header with method “preview-rights” and a specified preview URL, the DRM Agent MUST behave as follows:

If the DRM Agent does not already have an RI Context with the RI that issued the DCF, as indicated by the riID, the DRM Agent MUST not attempt to silently acquire the RO for the DCF but MUST ask the user if they wish to acquire an RO for the DCF. If the user indicates Yes, the DRM Agent MUST send a Device Hello to the indicated URL followed by an RO-Request to the indicated URL. If the user indicates No, the DRM Agent MUST not attempt to acquire an RO for the DCF. The DCF does not have to be deleted at this point
.

If the DRM Agent does already have an RI Context with the RI that issued the DCF, as indicated by the riID, the DRM Agent MUST compare the domain name of the specified URL with the list of authorised domain names already stored by the DRM Agent for that RI. The DRM Agent MUST be capable of extracting a fully qualified domain name from URLs that follow the format defined in RFC2396. For the purpose of domain name comparison, the DRM Agent MUST use the mechanism described in Section 1 of [RFC 2965]. If the domain name in the specified URL is in the list of authorised domain names already stored by the DRM Agent for that RI, the DRM Agent MUST silently attempt to acquire the RO for the DCF by sending RO-Request to the specified URL. If the domain name in the specified URL is in the list of authorised domain names stored by the DRM Agent for that RI, the DRM Agent MUST not attempt to silently acquire the RO for the DCF but MUST ask the user if they wish to acquire an RO for the DCF. If the user agrees, the DRM Agent MUST send an RO-Request to the indicated URL. If the user does not agree, the DRM Agent MUST not attempt to acquire an RO for the DCF. The DCF does not have to be deleted at this point2.

If this RO request cannot be reconciled to a prior purchase transaction, the RI server MUST return an error. The client can take further action based on this error indication. In this case, it is recommended that the client start a browsing session with the RI URL if the context is a user-initiated session. If the context is a DRM- Agent initiated session to acquire rights silently and automatically, then it is better for the client to abandon the rights acquisition effort.
On any occasion where the DRM Agent successfully retrieves and installs a RO acquired as a result of a Silent header or Preview header (with method preview-rights) in a DCF, the DRM Agent MUST add the domain name in the URL in the Silent or Preview header to the list of authorised domain names for that RI, if the domain name is not already present. As specified in Registration Response section, a DRM Agent must be capable of storing a minimum of 5 domain names for each RI Context. In the case where a new domain name is to be added to the list and the number of domain names is currently equal to 5 then the last domain name SHOULD be deleted. The remaining domain names each at position x, SHOULD be moved to position x=x+1 and the new domain name to be added SHOULD be stored in the first position.

6.6.1.2 HTTP Content Negotiation

When executing the ROAP protocol over HTTP, the DRM Agent SHOULD use the standard HTTP content negotiation mechanisms as specified in [HTTP], such as the Content-Encoding header and the Content-Type charset parameter, to encode/decode the stream to the preferred character set for the actual MIME media type representation of the ROAP PDUs.

RFC 2045 [RFC2045] defines a Content-Transfer-Encoding, which specifies how a specific body part is encoded for transfer by some transfer protocols. The DRM Agent MUST support the identity transfer encoding “binary”. Other non-identity Content-Transfer-Encodings like “base64” MAY also be supported.

6.6.1.3 HTTP Features

The rights issuer MAY use standard HTTP features such as HTTP redirections, etc.

The DRM Agent MUST support all mandatory HTTP features according to [HTTP].

6.6.1.4 HTTP Authentication

Authentication of the user is often a useful feature for rights issuers. User authentication can be performed at different levels of the protocol stack or at application level, but the DRM Agent MUST at least support the HTTP basic authentication mechanism as specified in [HTTP] and [RFC2617].

A DRM Agent MUST support server/proxy authentication as specified in [HTTP] and [RFC2617].

6.6.1.5 RI Hello

If HTTP or WSP is used as transport, an RI Hello message MUST be sent as an HTTP/WSP response with the ROAP PDU as the body of the request. The ROAP PDU MUSTcomprise only a single valid RI Hello message.

6.6.1.6 RO Response

If HTTP or WSP is used as transport, an RO Response message MUST be sent as an HTTP/WSP response with the ROAP PDU either as the body of the request or as an entity in a multipart/related response [RFC2387]. The ROAP PDU MUST comprise only a single valid RO Response message.

6.6.1.7 Example: Separate Delivery of DCF and Rights Object (Informative)
This first example is a basic use case assuming only minimal integration between RI and CI (exchange of CEK and RO-ID prior to content and license delivery).

[image: image8.emf]DeviceRights Issuer

Content

Issuer

Browse and select content to be downloaded

Content DCF; ROAP Trigger {roAcquisition}

RO Request

RO Response

Generate RO

Figure 7: Separate Delivery of DCF and RO

1. A user browses through a content portal, selects content and so on.

2. A license is generated for the purchase transaction using some backend interaction between RI and CI.

3. The CI returns an HTTP Response containing a multipart/mixed. One entity is the content DCF, the other entity is the ROAP Trigger.

HTTP 1.1 200 OK

 Server: CoolServer/1.3.12

 Content-Type: multipart/mixed; boundary=”XX---XX”

--XX---XX

 Content-Length: 1232

 Content-Type: application/vnd.oma.drm.dcf
... [DCF] ...

--XX---XX

 Content-Length: 986

 Content-Type: application/vnd.oma.drm.roap-trigger

... [ROAP Trigger XML document] ...

--XX---XX--

4. The ROAP Trigger is used by the DRM Agent on the device to initiate a ROAP session to download a Rights Object. The DRM Agent issues an HTTP POST to the URL specified by the ROAP Trigger. The POST includes a ROAP RO Request PDU in the HTTP request body.

POST http://www.acme.com/ro.cgi?roID=qw683hgew7d

 Host: www.acme.com

 User-Agent: CoolPhone/1.4

 Accept: application/vnd.oma.drm.roap-pdu

 Accept-Charset: utf-8

 Content-Length: 125

 Content-Type: application/vnd.oma.drm.roap-pdu
... [ROAP PDU] ...

An established RI Context is assumed in the example. If this were not the case, then the RO Request would be preceded by a ROAP Registration transaction.

5. The rights issuer returns an HTTP response containing a ROAP RO Response PDU in the HTTP response body.

HTTP 1.1 200 OK

 Server: CoolServer/1.3.12

 Content-Length: 986

 Content-Type: application/vnd.oma.drm.roap-pdu
... [ROAP PDU] ...

6.6.1.8 Example: Combined Delivery of DCF and Rights Object (Informative)
This second example is a variation on the previous example with a closer relationship with RI and CI.

[image: image9.emf]DeviceRights Issuer

Content

Issuer

Browse and select content to be downloaded

ROAP Trigger {roAcquisition}

RO Request

RO Response; Content DCF

Generate RO

Get Content DCF

Figure 8: Combined Delivery of DCF and RO

1. A user browses through a content portal, selects content and so on.

2. A license is generated for the purchase transaction using some backend interaction between RI and CI.

3. The CI returns an HTTP Response containing a ROAP Trigger.

HTTP 1.1 200 OK

 Server: CoolServer/1.3.12

 Content-Length: 986

 Content-Type: application/vnd.oma.drm.roap-trigger+xml

... [ROAP Trigger] ...

4. The ROAP Trigger is used by the DRM Agent on the device to initiate a ROAP session to download a rights object. The ROAP Trigger. The POST includes a ROAP RO Request PDU in the HTTP request body.

POST http://www.acme.com/ro.cgi?roID=qw683hgew7d

 Host: www.acme.com

 User-Agent: CoolPhone/1.4

 Accept: application/vnd.oma.drm.roap-pdu

 Accept-Charset: utf-8

 Content-Length: 125

 Content-Type: application/vnd.oma.drm.roap-pdu
... [ROAP PDU] ...

An established RI Context is assumed in the example. If this were not the case, then the RO Request would be preceded by a ROAP Registration transaction.

5. The rights issuer interacts with the CI to retrieve the DCF, and the returns a multipart HTTP response containing as one entity a ROAP RO Response PDU, and as another entity the content object (DCF).

HTTP 1.1 200 OK

 Server: CoolServer/1.3.12

 Content-Type: multipart/related; boundary=”XX---XX”

--XX---XX

 Content-Length: 986

 Content-Type: application/vnd.oma.drm.roap-pdu
... [ROAP PDU] ...

--XX---XX

 Content-Length: 1232

 Content-Type: application/vnd.oma.drm.dcf

... [DCF] ...

--XX---XX—

6.6.1.9 Example: Silent RO Acquisition Triggered by DCF Headers (Informative)

[image: image10.emf]Device 1Device 2Rights Issuer

Content DCF

‘silent URL’; ‘preview URL’ RO Request Message

RO Response

Figure 9: Silent RO Acquisition Triggered by DCF Headers

In this case a DCF is superdistributed to a Device, and the DRM Agent uses DCF headers to initiate a ROAP transaction and download a rights object.

1. A user browses receives a DCF from another Device, e.g. through MMS, peer-to-peer, removable media, or some other transfer mechanism.

2. If the DCF contains either a Silent header or a Preview header, then the DRM Agent attempts to request a Rights Object automatically. If the DRM Agent has an existing RI Context for the rights issuer, and has obtained user consent to request rights objects from the rights issuer, then the DRM Agent may proceed silently without further user interaction.

The DRM Agent sends an HTTP Post to the URL specified by the Silent or Preview headers. The POST includes a ROAP RO Request PDU in the HTTP request body.

POST http://www.acme.com/ro.cgi?roID=qw683hgew7d

 Host: www.acme.com

 User-Agent: CoolPhone/1.4

 Accept: application/vnd.oma.drm.roap-pdu

 Accept-Charset: utf-8

 Content-Length: 125

 Content-Type: application/vnd.oma.drm.roap-pdu
... [ROAP PDU] ...

3. The Rights Issuer returns an HTTP response containing a ROAP RO Response PDU in the HTTP response body.

HTTP 1.1 200 OK

 Server: CoolServer/1.3.12

 Content-Length: 986

 Content-Type: application/vnd.oma.drm.roap-pdu
... [ROAP PDU] ...

6.6.2 OMA Download OTA

A Rights Issuer MAY use OMA Download OTA [DLOTA] when delivering Content and Rights Objects in order to take advantage of managed download features such as content negotiation and delivery notification. For example, a Rights Issuer may use the OMA Download OTA delivery notification as a billing trigger.

Depending on deployment and business scenario, OMA Download OTA can be used in different ways in the context of delivering protected content and rights objects. This section gives a few examples, but is not exhaustive.

6.6.2.1 Download Agent and DRM Agent Interaction

The Download Agent must collaborate with the DRM Agent when OMA Download OTA is used to deliver content and/or Rights Objects. In general, the DRM Agent will participate in the “Installation” phase of the Download OTA protocol.

The Download OTA protocol utilizes a Download Descriptor (DD) to provide information to the user and the Device prior to initiating the content object download. The following sections describe how the Download Agent and DRM Agent should behave when the Download Descriptor is used for DRM purposes.

6.6.2.1.1 Downloading DRM Content

When using Download OTA to download a DRM protected content object (that is, an encrypted content object packaged in the DRM content format), the Download Descriptor:

· MUST include a type attribute with the value “application/vnd.oma.drm.dcf”.

· MUST include one or more type attributes with the content type of the protected content object.

· MUST include a size attribute indicating the size of the entire DRM Content Format object (which includes the encrypted content object)

· MUST include an objectURI attribute pointing to the protected content object.

· MAY include other optional attributes.

The Download Agent will process the Download Descriptor and perform the content object download as defined in [DLOTA].

If the Download Descriptor includes the type “application/vnd.oma.drm.dcf” and the nextURL attribute is specified, the Download Agent MUST navigate to the specified URL immediately after sending the installation notification.

6.6.2.1.2 Downloading DRM Rights Objects

If the Device supports Download OTA co-delivery, the Download Descriptor SHOULD be co-delivered with the ROAP Trigger. For co-delivery, as defined in the OMA Download OTA specification, the multipart MUST be multipart/related, the Download Descriptor MUST be the first entity in the multipart, and the ROAP Trigger MUST be the second part of the multipart.

If the Device does not support Download OTA co-delivery, the objectURI in the Download Descriptor will provide the URL for retrieving the ROAP Trigger. The Download Agent, upon receiving the Download Descriptor, will retrieve the ROAP Trigger and deliver it to the DRM Agent for installation as defined in the Download OTA specification.

When using OMA Download OTA for confirmed delivery of the Rights Object, the Download Descriptor:

· MUST include a type attribute with the value “application/vnd.oma.drm.roap-pdu”.

· MUST include a type attribute with the value “application/vnd.oma.drm.ro”.

· MUST include an objectURI attribute containing the Content-ID of the ROAP Trigger in the multipart if the ROAP Trigger is co-delivered with the Download Descriptor. Otherwise, this attribute MUST contain the URL with which the device may retrieve the ROAP Trigger.

· MUST include a size attribute indicating the size of the Rights Object.

· MAY include other optional attributes.

When the Download Agent receives the ROAP Trigger (either via co-delivery or separate delivery), the Download Agent MUST send the ROAP Trigger to the DRM Agent after processing the Download Descriptor as defined in [DLOTA]. The Download Agent MUST NOT display the user confirmation prior to sending the ROAP Trigger to the DRM Agent.

Upon receiving the ROAP Trigger, the DRM Agent MUST initiate the ROAP as defined in section 6.1.6. The DRM Agent MUST notify the Download Agent of installation success or failure (including an error code as appropriate).

As defined in OMA Download OTA, the Download Agent MUST make a best effort attempt to send an installation status report to the Rights Issuer provided the installNotifyURI is present in the DD.

6.6.2.1.3 Downloading DRM Content and Rights Object Together

As when using OMA Download OTA to download a Rights Object, the Download Descriptor MUST be co-delivered with the ROAP Trigger to download DRM Content and Rights Object together. If OMA Download OTA is used to download the Rights Object and DRM Content in a single multipart message, the Download Descriptor:

· MUST include a type attribute with the value “application/vnd.oma.drm.roap-pdu”.

· MUST include a type attribute with the value “application/vnd.oma.drm.ro”.

· MUST include a type attribute with the value “application/vnd.oma.drm.dcf”.

· MUST include an objectURI attribute containing the Content-ID of the ROAP Trigger in the multipart.

· MUST include a size attribute indicating the size of the Rights Object plus the size of the DRM Content.

· MUST include one or more type attributes with the content type of the protected content objects
· MAY include other optional attributes.

When the Download Agent receives a Download Descriptor and the ROAP Trigger, the Download Agent MUST send the ROAP Trigger to the DRM Agent after processing the Download Descriptor as defined in [DLOTA]. Upon receiving the ROAP Trigger, the DRM Agent MUST initiate the ROAP as defined in section 6.1.6.

The Rights Issuer MUST provide the RO Response PDU and DRM Content in a multipart/related media type [RFC2387]. The RO Response PDU MUST be the first entry in the multipart and the DRM Content MUST be the second entry in the multipart. The DRM Agent MUST extract the RO Response PDU and DRM Content from the multipart and process both entities. The DRM Agent MUST notify the Download Agent of installation success or failure. As defined in OMA Download OTA, the Download Agent MUST make a best effort attempt to send this installation status to the Rights Issuer provided the installNotifyURI is present in the DD.

6.6.2.2 Example: Separate Delivery of DRM Content and Rights Object (Informative)
A Service Provider may use to use OMA Download OTA to deliver both the DRM Content and the Rights Object in separate transactions. The following figure shows the interaction between the logical system components residing in the Device and logical server components hosted by the Service Provider during the separate delivery of DRM Content and Rights Objects.

	[image: image1.jpg]

Figure 10: Using Download OTA to deliver DRM Content and Rights Object

1. A user browses through a content portal, selects content and so on. When it is time to deliver content, the server returns an HTTP Response with a Download Descriptor (DD). The DD might, for example, point to a DCF file containing a JPEG image.

HTTP 1.1 200 OK

 Server: CoolServer/1.3.12

 Content-Length: 1232

 Content-Type: application/vnd.oma.dd+xml; charset=utf-8

<media xmlns="http://www.openmobilealliance.org/xmlns/dd">

 <type>application/vnd.oma.drm.dcf</type>

 <type>image/jpeg</type>

 <objectURI>http:/download.example.com/image.dcf</objectURI>

 <size>100</size>

 <installNotifyURI>

 http://download.example.com/notify?tid=2h3jh3g4

 </installNotifyURI>

 <nextURL>

 http://ri.example.com/ro?tid=2h3jh3g4

 </nextURL>

</media>

2. The Download Agent requests the Content using the objectURI.

GET /image.dcf HTTP/1.1

Host: download.example.com

Accept: image/gif, image/jpg, application/vnd.oma.drm.dcf
3. The DCF is returned to the Download Agent.

HTTP/1.1 200 OK

Server: CoolServer/1.3.12

Content-Length: 1234

Content-Type: application/vnd.oma.drm.dcf
… DCF containing JPEG picture…

4. The Download Agent installs the Content and posts an installation notification.

POST /notify?tid=2h3jh3g4 HTTP/1.1

 Host: download.example.com

 Content-Length: 13

900 Success
5. In this example the DD for the DCF specifies a nextURL. This means that when the Download Agent is done downloading and installing the DCF, it will automatically issue an HTTP GET to the URL specified by the nextURL DD parameter. This can be used to seamlessly redirect the Device from the CI to the RI.

GET /ro?tid=2h3jh3g4 HTTP/1.1

Host: ri.example.com

6. The RI returns a DD and the ROAP Trigger.

HTTP 1.1 200 OK

 Server: CoolServer/1.3.12

 Content-Type: multipart/related; boundary=”XX---XX”

 --XX---XX

 Content-Length: 1232

 Content-Type: application/vnd.oma.dd+xml; charset=utf-8

<media xmlns="http://www.openmobilealliance.org/xmlns/dd">

 <type>application/vnd.oma.drm.roap-pdu</type>

 <type>application/vnd.oma.drm.ro</type>

 <objectURI>cid:w087w78087sdf80@ri.example.com</objectURI>

 <size>1232</size>

 <installNotifyURI>

 http://ri.example.com/notify?tid=2h3jh3g4

 </installNotifyURI>

 <nextURL>

 http://provider.example.com/trans_complete.html

 </nextURL>

</media>

--XX---XX

Content-Length: 986

Content-ID: <w087w78087sdf80@ri.example.com>

Content-Type: application/vnd.oma.drm.roap-trigger
<roapTrigger xmlns="urn:oma:bac:dldrm:roap-trigger-20040120">

 <roAcquisition>

<riID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>aXENc+Um/9/NvmYKiHDLaErK0fk=</hash>

 </keyIdentifier>

 </riID>

<roapURL>http://ri.example.com/ro.cgi?tid=qw683hgew7d</roapURL>

 <roID>239087dsf78</roID>

 </roAcquisition>

</roapTrigger>

--XX---XX

7. The ROAP Trigger is used by the DRM Agent on the Device to initiate a ROAP session to download a Rights Object. The DRM Agent issues an HTTP POST to the ROAP Trigger URL. The POST includes a ROAP RO Request PDU in the HTTP request body.

POST /ro.cgi?tid=qw683hgew7d HTTP/1.1

 Host: ri.example.com

 User-Agent: CoolPhone/1.4

 Accept: application/vnd.oma.drm.roap-pdu, application/vnd.oma.drm.ro

 Content-Length: 125

 Content-Type: application/vnd.oma.drm.roap-pdu
... [ROAP PDU] ...

8. The RI returns the ROAP RO Response PDU.

HTTP 1.1 200 OK

 Server: CoolServer/1.3.12

 Content-Length: 986

 Content-Type: application/vnd.oma.drm.roap-pdu
... [ROAP PDU] ...

9. The DRM Agent processes the ROAP PDU and sends the installation status (success or failure) to the Download Agent. The Download Agent sends the installation status to the RI using the installNotifyURI.

POST /notify?tid=2h3jh3g4 HTTP/1.1

 Host: ri.example.com

 Content-Length: 13

900 Success
10. The Download Agent immediately navigates to the nextURL.

GET /trans_complete.html HTTP/1.1

Host: provider.example.com

6.6.2.3 Example: Combined Delivery of Content DCF and Rights Object (Informative)
This example is an extension to the previous example, assuming a closer relationship between the RI and CI allowing the content DCF and the RO to be delivered together in a single OMA Download OTA transaction.

	[image: image16.wmf]Browser

DL-Agent

DRM-Agent

HTTP Stack

Handler &

Dispatcher

Presentation

Server

selection of content item and offer , get URL

HTTP Get content URL

HTTP Response (DD with ROAP Trigger)

DD with ROAP Trigger

RO Request

RO Response (RO)

Ok

post intall-notification

HTTP post install-notification URI

HTTP Response

get next URL

HTTP get Next URL

HTTP Response (WEB/WAP page)

WEB/WAP page

Rights

Issuer

Content

Issuer

ROAP Trigger (e.g. roap://rightIssuer.com/roap?CO=ae123fg456?RO=ty456uo89)

RO installed

cert

cert

HTTP Response (DD)

DD

get ObjetURI

HTTP Get object URI

HTTP Response (CO)

CO

CO installed

post intall-notification

HTTP post install-notification URI

HTTP Response

get next URL

HTTP get Next URL (pointing to DD)

Figure 11: Combined Delivery of DRM Content and Rights Object

1. A user browses through a content portal, selects content and so on. When it is time to deliver content, the server returns a DD and the ROAP Trigger to initiate delivery of the combined Rights Object and DRM Content.

HTTP 1.1 200 OK

 Server: CoolServer/1.3.12

Content-Type: multipart/related; boundary=”XX---XX”

 --XX---XX

 Content-Length: 1232

 Content-Type: application/vnd.oma.dd+xml; charset=utf-8

<media xmlns="http://www.openmobilealliance.org/xmlns/dd">

 <type>application/vnd.oma.drm.roap-pdu</type>

<type>application/vnd.oma.drm.ro</type>

<type>application/vnd.oma.drm.dcf</type>

 <objectURI>cid:sd8963234l@ri.example.com</objectURI>

 <size>2118</size>

 <installNotifyURI>

 http://ri.example.com/notify?tid=2h3jh3g4

 </installNotifyURI>

 <nextURL>

 http://provider.example.com/trans_complete.html

 </nextURL>

</media>

--XX---XX

Content-Length: 986

Content-ID: <sd8963234l@ri.example.com>

Content-Type: application/vnd.oma.drm.roap-trigger
<roapTrigger xmlns="http://www.openmobilealliance.org/xmlns/roap-trigger">

<riID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>aXENc+Um/9/NvmYKiHDLaErK0fk=</hash>

 </keyIdentifier>

 </riID>

<roURL>2498sdfcvxs@ri.example.com</roURL>

<roapURL>http://ri.example.com/ro.cgi?tid=g97sd976s90</roapURL>

<protocol>Acquisition</protocol>

<signature>...signature_data...</signature>

</roapTrigger>

--XX---XX

2. The ROAP Trigger is used by the DRM Agent on the Device to initiate a ROAP session to download the combined Rights Object and DRM Content..The DRM Agent issues an HTTP POST to the URL specified by the ROAP Trigger. The POST includes a ROAP RO Request PDU in the HTTP request body.

POST /ro.cgi?tid=g97sd976s90 HTTP/1.1

 Host: ri.example.com

 User-Agent: CoolPhone/1.4

 Accept: application/vnd.oma.drm.roap-pdu, application/vnd.oma.drm.ro, application/vnd.oma.drm.dcf

 Content-Length: 125

 Content-Type: application/vnd.oma.drm.roap-pdu
... [ROAP PDU] ...

3. The RI returns a multipart containing a ROAP RO Response PDU and the DRM Content.

HTTP 1.1 200 OK

 Server: CoolServer/1.3.12

 Content-Type: multipart/related; boundary=”XX---XX”

--XX---XX

 Content-Length: 986

 Content-Type: application/vnd.oma.drm.roap-pdu
... [ROAP PDU] ...

--XX---XX

 Content-Length: 1232

 Content-Type: application/vnd.oma.drm.dcf

... [DCF] ...

--XX---XX--

4. The DRM Agent installs the Rights Object and DRM Content. The DRM Agent notifies the Download Agent of installation success. The Download Agent posts the installation notification.

POST /notify?tid=2h3jh3g4 HTTP/1.1

 Host: ri.example.com

 Content-Length: 13

900 Success
6.6.3 WAP Push

6.6.3.1 Push Application ID

The well-known value for the Push Application ID of the DRM User Agent Push remains unchanged from OMA DRM 1.0:

 - URN: x-wap-application:drm.ua

 - Number: 0x08

Rights Issuers and Content Issuers MUST use this Push Application ID when using WAP Push to deliver DRM Content or Rights Objects to the DRM Agent.

6.6.3.2 Content Push

A ROAP RO Response PDU MAY be delivered using WAP Push [PUSHOTA].

The DRM Agent MUST be able to receive a ROAP PDU that is pushed to the DRM user agent using the Push Application ID defined above.

6.6.3.3 Service Indication/Service Loading

A ROAP RO Response PDU MAY be delivered using WAP Push Service Loading [PUSHSL] or WAP Push Service Indication [PUSHSI].

The DRM Agent MUST be able to receive a ROAP PDU that is pushed to the DRM Agent using the Push Application ID defined above.

6.6.4 MMS

The Multimedia Messaging Service (MMS) may be used to transfer Protected Content in MMS Protocol Data Units (PDUs) as defined in [MMSENC]. In regard to DRM two use cases need to be distinguished:

a) The Protected Content is referenced from within the SMIL presentation description of the multimedia message (ie it can be rendered as part of a multimedia presentation).

b) The Protected Content is not referenced from within the SMIL presentation description of the multimedia message. This content can be handled by the device independently from MMS.

If a multipart DCF is referenced from within the SMIL presentation description the first object is assumed to be the referenced Content Object. The reference for the Content Object is the header field “Content-Location” or “Content-ID” which is associated with the body part of the MMS message. This must not be mixed up with the Content-ID inside the DCF, which is used as a reference for the Rights Object.
6.6.4.1 Example: MMS delivery of DCF within a SMIL presentation (Informative)
The example MMS message shown below contains a presentation description in the form of a SMIL document. From within this document the second body part of the message is referenced by a Content-ID, which is associated with the referenced part in the multipart structure in the form of a header field (containing the ID “same-reference-as-in-SMIL-doc “ in this example). This is explicitly different from the Content-ID included in the DCF (“same-reference-as-used-in-associated-ROs “) which serves as a reference for the Rights Object(s) associated with the Media Object. As an alternative to the Content-ID in the multipart structure a Content-Location may be used according to [MMSENC]. For a better understanding, the example below is illustrated in textual format, although the MMS PDUs are binary encoded on the interface between the MMS Proxy-Relay and the MMS Client according to [MMSENC].
From:customer@mmsprovider.com

To:anothercustomer@anothermmsprovider.com

Subject:MMS message with DRM content

X-MMS-Version:1.2

...[More MMS headers]

Content-Type:multipart/related;boundary=firststring;start=secondstring

--firststring

Content-ID:secondstring

Content-Type:application/smil

...[SMIL doc]

--firststring

Content-ID:same-reference-as-in-SMIL-doc

Content-Type: application/vnd.oma.drm.dcf
...[DCF containing Content-ID:same-reference-as-used-in-associated-ROs]

--firststring--

7. Domains

7.1 Overview

The OMA DRM domain concept is network centric, i.e. the RI defines the domains, manages the Domain Keys, controls which devices are included and excluded from the domain and updates the domain after revocation.

A domain is a set of devices that are able to share the same DCF and RO. An RI can facilitate a user to define a domain of his personal devices and share content and Rights Objects among these devices.

The sharing of Domain ROs in a domain is made possible by devices in a domain sharing a secret Domain Key, generated by the RI during the definition of a domain.

A domain is associated with one or several Domain Keys. (Multiple Domain Keys being a result of previous revocations of this domain, at most one of these keys is not revoked.). To each Domain Key corresponds a unique Domain Identifier consisting of a unique part and a counter indicating the Domain Generation, the latter measuring the number of revocations of this domain. The Domain Identifier excluding the Domain Generation is unique for each domain.

OMA devices may join multiple domains with a single RI or with multiple RIs.

7.2 Device joins domain

To join a domain a device must have established, or will establish as part of a successful Join Domain protocol, an RI Context with the RI.

A device joining a domain is the process of an RI authorizing a particular device to be able to use all ROs for this domain. When a device joins a domain it receives the necessary domain information to be able to install Domain ROs.

A Device executes the Join Domain protocol (see ROAP protocol suite) to join a domain. The result of a successful Join Domain in the Device is the establishment in of a Domain Context for one or more domains. The Domain Context includes of Domain Key(s), Domain Identifier(s) and an Expiry Time.

A Domain Identifier is a string is where two last characters are numbers and shall be interpreted as a number between 00 and 99, which form the Domain Generation.

A Device MAY join multiple domains with the same RI or with different RIs.

The Join Domain protocol is triggered by the ROAP trigger after a browsing session.

If a Device joins a revoked domain (i.e. a domain where one or more Domain Keys have been revoked), the RI SHOULD give the Device access to all previous Domain Keys of this domain, to allow use of all ROs for this domain.

If a Device receives an RO for a domain that the Device is not joined to, or which the Device is joined to but protected with a Domain Key, which the Device does not have access to (indicated by the Domain Generation) the Device MUST notify the user and SHOULD after user confirmation initiate a browsing session to the Domain URL (see DRMREL-v2) in the Domain RO.

7.3 Domain RO Acquisition

To be able to use a Domain RO, a Device must have joined the corresponding domain.

Domain ROs can be acquired by the same mechanism as Device ROs, using the 2-pass RO Request/Response protocol or the 1-pass RO Response protocol. The Device specifies the Domain Identifier in the RO Request. Domain ROs, in contrast to Device ROs, can also be acquired without being wrapped in a ROAP PDU, e.g. delivered to devices as a result of a browsing session.

7.4 Device leaves a domain

A device leaving a domain is the process of an RI trusting that a particular device in a particular domain has deleted information about the domain such that it is no longer able to use any ROs for this domain. When leaving a domain a Device MAY, but is not required to remove the corresponding Domain ROs and associated Content. The Device SHOULD obtain user confirmation before deleting Domain ROs and associated Content.

A Device MUST execute the Leave Domain protocol (see ROAP protocol suite) to leave a domain.

Prior to sending Leave Domain Request, the Device MUST ensure the corresponding Domain Context is deleted.

7.5 Support for Multiple Domains per Rights Issuer

To provide flexibility in domain management, it is desirable for the system to have the ability to support multiple domains per Rights Issuer. The Device SHALL support the ability to join multiple domains for each RI Context it establishes.
To ensure that each DRM Agent is able to provide a minimum level of functionality, a Device SHALL support at least 6 domains, such that the 6 may be distributed across the established RI Contexts in any proportion.

The Device MAY optionally support more than 6 domains. These additional domains should also be distributed across the established RI Contexts in any proportion.

7.6 Domain Revocation

The basic objective of revocation is to exclude devices from being able to use new ROs. Already issued content and ROs are considered beyond control from the point of view of the DRM system.

Domain revocation (or, more precisely, Domain Key revocation) is the process of an RI indicating that a previously non-revoked Domain Key is not trusted for future protection of Domain ROs. This may be e.g. due to a Domain Key being compromised or a device in the domain being revoked. Domain revocation as well as device revocation will probably be rare events, but may be necessary as a last resort to stop clear text content from leaking out of the system.

Domain revocation does not result in any Domain Context being deleted in any device. After domain revocation, Domain ROs issued before the revocation are still possible to use and share, this applies both to revoked devices previously in the domain and new devices included in the domain after revocation.

The Domain Generation is a counter of the number of times a particular domain has been revoked (or, more precisely, the number of times Domain Keys has been revoked in a particular domain). Domain Generations MUST be supported by Device and RI. Domain Generations provide means to distinguish the same domain before and after a revocation.

To avoid storage of multiple keys per domain in the Device and in the RI (for the purpose of using old and new Domain ROs after domain revocation) it is possible to have a relation between the Domain Keys using Hash Chains (see section Hash Chains), an example is given below. The Device MAY support Hash Chains and the RI MAY support Hash Chains.

After a domain has been revoked, the RI MUST change Domain Key and increase the Domain Generation by one. If the Domain Generation reaches 99 the domain becomes obsolete. RI MUST NOT issue ROs for this obsolete domain and MUST NOT allow new Devices to join the obsolete domain.

Example1. Without hash chains
When generating a new domain, the RI generates:
· a unique Domain Identifier DI, the Domain Generation is set to 00.

· a random secret Domain Key DK0
At domain revocation the Domain Generation is increased by 1, which is reflected by the Domain Identifier, and a new Domain Key DK1 is generated. The old Domain Key(s) must be stored in RI and Device to allow use of ROs issued before revocation. When devices join a domain, all Domain Keys of this domain are sent in the Protected Domain Info of ROAP-JoinDomainResponse (see ROAP protocol suite).

Example 2. With Hash Chains (optional)

When generating a new domain, the RI

· generates a unique Domain Identifier DI, the Domain Generation is set to 00.

· generates a secret random number R

· defines a sequence of Domain Keys using R and applying the efficient hash function SHA1 iteratively

· DK99 = R

corresponding to DI with Domain Generation 99

· DK98 = SHA1(DK99)
corresponding to DI with Domain Generation 98

· etc. until

· DK0 = SHA1(DK1)
corresponding to DI with Domain Generation 0

Since old Domain Keys (with low generation value) are possible to efficiently derive from new Domain Keys (with higher generation value), it is only necessary to store the newest Domain Key in the Device (and corresponding Domain Identifier so the Domain Generation is known). For the RI it is sufficient to store DK99 (=R).

8. Protection of Content and Rights

8.1 Protection of Content Objects

The Content Objects are protected by symmetric key encryption. The details of the content format are specified in [DRMCF-v2] document. Protecting content confidentiality is a key part of the DRM system. Only the intended devices must be able to decrypt the content. To accomplish this content protection, the Rights Issuer MUST encapsulate the Content Encryption Key (CEK) in a Rights Object. This Rights Object, in turn, is protected as described in Section 6.3 to ensure that only the intended Device may access the CEK and therefore the Protected Content.

For integrity protection of the DCF, a cryptographic hash value of the DCF is generated and inserted into the Rights Object. This hash value MUST be generated over the entire DCF, including all the elements and the headers except for the OMADRMTransactionTracking box which is the last box in a DCF or PDCF if present. This box is subject to change by the Device as defined in section 9.2. DRM Agents in client devices MUST verify that the hash value in the Rights Object is identical to the hash value calculated by the DRM Agent over the DCF. If the hash values are not identical, the DRM Agent MUST prohibit the DCF from being decrypted and used.

8.2 Composite Content Objects and Associated Rights Objects

A rights object can contain one or more permissions and constraints (i.e. multiple rights). Each set of permissions and constraints is identified by a unique identifier, and uniquely associated with a media object by the identifier. One rights object may contain rights that are associated with media objects contained in separate content objects (DCFs). Some example use cases include

· Multiple contents delivered at different times (e.g. subscription-based MMS where several MMS messages are sent to a user)

· Multiple contents delivered at the same time but are not encapsulated in a single package (e.g. streaming media (audio stream and video stream)).

· Multiple contents delivered at the same time and are in a single package that is not a DCF (e.g. an MMS message containing several pictures, each encapsulated in its own DCF)

The rights objects can also specify permissions and constraints for each of the individual components within a composite object. In this case, the individual components can be referenced separately by the rights object associated with the composite object.

8.2.1 Multiple Rights for Composite Objects

8.2.1.1 Association of Permissions with Media Objects

A Rights Object can contain one or more Permissions and Constraints (i.e. multiple rights). Each set of Permissions and Constraints is identified by a unique identifier, and uniquely associated with a Media Object by the identifier. One Rights Object may contain Permissions that are associated with Media Objects contained in separate DRM Containers (DCFs). Some example use cases include

· Multiple DCFs delivered at different times (e.g. subscription-based MMS where several MMS messages are sent to a user)

· Multiple DCFsdelivered at the same time but not encapsulated in a single package (e.g. streaming media (audio stream and video stream)).

· Multiple DCFsdelivered at the same time and in a single package that is not a DCF (e.g. an MMS message containing several pictures, each encapsulated in its own DCF)

The Rights Objects can also specify permissions and constraints for each of the individual Media Objects within a Multipart DCF. In this case, the individual Media Objects can be referenced separately by the Rights Object associated with the Multipart DCF.

8.2.1.2 Multiple Rights for Multipart DCFs
A Multipart DCF contains multiple separate Media Objects, e.g., a theme consisting of a ringing tone and a logo. When Permissions are associated with a Multipart DCF, there are two types of relation between the Permissions and the Media Objects inside the Multipart DCF. One is that the same Permissions and Constraints are associated with all individual Media Objects in the Multipart DCF. For example, when a Multipart DCF contains three images as separate Media Objects, a Content Provider can grant a user a single Permission to display all three images in the Multipart DCF. Another case is where individual Permissions are associated with individual Media Objects inside a Multipart DCF. For example, when a Multipart DCF contains an audio file and two images, a Content Provider can grant a user the Permissions to play the audio data, display the two images, and print the second image three times.

Figure 12: Multiple Rights for Multipart DCFs[image: image17.wmf]

audio

Image(1)

Image(2)

play

display

Print

3 times

Media

Objects

Mulitpart

DCF

<permission>

elements

<rights>

element

Reference by

Content

-

ID

When multiple Media Objects in a Multipart DCF are associated with individual Permissions, each individual Media Object MUST have an individual Content-ID assigned within the Multipart DCF for reference by the Rights Object. Also, common Permissions and Constraints can be associated with all Media Objects in a Multipart DCF. In this case, the Rights Object only needs to reference the Multipart DCF itself (by its Content-ID) and there is no need to contain the Content-ID of individual Media Objects.

Rights can be issued for both the Multipart DCF itself and for the individual Media Objects contained therein in a single Rights Object creating possible conflicts, e.g. a Permission of play 3 times could be issued for the Multipart DCF while the Permission for an individual Media Object could be play unlimited times. In this case, Permissions specified for the individual Media Object MUST take precedence over Permissions specified for the entire Multipart DCF.

Another case is where a Media Object is a Composite Object, i.e. it contains other Media Objects by means of inclusion. Such a Composite Object can have assigned only a single Content-ID which can be referenced by a Rights Object. Permission and Constraints expressed referring to the Composite Object Must be applied to all individual Media Objects contained in the Composite Object (e.g. the images and audio files contained in a zip archive).
8.3 Protection of Rights Objects

In the OMA DRM Architecture, a given Content Object is associated with one or more Rights Objects. The Rights Object is made up of the required header information, security elements, and the rights information for the associated Content Object. The Rights Objects are acquired by the device as a result of a successful completion of the Rights Object Acquisition Protocol.

One of the most important elements to be protected within the OMA DRM system is the Rights Object. This specification addresses the following issues to provide a comprehensive set of measures to protect the Rights Objects. These measures help to ensure the use of the information contained within a Rights Object, by authorized devices.

1. Provide mechanisms to verify the authenticity of the rights

2. Provide mechanisms to verify the integrity of the rights

3. The association between the Rights Object and the Content Object should not be changeable and it needs to be integrity protected.

The Rights Object is made up of the “key” information necessary to decrypt the associated content. This “key” information is generated by the Rights Issuer for the purposes of encrypting the content and the rights. Portions
of the Rights Object are encrypted using a symmetric Rights Encryption Key that MUST be generated by the Rights Issuer.
The
following parts of the Rights Object MUST be encrypted using the Rights Encryption Key:

· The Content Encryption Key

· User identity information, including name/password, IMSI (list specific elements here…)

· Other?

Integrity protection prevents un-authorized modification of the rights information within the Rights Object. The syntax and semantics of the Rights Object is specified in the [DRMREL-v2] document. The [DRMREL-v2] specification calls for the use of XML-DSIG to create a digital signature over the set of elements that need integrity protection. The Rights Issuer MUST digitally sign the Rights Expression (the XML document). Not only does this ensure that the permissions and constraints are not modified during transmission, but ensures the integrity of the DCF cryptographic hash value. The DRM Agent MUST verify the digital signature within the Rights Object, before the associated content is made available to the user. Use of the digital signature also provides the client the ability to verify the authenticity of the information. The Rights Issuer MUST provide the certificate chain necessary to validate the signature either during the ROAP session or by use of “out-of-band” methods
.

If a Rights Object is associated with a composite Content Object, all the rights expressions for the component elements MUST be included within a single <ds:Signature> element. If a Rights Object is associated with a composite Content Object, it may contain a number of CEKs to enable the encryption/decryption of component elements with different keys.

The Rights Object MUST be assigned a unique identifier by the Rights Issuer.

8.4 Replay Protection of Stateful Rights Objects

8.4.1 Introduction

Rights Objects containing permissions with constraint elements <count>, <interval> or <accumulated> requires state to be kept in the DRM Agent to measure what part of this permission that has been used up. In contrast with stateless rights, there has to be a mechanism protecting against a user replaying the reception of such stateful ROs to the Device, which could cause unauthorised extension of the permission.

In certain variants of RO acquisition described in this specification such a replay protection mechanism is inherent in the protocol. E.g. the 2-pass RO Request/Response messages contain a device nonce, sent in the request and sent back and signed in the response. The DRM Agent compares an incoming correctly signed RO Response with the nonce in a sent RO Request and unless there is a match, the RO is rejected and replay of the RO Response in that case is not possible. RI authentication provided by the 2-pass protocol is thus used to control replay.

However, due to the nature of 1-pass ROAP or sharing of ROs in a domain, there is no challenge/response mechanism to rely upon. Instead, replay protection can in this case leverage on time-based RI authentication, using an RI Time Stamp, but there are also limitations as is discussed below.

· There is only an approximate synchronization between RI and Device. To accommodate for this and the delivery time of the RO, a local replay cache is kept in the Device, a table storing a Globally Unique RO Identity (GUID) and the RI Time Stamp. The GUID must be unique for each instance of the RO so that e.g. a user that twice in a sequence buys the same stateful RO (say permissions to play a particular song 3 times) won’t be considered a replay attack.

· When stateful ROs with GUID and time stamps are received, they appear as entries in the replay cache and can thus be compared to previous received ROs and prevent replay. When the replay cache is full, entries with more fresh time stamp replace entries with older time stamps and ROs with time stamps older than the oldest time stamp in the cache are rejected. Given the enforcement of this mechanism, it provides a secure replay protection. Appropriate sizing of the replay cache minimizes the risk that a long delivery time of one stateful RO in combination with mass distribution of other stateful ROs with fresher time stamp causes the delayed RO to be rejected. (In situations of mass distribution of stateful ROs, the RI could use the 2-pass ROAP protocol since that has an inherent replay protection mechanism that does not interfere with the mechanism described here.)

Another limitation of the method described above is that sharing of Domain ROs with very old time stamp may be limited by the finiteness of the replay cache. A second mechanism is therefore included to take away these limitations. By allowing Domain ROs having a GUID and no time stamp and a separate replay cache for GUID only entries, a limited replay deterring mechanism is achieved.

· New ROs with GUID only are compared to GUIDs in the GUID replay cache. If there is a match, the RO is rejected; otherwise it is accepted and the replay cache is updated. If the GUID replay cache is full a previous entry is removed to give room for the new GUID.

This mechanism does not limit sharing of ROs but is possible to circumvent. It is possible to replay stateful ROs with GUID that has been deleted from the cache.

The reason for separate replay caches is that the secure mechanism presented above should not be affected by the latter, more limited, replay method. Also, a separate replay cache for GUID only entries guarantees a certain degree of protection for the corresponding ROs.

8.4.2 Replay Mechanism

This method is intended to support the use case of stateful Device or Domain ROs that are delivered without a prior RO Request, i.e. the 1-pass ROAP and Domain ROs delivered outside ROAP. In the case of Domain ROs, the statefulness is per device in the domain. E.g. if a Domain RO with a count 3 constraint is successfully shared between devices, each device is allowed 3 uses.

The <RO Payload> element contains two elements for stateful RO replay protection management: the Globally Unique ID element <guid> and the RI Time Stamp element <timeStamp>.

The RI signals to the Device usage of the replay protection mechanism by including the <guid> element. The <timeStamp> element is optional and provides the RI two different methods for replay protection of stateful Device ROs and Domain ROs. The choice of the specific method used is indicated by the presence or absence of the <timeStamp> element in the <RO Payload> element.

1. RI Time Stamp in the Protected RO.

This method is applicable to both Device ROs and Domain ROs and provides a secure replay protection mechanism. However, in the domain case subsequent sharing is restricted by the replay mechanism and cannot be guaranteed. Domain ROs that are shared with other devices long after received from the RI may be rejected by the receiving device.

2. Absence of RI Time Stamp in the Protected RO.

This is mainly intended for Domain ROs. The method provides a mechanism that does not restrict subsequent sharing, installation and usage of Domain ROs (except as specified by the permissions in the RO, Domain Context lifetime etc) but is less secure and does not guarantee that replay is impossible.

If protection from replay of a stateful RO is important, the RI should include the RI Time Stamp in the Protected RO. If indefinite sharing of stateful Domain ROs in a domain (as described above) is important and it is acceptable that with some effort from the user this stateful RO may be replayed, then the RI should not include the RI Time Stamp in the Protected RO.

8.4.3 Processing rules

This chapter defines the processing rules enabling protection against RO replay attacks for both Device ROs and Domain ROs. A device must have two (logical) replay caches, one with (GUID, RITS) entries and one with GUID entries corresponding to the reception of stateful ROs with or without RI Time Stamp, respectively. The device MUST protect the integrity of its replay caches. A device MUST have documented the sizes of the replay caches. It is recommended that each replay cache is able to store at least 100 entries.

8.4.3.1 Stateful ROs with RI Time Stamp (RITS)

When receiving a Protected RO with GUID element and with a RITS element, the device does the following processing:

· If the RITS is more than 24 hours in the future when compared to the Device DRM Time then the Device MUST reject the RO. The user MUST be informed of the event and of the present Device DRM Time, the user SHOULD be asked if the Device DRM Time is correct and if the time is not correct the Device SHOULD initiate Device DRM Time Synchronization by running the 4-pass Registration protocol.

· Otherwise, if the GUID is already in the (GUID, RITS) replay cache then the Device MUST reject the RO.

· Otherwise, if the (GUID, RITS) replay cache is not full, the Device MUST accept the RO and include the corresponding (GUID, RITS) in the replay cache.

· Otherwise – if the replay cache is full, and the RITS is before the earliest RI Time Stamp in the replay cache the Device MUST reject the RO.

· Otherwise – if the replay cache is full, and the RITS is after the earliest RI Time Stamp in the replay cache the Device MUST accept the RO and insert the corresponding (GUID, RITS) in the replay cache, by deleting an entry with the earliest RI Time Stamp in the cache.

8.4.3.2 Stateful ROs without RI Time Stamp (RITS)

When receiving a Protected RO with GUID element but without a RITS element, the Device does the following processing:

· If the GUID is in the GUID replay cache then the Device MUST reject the RO.

· Otherwise, if the GUID replay cache is not full, the Device MUST accept the RO and include the corresponding GUID in the replay cache.

· Otherwise – if the GUID replay cache is full, the Device MUST accept the RO and insert the corresponding GUID in the GUID replay cache, by deleting an existing entry in the cache. The Device MAY use FIFO in the GUID replay cache or MAY select a random entry for deletion.

8.4.4 Subscription Rights Object

A Rights Object may specify Rights for content acquired as part of a subscription. In this case, the Rights Expression will inherit Permissions for the digital asset from another Subscription Rights Object, using the <inherit> syntax as specified in [DRMREL-v2].

Client devices MUST verify that the content Rights Object and its related Subscription Rights Object were issued by the same Rights Issuer before the associated content is made available to the user.

8.4.5 Off-Device Storage of Content and Rights Objects

Because Devices have a limited amount of storage space in which to store Protected Content and Rights Objects, users may desire to move Protected Content and Rights Objects off the device, e.g. to removable memory, a personal computer, or a network store to make room for new Protected Content and Rights Objects. At some later point in time, they may want to retrieve said Protected Content and Rights Objects from the remote storage back onto the Device store.

As explained in Section 6 of this specification, both the Protected Content and Rights Objects are protected and bound to a specific Device or a Domain. For this reason, Protected Content and Rights Objects MAY be allowed to leave the device provided the following conditions are met:

· The Rights Object MUST not contain any stateful constraints. Stateful constraints include <interval>, <count>, and <accumulated> as defined in [DRMREL-v2].

· The Protected Content and the Rights Objects MUST be in a protected form, meaning they cannot be accessed by any other Device/Domain than the original intended Device/Domain to which the rights were issued.

9. Super Distribution

Protected Content can be distributed from one device to another freely over any physical removable media, wired or wireless connection.

9.1 Preview

If a super-distributed DCF has headers indicating that it supports previews, then the receiving device MAY use the information provided to generate a preview for the user. This preview may be provided in the form of “instant preview”, where the DCF itself has a preview element that can be used without a Rights Object. In addition, the DCF headers may also indicate a preview method where the device would need to acquire a preview Rights Object before providing any preview capabilities. See the [DRMDCF-v2] for further details on the appropriate DCF headers.

9.2 Transaction Tracking

A DCF may contain a TransactionID as an information element inside a OMADRMTransactionTracking box according to [DRMCF-v2]. The TransactionID may be used to track the content flow from one user to another via super distribution from an RI perspective.

The Device MUST ensure the consent of the user for related operations performed by the Device to ensure the privacy issues of the user. This can be done by general settings in the device, by individual settings per Rights Issuer or on a case by case basis and is implementation specific.

To enable transaction tracking a DCF or PDCF MUST contain an OMADRMTransactionTracking box when it is received by the Device.

If a DRM Agent receives an RO Response containing an RO and a TransactionID and the user has given consent to this operation the DRM Agent MUST replace the TransactionID contained in the corresponding DCF or PDCF with the TransactionID received in the OMADRMTransactionTracking box, i.e. a Device neither needs to generate an OMADRMTransactionTracking box nor needs to change the size of the DCF/PDCF.
If a Device submits an RO Request based on a DCF or PDCF that contains an OMADRMTransactionTracking box it MUST insert the TransactionID of the corresponding DCF or PDCF into the RO Request as the TransactionID.

Transaction tracking might not work if

· the first user decides to super distribute only the ContentURL instead of the DCF or PDCF or

· the Rights Object is received prior to the DCF or PDCF.

Informative Note: The transaction tracking feature may be used by a Rights Issuer to implement a reward mechanism by which a first user may obtain a benefit from super distributing Protected Content to another user which purchases an RO to obtain access to the super distributed content. Transaction tracking comprises the following steps:

a) The RI provides a TransactionID in an RO Response message to the Device of the first user.

b) The device of the first user replaces the TransactionID in the DCF or PDCF already on the device with the received TransactionID.
c) The first user super distributes the DCF or PDCF to a second user.
d) The second user sends an RO Request message including the TransactionID of the received DCF or PDCF to the RI.
e) The RI maps the received TransactionID to the same TransactionID related to the initial transaction with the first user.
The kind of benefit the first and/or second user may get from the RI is out of scope of this specification.

9.3 DCF Integrity

A DCF, once downloaded from a content portal, is deemed to be immutable with a single exception. Devices MAY replace the TransactionID contained in an OMADRMTransactionTracking box in a DCF or PDCF but MUST NOT modify rest of the DCF or PDCF before super-distributing the content to other devices. The integrity check on the DCF/PDCF is always carried out excluding the OMADRMTransactionTracking box, which is always the last box of the DCF/PDCF, if present. Therefore, the integrity validation will fail if the DCF/PDCF has been modified except for the authorized exchange of the TransactionID. This applies to all DCFs whether it is a Multipart DCF composite object with multiple DRM elements Containers included or a simple DCF object with only one DRM Container element within it.

10. Export

After downloading OMA DRM protected content, the User may wish to render that content on another device that has a different DRM protection format. Export is an operation in which the DRM content and corresponding Right Object are transferred to a DRM system or content protection scheme other than the OMA DRM system. The Rights Issuer controls whether or not to allow the export.

The Rights Issuer must explicitly grant permission (with the <export> element in [DRMREL-v2]) before the content and Rights Object can be exported. The Rights Issuer also specifies to which DRM system or content protection scheme the DRM content is allowed to be exported. The Rights Issuer MAY permit export to more than one system.

The basic concept of export from OMA DRM to another DRM system or content protection scheme is specified in this document. OMA does not specify the exact rules for transcribing Rights Objects to the other protection mechanisms. It is the responsibility of appropriate bodies governing the use of those protection systems to define the necessary mechanisms for transcribing OMA DRM Rights Objects. Figure 13 below explains the principle.

[image: image11.emf]Secure Environment

OMA Compliant Device/Module

Trust Assured by OMA DRM CA

Other DRM Compliant Device/Module

Trust Assured by Other DRM CA

OMA DRM Agent

Rights

Content

Secrets

Other DRM Agent

Rights

Content

Secrets

Should be transcribed

securely & consistently

Should be transferred

securely

Figure 13: Exporting from OMA DRM

10.1 Export Modes

The Rights Issuer can specify if the DRM content and Rights Object are available on the original device after the export (“copy”) or are permanently removed following the export (“move”).

In the case of “copy”, the DRM content and Rights Object remain on the original device and available for rendering following the export. The Rights Issuer MAY specify the number of times the “copy” export is permitted. The original Rights Object is exported without state information if it is a stateful Rights Object and MUST remain unchanged on the original device after the export.

In the case of “move”, the original Rights Object MUST become permanently unusable on the original device, after exporting is conducted. The Rights Object MUST be exported with the current state information at the time of the export if it is a stateful Rights Object. That is, if a stateful right has been partially consumed, only the remaining portion is exported. The Content Object MAY remain on the original device.

In either mode, the <export> permission MUST NOT be transcribed into the other DRM system or content protection scheme. This restriction prevents further export once the content is protected by the other DRM system.

10.2 Secure Environment

During the transcription of rights and the transferring of content to the other DRM system, it is necessary to decrypt the Content Object and Rights Object so they can be protected according the security model of the other DRM system. It is imperative that the export operation be conducted within a secure environment.

The two DRM Agents, the OMA DRM Agent and the DRM Agent of the external DRM system, may reside in a single device or on different devices. But these two agents and the data channel between them must be implemented in a secure manner.

10.3 Compatibility with other DRM systems

The targeted DRM system may not support all of the capabilities of OMA DRM. Some potential areas of incompatibility include:

· Content Types

· OMA REL usage permissions and constraints

· Multiple Rights Objects for a single content

· Rights for multiple content objects in a single Rights Object

This section defines some general rules to minimize incompatibilities when exporting to non-OMA DRM systems. The detailed rules for the transcription of OMA Rights Objects to those of another DRM system are specific to the target system and, therefore, are not part this document.

During discovery and download of content for future export, the best possible content and rights should be provided to the device according to device capability, the capability of the other DRM system, and user preferences. This information MAY be indicated to the Content Issuer using UAProf as specified in section 5.2.

When creating a Rights Object for Export (i.e. <export> permission is included), the Rights Issuer SHOULD construct the Rights Object so that all the permissions and constraints within it are supported by the other DRM system. All permissions and constraints in the original Rights Object MUST be transcribed provided they are supported in the target DRM system.

As described in section Composite Content Objects, a single Rights Object can contain rights for multiple content objects either within a multipart DCF or separate DCFs. The <export> permission is applied to the entire Rights Object so that when such a Rights Object is exported, each associated content object MUST also be exported.

A single content object may have more than one corresponding Rights Object. If the User wishes to export this content object, all Rights Objects with permission to export to the targeted DRM system MUST also be exported. If the target DRM system supports multiple rights for a single content object, multiple rights in the original Rights Object MUST be transcribed. If the target DRM system does not support multiple rights for a single content object, the multiple rights MAY be merged into one Rights Object and then transcribed.

10.4 Streaming to other devices

Another form of export allows the user to stream DRM content from the original device to a rendering device (i.e. headphones) for immediate playback. The content MUST be streamed over a copy protected medium where the transmission protocol between the devices ensures that the DRM content cannot be copied in an unauthorized manner.

The general rules above in terms of transcribing the content and rights SHOULD be followed when streaming over protected links for rendering purposes.

When <export> permissions are granted and the target system is a link protection scheme, it is understood that a transient copy is made to facilitate rendering on the target device. The appropriate signalling MUST be used to indicate to the target DRM/protection system, that the streamed content is used only for rendering purposes.

11. Proxy / Store & Forward

Protected Content can be purchased and downloaded to devices using other devices either as connection proxies, or store and forward devices. The Proxy and Store & Forward devices act as intermediaries to assist the target device to purchase and download content and Rights Objects. These mechanisms enable a portable, mobile device that does not have inherent network connectivity to acquire content and associated rights. In the Store & Forward mechanism, it enables the Rights Issuer to provide the content and rights to a Store & Forward device such as a PC for a later transfer to a consuming device. This ensures that the usage models take advantage of the established content browsing and purchase methods on the Internet.

11.1 Proxy

In a Proxy usage scenario, the connectivity capability of one device is utilized in a transparent manner by another device to acquire content and associated rights. This is essentially the “modem” usage scenario where, for example, a mobile phone and a portable music player are connected over Blue Tooth and the mobile phone’s connectivity to the network is utilized to reach Content Issuers and Rights Issuers for the purposes of acquiring content and rights. The target device is the one that participates in the content browse, purchase and rights acquisition in this scenario.

The target device or the consuming device MUST be OMA DRM Conformant.

11.2 Store & Forward

The Store and Forward device can purchase content by providing the necessary credentials for charging purposes and in addition providing the identity of the target device so that the content can be tailored for the specific device, and the rights can be protected so that the target device is the only one that can make use of it.

Editor’s Note: Open pending the text submission on unconnected devices.
The target device or the consuming device MUST be OMA DRM Conformant.

12. Binding Rights to User Identities

As specified with [DRMREL-v2], the <Individual> element specifies the individual to whom the content is bound to. It does so by binding content to the user identity specified via its <context> child element. Within an <individual> element there are two formats for the value of the <uid> element of the child <context> element:

(ii) “IMSI:xxxxxxxxxx” where xxxxxxxxxx represents the IMSI that the content is bound to.

(iii) “WIM:xxxxxxxxxxxxxxxxxxxx where xxxxxxxxxxxxxxxxxxxx represents the PKC_Id that the content is bound to.

12.1 IMSI uid

When the <uid> element of a child <context> element of an <individual> element specifies an IMSI the DRM Agent MUST observe the following behaviour.

When the associated content is selected for rendering the DRM Agent MUST check that the IMSI on the currently installed SIM/USIM (as stored within EFIMSI elementary file, which is defined in [3GPP TS 11.11] and [3GPP TS 31.102]) matches the IMSI specified within the value of <uid> element.

Additionally the DRM Agent MUST check that the SIM/USIM is not invalid. A SIM/USIM is deemed invalid if:

The device has received an AUTHENTICATION REJECT message (as defined in [3GPP TS 24.008]) in the case of the circuit switched domain authentication.

Or:

The device has received an AUTHENTICATION AND CIPHERING REJECT message (as defined in [3GPP TS 24.008]) in the case of the packet switched domain authentication.

The SIM/USIM MUST be considered invalid until the Device is switched off or the SIM/USIM is removed.

If a SIM/USIM is deemed to be not invalid and the IMSI of the currently installed SIM/USIM matches that specified in the <uid> element, as specified above, then the <permission> may be exercised.

12.2 WIM uid

12.2.1 DRM Agent behavior

When the <uid> element of a child <context> element of an <individual> element specifies a PKC_ID the DRM Agent MUST observe the following behaviour.

1. Retrieve the user certificate from the WIM [WIM], identified by PKC_ID i.e. the value of PKC_ID matches with the value of CommonCertificateAttributes.certHash field from the user certificate CDF entry,

2. Compute a hash (e.g. thumbprint) over the user certificate. The hash is calculated over the DER encoding of the complete certificate and sha1-hashing algorithm MUST be used,

3. Check that this hash (e.g. thumbprint) matches with the value of PKC_ID,

Go to step 4 if the result of the check is successful. If unsuccessful, the permission MUST NOT be exercised.

4. Generate a 20 bytes challenge value,

5. Ensure that the rights to access signature key are granted,

6. Request the WIM to sign the challenge using the private key associated with the identified user certificate,

7. Verify the signature using the user certificate.

If the verification of the signature is successful then the <permission> MUST be exercised.

12.2.2 Support for WIM uid

The DRM Agent MUST support User certificate for authentication as defined in Appendix F.

The said user certificate MUST be stored locally in the WIM. The logical record of the WIM CDF that provides information for that certificate thus makes use of the path identifier reference choice and MUST in addition contain the optional field CommonCertificateAttributes.certHash. The use of the private key associated to the said user certificate MUST be protected by the PIN-G i.e., the logical record of the WIM PrKDF that corresponds to that key provides a commonObjectAttributes.authId field that identifies the PIN-G authentication object.

To optimise (i.e. save certificate hashing operation) the next procedures that make use of the said user certificate, it is RECOMENDED that once the DRM Agent successfully passed the step 3 it stores the trusted couple (user certificate, user certificate hash (e.g. thumbprint)) in its local storage area. Thus, the DRM Agent MAY resume the sequence, starting from step 4 and making use of the user certificate from its local storage area to perform step 7 i.e., selected by PKC_iD == user certificate hash (e.g. thumbprint).

Interactions between the DRM Agent and the WIM are described in Appendix G.

13. Security Considerations

13.1 Protection of key storage

The protection measures provided for private keys are a critical factor in maintaining the DRM system security. Failure of client implementations and Rights Issuers to protect their private keys will seriously compromise the system security. Existence of un-authorized/cloned Rights Issuers and client devices will break the basic assumptions around the DRM security model prescribed in this specification.

Appendix A. ROAP Schema

<?xml version="1.0" encoding="UTF-8"?>

<schema

 targetNamespace="urn:oma:bac:dldrm:roap-20040120"

 xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:roap="urn:oma:bac:dldrm:roap-20040120"

 xmlns:o-ex=http://odrl.net/1.1/ODRL-EX
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

 elementFormDefault="unqualified"

 attributeFormDefault="unqualified">

<!-- Really schemaLocation="http://odrl.net/1.1/ODRL-EX-11.xsd"/>-->

<!-- but should probably instead import the OMA profile of ODRL -->

<import namespace="http://odrl.net/1.1/ODRL-EX"

 schemaLocation="../odrl/odrl.xsd"/>

<import namespace="http://www.w3.org/2000/09/xmldsig#"

 schemaLocation="http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/xmldsig-core-schema.xsd"/>

<import namespace="http://www.w3.org/2001/04/xmlenc#"

 schemaLocation="http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/xenc-schema.xsd"/>

<!-- Basic Types -->

<complexType name="Request" abstract="true"/>

<complexType name="Response" abstract="true">

 <attribute name="status" type="roap:Status" use="required"/>

</complexType>

<simpleType name="Status">

 <restriction base="string">

 <enumeration value="Success"/>

 <enumeration value="UnknownError"/>

 <enumeration value="Abort"/>

 <enumeration value="NotSupported"/>

 <enumeration value="AccessDenied"/>

 <enumeration value="NotFound"/>

 <enumeration value="MalformedRequest"/>

 <enumeration value="UnknownRequest"/>

 <enumeration value="UnknownCriticalExtension"/>

 <enumeration value="UnsupportedVersion"/>

 <enumeration value="UnsupportedAlgorithm"/>

 <enumeration value="NoCertificateChain"/>

 <enumeration value="SignatureError"/>

 <enumeration value="DeviceTimeError"/>

 <enumeration value="InvalidRegistration"/>

 <enumeration value="InvalidDCFHash"/>

 <enumeration value="InvalidDomain"/>

 <enumeration value="DomainFull"/>

 </restriction>

</simpleType>

<complexType name="Extensions">

 <sequence maxOccurs="unbounded">

 <element name="extension" type="roap:Extension"/>

 </sequence>

</complexType>

<complexType name="Extension" abstract="true">

 <attribute name="critical" type="boolean"/>

</complexType>

<!-- ROAP extensions -->

<!-- No need for OCSPResponse to be sent -->

<!-- Mainly for use in the 2-pass RO Request protocol -->

<complexType name="NoOCSPResponse">

 <complexContent>

 <extension base="roap:Extension">

 <attribute name="NoOCSPResponse" type="boolean"/>

 </extension>

 </complexContent>

</complexType>

<!-- No need for receiving party's certificate chain to be sent -->

<!-- Mainly for use in the 2-pass RO Request protocol -->

<complexType name="PeerKeyIdentifier">

 <complexContent>

 <extension base="roap:Extension">

 <sequence>

 <element name="identifier" type="roap:KeyIdentifier"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

<!-- No need for inclusion of OCSP responder certificates -->

<!-- Mainly for use in the 2-pass RO Request protocol -->

<complexType name="OCSPKeyIdentifier">

 <complexContent>

 <extension base="roap:Extension">

 <sequence>

 <element name="identifier" type="roap:KeyIdentifier"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

<!-- Loyalty program information -->

<!-- Mainly for use in two-pass RO Request protocol-->

<complexType name="TransactionIdentifier">

 <complexContent>

 <extension base="roap:Extension">

 <sequence>

 <element name="id">

 <simpleType>

 <restriction base="string">

 <length value="16"/>

 </restriction>

 </simpleType>

 </element>

 </sequence>

 </extension>

 </complexContent>

</complexType>

<!-- Certificate chain caching capabilities extension -->

<!-- (Device signals support of the extension, RI signals if it will -->

<!-- store the device's certificates) -->

<complexType name="CertificateCaching">

 <complexContent>

 <extension base="roap:Extension">

 <attribute name="certCachingCapabilities" type="boolean"/>

 </extension>

 </complexContent>

</complexType>

<!—Domain Name Whitelist Extension for ROAP-RegistrationResponse -->

<!—RI can specify up to 5 domain names for silent/preview rights security -->

<complexType name="DomainNameWhiteList">

 <complexContent>

 <extension base="roap:Extension">

 <sequence maxOccurs="5">

 <element name="dn" type="string"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

<!-- Basic types to identify entities -->

<complexType name="Identifier">

 <choice>

 <element name="keyIdentifier" type="roap:KeyIdentifier"/>

 <any namespace="##other" processContents="strict"/>

 </choice>

</complexType>

<complexType name="KeyIdentifiers">

 <sequence maxOccurs="unbounded">

 <element name="keyIdentifier" type="roap:KeyIdentifier"/>

 </sequence>

</complexType>

<complexType name="KeyIdentifier" abstract="true"/>

<!-- SHA-1 hash of complete DER-encoded subjectPublicKeyInfo from -->

<!-- key holder's certificate -->

<complexType name="X509SPKIHash">

 <complexContent>

 <extension base="roap:KeyIdentifier">

 <sequence>

 <element name="hash" type="base64Binary"/>

 </sequence>

 <attribute name="hashAlgorithm" type="anyURI"/>

 </extension>

 </complexContent>

</complexType>

<!-- The corresponding ds:KeyInfo type -->

<element name="X509SPKIHash" type="base64Binary"/>

<!-- Domain Identifier -->

<!-- Last two characters (decimal digits) shall be interpreted as -->

<!-- domain generation -->

<simpleType name="DomainIdentifier">

 <restriction base="string">

 <pattern value=".{1,18}\d{2}"/>

 </restriction>

</simpleType>

<!-- Rights Object Definitions -->

<complexType name="ROPayload">

 <sequence>

 <element name="version" type="roap:Version"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="rel" type="o-ex:rightsType"/>

 <element name="signature" type="ds:SignatureType" minOccurs="0"/>

 <element name="dcfHash" type="base64Binary" minOccurs="0"/>

 <element name="timeStamp" type="dateTime" minOccurs="0"/>

 <element name="encKey" type="xenc:EncryptedKeyType"/>

 </sequence>

 <attribute name="domainRO" type="boolean"/>

 <attribute name="id" type="ID"/>

 <attribute name="stateful" type="boolean"/>

</complexType>

<!-- May be sent standalone (domain ROs) -->

<element name="protectedRO" type="roap:ProtectedRO"/>

<complexType name="ProtectedRO">

 <sequence>

 <element name="ro" type="roap:ROPayload"/>

 <element name="mac" type="ds:SignatureType"/>

 </sequence>

</complexType>

<!-- Registration protocol -->

<!-- ROAP-DeviceHello -->

<element name="deviceHello" type="roap:DeviceHello"/>

<complexType name="DeviceHello">

 <annotation>

 <documentation xml:lang="en">

 Message sent from Device to RI to establish a security

 association.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Request">

 <sequence>

 <element name="version" type="roap:Version"/>

 <element name="deviceID" type="roap:Identifier"

 maxOccurs="unbounded"/>

 <element name="supportedAlgorithm" type="anyURI"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="extensions" type="roap:Extensions"

 minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

<complexType name="Version">

 <sequence>

 <element name="major" type="nonNegativeInteger"/>

 <element name="minor" type="nonNegativeInteger"/>

 </sequence>

</complexType>

<!-- ROAP-RIHello -->

<element name="riHello" type="roap:RIHello"/>

<complexType name="RIHello">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to a DeviceHello.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="selectedVersion" type="roap:Version"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="selectedAlgorithm" type="anyURI" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="riNonce" type="roap:Nonce"/>

 <element name="trustedAuthorities" type="roap:KeyIdentifiers"

 minOccurs="0"/>

 <element name="serverInfo" type="base64Binary" minOccurs="0"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 </sequence>

 <attribute name="sessionId" type="hexBinary" use="required"/>

 </extension>

 </complexContent>

</complexType>

<simpleType name="Nonce">

 <restriction base="base64Binary">

 <minLength value="14"/>

 </restriction>

</simpleType>

<!-- ROAP-RegistrationRequest -->

<element name="registrationRequest" type="roap:RegistrationRequest"/>

<complexType name="RegistrationRequest">

 <annotation>

 <documentation xml:lang="en">

 Message sent from Device to RI to request registration.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Request">

 <sequence>

 <element name="nonce" type="roap:Nonce"/>

 <element name="time" type="dateTime"/>

 <element name="certificateChain" type="roap:CertificateChain"

 minOccurs="0"/>

 <element name="trustedAuthorities" type="roap:KeyIdentifiers"

 minOccurs="0"/>

 <element name="serverInfo" type="base64Binary" minOccurs="0"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 <attribute name="sessionId" type="hexBinary" use="required"/>

 </extension>

 </complexContent>

</complexType>

<complexType name="CertificateChain">

 <sequence maxOccurs="unbounded">

 <element name="certificate" type="base64Binary"/>

 </sequence>

</complexType>

<!-- ROAP-RegistrationResponse -->

<element name="registrationResponse" type="roap:RegistrationResponse"/>

<complexType name="RegistrationResponse">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to a

 registrationRequest message.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="certificateChain" type="roap:CertificateChain"

 minOccurs="0"/>

 <element name="ocspResponse" type="base64Binary" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 <attribute name="sessionId" type="hexBinary" use="required"/>

 </extension>

 </complexContent>

</complexType>

<!-- RO acquisition protocol -->

<!-- ROAP-RORequest -->

<element name="roRequest" type="roap:RORequest"/>

<complexType name="RORequest">

 <annotation>

 <documentation xml:lang="en">

 Message sent from Device to RI to request an RO.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Request">

 <sequence>

 <element name="deviceID" type="roap:Identifier"/>

 <element name="domainID" type="roap:DomainIdentifier"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="nonce" type="roap:Nonce"/>

 <element name="time" type="dateTime"/>

 <element name="roInfo">

 <complexType>

 <sequence maxOccurs="unbounded">

 <element name ="roID" type="ID"/>

 <element name="dcfHash" type="base64Binary" minOccurs="0"/>

 </sequence>

 </complexType>

 </element>

 <element name="certificateChain" type="roap:CertificateChain"

 minOccurs="0"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

<!-- ROAP-ROResponse -->

<element name="roResponse" type="roap:ROResponse"/>

<complexType name="ROResponse">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to an RORequest.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="deviceID" type="roap:Identifier"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="nonce" type="roap:Nonce"/>

 <element name="protectedRO" type="roap:ProtectedRO" maxOccurs="unbounded"/>

 <element name="certificateChain" type="roap:CertificateChain"

 minOccurs="0"/>

 <element name="ocspResponse" type="base64Binary" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="extensions" type="roap:Extensions"

 minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

<!-- Domain registration protocol -->

<!-- ROAP-JoinDomainRequest -->

<element name="joinDomainRequest" type="roap:DomainRequest"/>

<complexType name="DomainRequest">

 <annotation>

 <documentation xml:lang="en">

 General PDU for sending domain-related requests from a Device to

 an RI.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Request">

 <sequence>

 <element name="deviceID" type="roap:Identifier"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="nonce" type="roap:Nonce"/>

 <element name="time" type="dateTime"/>

 <element name="domainID" type="roap:DomainIdentifier"/>

 <element name="certificateChain" type="roap:CertificateChain"

 minOccurs="0"/>

 <element name="extensions" type="roap:Extensions"

 minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 <attribute name="notMember" type="boolean"/>

 </extension>

 </complexContent>

</complexType>

<!-- ROAP-JoinDomainResponse -->

<element name="joinDomainResponse" type="roap:JoinDomainResponse"/>

<complexType name="JoinDomainResponse">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to a

 JoinDomainRequest.

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="deviceID" type="roap:Identifier"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="nonce" type="roap:Nonce"/>

 <element name="domainInfo" type="roap:DomainInfo"/>

 <element name="certificateChain" type="roap:CertificateChain"

 minOccurs="0"/>

 <element name="ocspResponse" type="base64Binary" minOccurs="0"

 maxOccurs="unbounded"/>

 <element name="extensions" type="roap:Extensions"

 minOccurs="0"/>

 <element name="signature" type="base64Binary"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

<complexType name="ProtectedDomainKey">

 <sequence maxOccurs="unbounded">

 <element name="encKey" type="xenc:EncryptedKeyType"/>

 <element name="riID" type="roap:Identifier"/>

 <element name="mac" type="base64Binary"/>

 </sequence>

</complexType>

<complexType name="DomainInfo">

 <sequence>

 <element name="notAfter" type="dateTime"/>

 <element name="domainKey" type="roap:ProtectedDomainKey"

 maxOccurs="unbounded"/>

 </sequence>

</complexType>

<!-- ROAP-LeaveDomainRequest -->

<element name="leaveDomainRequest" type="roap:DomainRequest"/>

<!-- ROAP-LeaveDomainResponse -->

<element name="leaveDomainResponse" type="roap:LeaveDomainResponse"/>

<complexType name="LeaveDomainResponse">

 <annotation>

 <documentation xml:lang="en">

 Message sent from RI to Device in response to a

 leaveDomainRequest

 </documentation>

 </annotation>

 <complexContent>

 <extension base="roap:Response">

 <sequence minOccurs="0">

 <element name="nonce" type="roap:Nonce"/>

 <element name="domainID" type="roap:DomainIdentifier"/>

 <element name="extensions" type="roap:Extensions" minOccurs="0"/>

 </sequence>

 </extension>

 </complexContent>

</complexType>

</schema>

Appendix B. ROAP protocol exchange examples

All examples are syntactically correct. Signature, MAC, cipher and digest values are fictitious however.

B.1 Registration Protocol

B.1.1 Device hello

<?xml version="1.0" encoding="UTF-8"?>

<roap:deviceHello

 xmlns:roap="urn:oma:bac:dldrm:roap-20040120"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:oma:bac:dldrm:roap-20040120 ../roap.xsd">

 <version>

 <major>1</major>

 <minor>0</minor>

 </version>

 <deviceID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>vXENc+Um/9/NvmYKiHDLaErK0gk=</hash>

 </keyIdentifier>

 </deviceID>

 <extensions>

 <extension xsi:type="roap:CertificateCaching"

 certCachingCapabilities="true"/>

 </extensions>

</roap:deviceHello>

B.1.2 RI Hello

<?xml version="1.0" encoding="UTF-8"?>

<roap:riHello

 xmlns:roap="urn:oma:bac:dldrm:roap-20040120"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:oma:bac:dldrm:roap-20040120 ../roap.xsd"

 status="Success" sessionId="433211">

 <selectedVersion>

 <major>2</major>

 <minor>0</minor>

 </selectedVersion>

 <riID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>aXENc+Um/9/NvmYKiHDLaErK0fk=</hash>

 </keyIdentifier>

 </riID>

 <riNonce>dsaiuiure9sdwerfqwer</riNonce>

 <trustedAuthorities>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>aXENc+Um/9/NvmYKiHDLaErK0fk=</hash>

 </keyIdentifier>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>3lkpoi9fceoiuoift45epokifc0poiss</hash>

 </keyIdentifier>

 </trustedAuthorities>

 <extensions>

 <extension xsi:type="roap:CertificateCaching"

 certCachingCapabilities="true"/>

 </extensions>

</roap:riHello>
B.1.3 Registration Request

<?xml version="1.0" encoding="UTF-8"?>

<roap:registrationRequest

 xmlns:roap="urn:oma:bac:dldrm:roap-20040120"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:oma:bac:dldrm:roap-20040120 ../roap.xsd"

 sessionId="433211">

 <nonce>32efd34de39sdwefqwer</nonce>

 <time>2003-12-18T16:20:00Z</time>

 <certificateChain>

 <certificate>miib123121234567</certificate>

 <certificate>miib234124312431</certificate>

 </certificateChain>

 <trustedAuthorities>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>432098mhj987fdlkj98lkj098lkjr409</hash>

 </keyIdentifier>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>432098ewew5jy6532fewfew4f43f3409</hash>

 </keyIdentifier>

 </trustedAuthorities>

<signature>321ue3ue3ue10ue2109ue1ueoidwoijdwe309u09ueqijdwqijdwq09uwqwqi009</signature>

</roap:registrationRequest>

B.1.4 Registration Response

<?xml version="1.0" encoding="UTF-8"?>

<roap:registrationResponse

 xmlns:roap="urn:oma:bac:dldrm:roap-20040120"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:oma:bac:dldrm:roap-20040120 ../roap.xsd"

 status="Success" sessionId="433211">

 <certificateChain>

 <certificate>miib123121234567</certificate>

 <certificate>miib234124312431</certificate>

 </certificateChain>

 <ocspResponse>fdow9rw0feijfdsojr3w09u3wijfdslkj4sd</ocspResponse>

 <signature>321ue3ue3ue10ue2109ue1ueoidwoijdwe309u09ueqijdwqijdwq09uwqwqi009</signature>

</roap:registrationResponse>

B.2 Rights Object Acquisition

B.2.1 RO Request

The request is for a device RO.

<?xml version="1.0" encoding="UTF-8"?>

<roap:roRequest

 xmlns:roap="urn:oma:bac:dldrm:roap-20040120"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:oma:bac:dldrm:roap-20040120 ../roap.xsd">

 <deviceID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>vXENc+Um/9/NvmYKiHDLaErK0gk=</hash>

 </keyIdentifier>

 </deviceID>

 <riID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>aXENc+Um/9/NvmYKiHDLaErK0fk=</hash>

 </keyIdentifier>

 </riID>

 <nonce>32efd34de39sdwefqwer</nonce>

 <time>2004-02-17T16:20:00Z</time>

 <roInfo>

 <roID>n8yu98hy0e2109eu09ewf09u</roID>

 </roInfo>

 <certificateChain>

 <certificate>miib123121234567</certificate>

 <certificate>miib234124312431</certificate>

 </certificateChain>

 <signature>321ue3ue3ue10ue2109ue1ueoidwoijdwe309u09ueqijdwqijdwq09uwqwqi009</signature>

</roap:roRequest>
B.2.2 RO Response

The response is a Rights Object intended for the recipient only. Note that the response indicates that the Rights Object is stateful. The REL element is only outlined (an empty <asset> element).

<?xml version="1.0" encoding="UTF-8"?>

<roap:roResponse

 xmlns:roap="urn:oma:bac:dldrm:roap-20040120"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

 xmlns:o-ex=http://odrl.net/1.1/ODRL-EX
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:oma:bac:dldrm:roap-20040120 ../roap.xsd

 http://www.w3.org/2000/09/xmldsig#

 http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/xmldsig-core-schema.xsd

 http://http://www.w3.org/2001/04/xmlenc#

 http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/xenc-schema.xsd

 http://odrl.net/1.1/ODRL-EX ../odrl/odrl.xsd"

 status="Success">

 <deviceID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>vXENc+Um/9/NvmYKiHDLaErK0gk=</hash>

 </keyIdentifier>

 </deviceID>

 <riID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>aXENc+Um/9/NvmYKiHDLaErK0fk=</hash>

 </keyIdentifier>

 </riID>

 <nonce>32efd34de39sdwefqwer</nonce>

 <protectedRO>

 <ro id="n8yu98hy0e2109eu09ewf09u" stateful="true">

 <version>

 <major>1</major>

 <minor>0</minor>

 </version>

 <riID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>aXENc+Um/9/NvmYKiHDLaErK0fk=</hash>

 </keyIdentifier>

 </riID>

 <rel o-ex:id="REL1">

 <o-ex:asset/>

 </rel>

 <encKey Id="K_REK_and_K_MAC">

 <xenc:EncryptionMethod

 Algorithm="http://www.rsasecurity.com/rsalabs/xml/pkcs-1#rsaes-kem-kdf2-kw-aes128"/>

 <ds:KeyInfo>

 <roap:X509SPKIHash>vXENc+Um/9/NvmYKiHDLaErK0gk=</roap:X509SPKIHash>

 </ds:KeyInfo>

 <xenc:CipherData>

 <xenc:CipherValue>231jks231dkdwkj3jk321kj321j321kj423j342h213j321jh321jh2134jhk3211fdslfdsopfespjoefwopjsfdpojvct4w925342a</xenc:CipherValue>

 </xenc:CipherData>

 </encKey>

 </ro>

 <mac>

 <ds:SignedInfo>

 <ds:CanonicalizationMethod

 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 <ds:SignatureMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#hmac-sha1"/>

 <ds:Reference URI=" #n8yu98hy0e2109eu09ewf09u">

 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <ds:DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</ds:SignatureValue>

 <ds:KeyInfo>

 <ds:RetrievalMethod URI="#K_REK_and_K_MAC"/>

 </ds:KeyInfo>

 </mac>

 </protectedRO>

 <ocspResponse>miibewqoidpoidsa</ocspResponse>

 <extensions>

 <extension xsi:type="roap:TransactionIdentifier">

 <id>09321093209-2121</id>

 </extension>

 </extensions>

 <signature>d93e5fue3susdskjhkjedkjrewh53209efoihfdse10ue2109ue1</signature>

</roap:roResponse>

B.2.3 Domain RO

The domain RO may be sent separately, as here, or within a ROAP-ROResponse.

<?xml version="1.0" encoding="UTF-8"?>

<roap:protectedRO

 xmlns:roap="urn:oma:bac:dldrm:roap-20040120"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

 xmlns:o-ex=http://odrl.net/1.1/ODRL-EX
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:oma:bac:dldrm:roap-20040120 ../roap.xsd

 http://www.w3.org/2000/09/xmldsig#

 http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/xmldsig-core-schema.xsd

 http://http://www.w3.org/2001/04/xmlenc#

 http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/xenc-schema.xsd
 http://odrl.net/1.1/ODRL-EX ../odrl/odrl.xsd">

 <ro id="n8yu98hy0e2109eu09ewf09u" domainRO="true">

 <version>

 <major>1</major>

 <minor>0</minor>

 </version>

 <riID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>aXENc+Um/9/NvmYKiHDLaErK0fk=</hash>

 </keyIdentifier>

 </riID>

 <rel o-ex:id="REL1">

 <o-ex:asset/>

 </rel>

 <signature>

 <ds:SignedInfo>

 <ds:CanonicalizationMethod

 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 <ds:SignatureMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-pss-default"/>

 <ds:Reference URI="#REL1">

 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <ds:DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</ds:SignatureValue>

 <ds:KeyInfo>

 <roap:X509SPKIHash>aXENc+Um/9/NvmYKiHDLaErK0fk=</roap:X509SPKIHash>

 </ds:KeyInfo>

 </signature>

 <encKey Id="K_REK_and_K_MAC">

 <xenc:EncryptionMethod

 Algorithm="http://www.w3.org/2001/04/xmlenc#kw-aes128"/>

 <ds:KeyInfo>

 <roap:DomainIdentifier>Domain-XYZ-01</roap:DomainIdentifier>

 </ds:KeyInfo>

 <xenc:CipherData>

 <xenc:CipherValue>32fdsorew9ufdsoi09ufdskrew9urew0uderty5346wq</xenc:CipherValue>

 </xenc:CipherData>

 </encKey>

 </ro>

 <mac>

 <ds:SignedInfo>
 <ds:CanonicalizationMethod

 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 <ds:SignatureMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#hmac-sha1"/>

 <ds:Reference URI="#n8yu98hy0e2109eu09ewf09u">

 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <ds:DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</ds:SignatureValue>

 <ds:KeyInfo>

 <ds:RetrievalMethod URI="#K_REK_and_K_MAC"/>

 </ds:KeyInfo>

 </mac>

</roap:protectedRO>
B.3 Domain Join Protocol

B.3.1 Join Domain Request

<?xml version="1.0" encoding="UTF-8"?>

<roap:joinDomainRequest

 xmlns:roap="urn:oma:bac:dldrm:roap-20040120"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:oma:bac:dldrm:roap-20040120 ../roap.xsd">

 <deviceID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>vXENc+Um/9/NvmYKiHDLaErK0gk=</hash>

 </keyIdentifier>

 </deviceID>

 <riID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>aXENc+Um/9/NvmYKiHDLaErK0fk=</hash>

 </keyIdentifier>

 </riID>

 <nonce>32efd34de39sdwefqwer</nonce>

 <time>2004-02-18T16:20:00Z</time>

 <domainID>Domain-XYZ-01</domainID>

 <certificateChain>

 <certificate>miib123121234567</certificate>

 <certificate>miib234124312431</certificate>

 </certificateChain>

 <signature>321ue3ue3ue10ue2109ue1ueoidwoijdwe309u09ueqijdwqijdwq09uwqwqi009</signature>

</roap:joinDomainRequest>

B.3.2 Join Domain Response

<?xml version="1.0" encoding="UTF-8"?>

<roap:joinDomainResponse

 xmlns:roap="urn:oma:bac:dldrm:roap-20040120"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:oma:bac:dldrm:roap-20040120 ../roap.xsd

 http://www.w3.org/2000/09/xmldsig#

 http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/xmldsig-core-schema.xsd

 http://http://www.w3.org/2001/04/xmlenc#

 http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/xenc-schema.xsd"

 status="Success">

 <deviceID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>vXENc+Um/9/NvmYKiHDLaErK0gk=</hash>

 </keyIdentifier>

 </deviceID>

 <riID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>aXENc+Um/9/NvmYKiHDLaErK0fk=</hash>

 </keyIdentifier>

 </riID>

 <nonce>32efd34de39sdwefqwer</nonce>

 <domainInfo>

 <notAfter>2004-12-22T03:02:00Z</notAfter>

 <domainKey>

 <encKey Id="Domain-XYZ-01">

 <xenc:EncryptionMethod

 Algorithm="http://www.rsasecurity.com/rsalabs/xml/pkcs-1#rsaes-kem-kdf2-kw-aes128"/>

 <ds:KeyInfo>

 <roap:X509SPKIHash>vXENc+Um/9/NvmYKiHDLaErK0gk=</roap:X509SPKIHash>

 </ds:KeyInfo>

 <xenc:CipherData>

 <xenc:CipherValue>231jks231dkdwkj3jk321kj321j321kj423j342h213j321jh321jh2134jhk3211fdslfdsopfespjoefwopjsfdpojvct4w925342a</xenc:CipherValue>

 </xenc:CipherData>

 </encKey>

 <riID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>aXENc+Um/9/NvmYKiHDLaErK0fk=</hash>

 </keyIdentifier>

 </riID>

 <mac>ewqrewoewfewohffohr3209832r3</mac>

 </domainKey>

 </domainInfo>

 <certificateChain>

 <certificate>MIIB223121234567</certificate>

 <certificate>MIIB834124312431</certificate>

 </certificateChain>

 <ocspResponse>miibewqoidpoidsa</ocspResponse>

 <signature>d93e5fue3ue10ue2109ue1ueoidwoijdwe309u09ueqijdwqijdwq09uwqwqi009</signature>

</roap:joinDomainResponse>

B.4 Leave Domain Protocol

B.4.1 Leave Domain Request

<?xml version="1.0" encoding="UTF-8"?>

<roap:leaveDomainRequest

 xmlns:roap="urn:oma:bac:dldrm:roap-20040120"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:oma:bac:dldrm:roap-20040120 ../roap.xsd">

 <deviceID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>vXENc+Um/9/NvmYKiHDLaErK0gk=</hash>

 </keyIdentifier>

 </deviceID>

 <riID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>aXENc+Um/9/NvmYKiHDLaErK0fk=</hash>

 </keyIdentifier>

 </riID>

 <nonce>32efd34de39sdwefqwer</nonce>

 <time>2004-02-18T16:20:00Z</time>

 <domainID>Domain-XYZ-01</domainID>

 <certificateChain>

 <certificate>miib123121234567</certificate>

 <certificate>miib234124312431</certificate>

 </certificateChain>

<signature>321ue3ue3ue10ue2109ue1ueoidwoijdwe309u09ueqijdwqijdwq09uwqwqi009</signature>

</roap:leaveDomainRequest>

B.4.2 Leave Domain Response

<?xml version="1.0" encoding="UTF-8"?>

<roap:leaveDomainResponse

 xmlns:roap="urn:oma:bac:dldrm:roap-20040120"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:oma:bac:dldrm:roap-20040120 ../roap.xsd"

 status="Success">

 <nonce>32efd34de39sdwefqwer</nonce>

 <domainID>Domain-XYZ-01</domainID>

</roap:leaveDomainResponse>

B.5 Roap Trigger

This example is for a "Leave Domain" trigger.

<?xml version="1.0" encoding="UTF-8"?>

<roap-trigger:roapTrigger

 xmlns:roap-trigger="urn:oma:bac:dldrm:roap-trigger-20040120"

 xmlns:roap="urn:oma:bac:dldrm:roap-20040120"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 urn:oma:bac:dldrm:roap-trigger-20040120 ../roap-trigger.xsd

 urn:oma:bac:dldrm:roap-20040120 roap.xsd

 http://www.w3.org/2000/09/xmldsig#

 http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/xmldsig-core-schema.xsd

 http://http://www.w3.org/2001/04/xmlenc#

 http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/xenc-schema.xsd">

 <domainLeave id="de32r23r4">

 <riID>

 <keyIdentifier xsi:type="roap:X509SPKIHash">

 <hash>aXENc+Um/9/NvmYKiHDLaErK0fk=</hash>

 </keyIdentifier>

 </riID>

 <roapURL>http://ri.example.com/ro.cgi?tid=qw683hgew7d</roapURL>

 <domainID>Domain-XYZ-01</domainID>

 </domainLeave>

 <mac>

 <ds:SignedInfo>

 <ds:CanonicalizationMethod

 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 <ds:SignatureMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#hmac-sha1"/>

 <ds:Reference URI="#de32r23r4">

 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <ds:DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</ds:SignatureValue>

 <ds:KeyInfo>

 <ds:RetrievalMethod URI="#K_MAC"/>

 </ds:KeyInfo>

 </mac>

 <encKey Id="K_MAC">

 <xenc:EncryptionMethod

 Algorithm="http://www.w3.org/2001/04/xmlenc#kw-aes128"/>

 <ds:KeyInfo>

 <roap:DomainIdentifier>Domain-XYZ-01</roap:DomainIdentifier>

 </ds:KeyInfo>

 <xenc:CipherData>

 <xenc:CipherValue>32fdsorew9ufdsoi09ufdskrew9urew0uderty5346wq</xenc:CipherValue>

 </xenc:CipherData>

 </encKey>

</roap-trigger:roapTrigger>

Appendix C. Backward Compatibility with Release 1.0 (Normative)

Devices that support OMA DRM v2 MUST support the mandatory features of OMA DRM V1 [DRM]. To ensure consistent, interoperable behaviour, OMA DRM v2 Devices MUST behave in the following manner when receiving OMA DRM v1 Content.

	DRM v2 Client receives the following DRM v1 content type
	DRM v1 method not supported
	DRM v1 method is supported

	Forward Lock content
	n/a (DRM v1 Forward Lock is mandatory)
	Handle content as defined in [DRM]

	Combined Delivery content
	Handle content as defined in [DRM]
	Handle content as defined in [DRM]

	Separate Delivery Content
	MAY notify the user

Ed Note: Consider whether device can request v2 RO in this case.
	Handle content as defined in [DRM]; Upon contacting the CI/RI the device MUST advertise DRM version and supported media types as defined in section 9.1.

Table 12: Backward Compatibility with Release 1.0

Appendix D. Exporting to other DRMs (Informative)

D.1 High-level Example : Exporting to Removable Media

[image: image12.wmf]

Raw

Content

DRM Agent

Dpriv

Dpub

Dcert

Storing

Protected

Content

Rights

Object

Usage

Rules

Protected

Content

Removable

Media

Encrypting RO

Encrypting

content

Usage

Rules

O

ther DRM

Agent

(Non

-

OMA DRM)

Transcri

bing

 RO

Checking export

permission

Decrypting RO

Decrypting

content

Usage

Rules

Rights

Object

Usage

Rules

Usage

Rules

O

ther DRM

Secret

Figure 14:. Export
An example of export DRM protected content and rights object to other DRM (non-OMA DRM) system, which has some authorized protection mechanism, is shown above.
1. After Protected Content and protected Rights Object are delivered to a trusted OMA DRM Agent, the Protected Content is consumed by the OMA DRM Agent according to permissions and constraints described in the protected Rights Object. When consuming the content, OMA DRM Agent decrypts the protected RO with DRM Agent private key and decrypts the protected content with CEK that is derived from decrypted rights object.

2. When exporting, OMA DRM Agent checks permissions described in the rights object whether rights issuer allows the content to be exported to targeted DRM system, whether its content type is appropriate and whether its usage rules are compatible with targeted DRM system.

When user wants to download exportable content and rights issuer notices it in the course of content discovery interaction, it would be expected that both of the Protected Content and RO are suitable for the targeted DRM capability.

3. The raw content and usage rules are transferred from OMA DRM Agent to the other DRM Agent.

4. The other DRM Agent transcribes the compatible usage rules to the other DRM usage rules according to the general rule and the specific rule defined by the other DRM system and Rights Issuer to maintain consistency of the Rights Object.

Sample transcription rules are:
 Any other permissions MUST NOT be granted.
 Any existing constraints MUST NOT be ignored.
 Default permissions and constraints MAY be supplied.

Even stateful Rights Object could be transcribed and exported to other DRM system if those rules allow it.

5. The other DRM Agent creates new CEK inside, and encrypts the content with the new CEK and encrypts transcribed usage rules including the CEK with other DRM system’s secret key.

6. The other DRM Agent and the removable media authenticate with each other to make sure that they are trusted, and stores the encrypted content and the usage rules onto a removable media according to the other DRM specific format.

7. Then user can pull out the removable media from the device, insert it to other DRM compliant device such as portable music player, to enjoy playing the content.

The two DRM Agents, OMA DRM Agent and the other DRM Agent, may reside in a single device or different devices, but these two agents and data channel between the two have to be implemented in a secure manner according to some compliance rules or robustness rules which may be defined related to a specific service, by Rights Issuers, Service Providers, and Device Manufacturers who participate in the service.

Appendix E. Application to Services (Normative)

E.1 Application to streaming services

The main scope of OMA DRM is protection of downloadable objects, which can by their nature be embedded into DCFs and be delivered under DRM control. This is not immediately possible with streaming media, since streaming media are transported using protocols and mechanisms that do not allow embedding into download DCFs, and also since streams are not per se limited in time and size. Thus, the protected transport of streams and some associated signaling has to be defined separately for streaming media. On the other hand, OMA DRM ROs can be used for streaming services for the definition and transport of rights/permissions, and of content decryption keys.

Thus, the basic concept for the application of OMA DRM to streaming services is that OMA DRM ROs, and the ROAP, are used in the same way as for downloadable objects/DCFs. This is specified in this standard. The exact way of protecting streams, storing streams at a streaming server, and transporting streams to a device (including associated signaling) are not specified in this specification. It is the responsibility of streaming standardization bodies to define appropriate mechanisms that work seamlessly together with the concept laid out in the DRM specification, especially with the RO concept and format. Figure 16 explains the principle.

[image: image13.emf]rights

issuer

rights

issuer

streaming

content

server

streaming

content

server

protected streams

(transport format and

protection mechanisms

specified by streaming

standardization body;

compatible with OMA

RO specification)

rights object (RO)

(RO format defined

in OMA DRM specification)

rights

issuer

rights

issuer

streaming

content

server

streaming

content

server

protected streams

(transport format and

protection mechanisms

specified by streaming

standardization body;

compatible with OMA

RO specification)

rights object (RO)

(RO format defined

in OMA DRM specification)

Figure 15: Generic principle of application of OMA DRM to streaming services
E.1.1 Application to the 3GPP Packet-Switched Streaming Service

Editorial note: this section needs to be updated in accordance with the development of the PSS specs for Rel6.
For the special case of the 3GPP Packet-Switched Streaming Service (PSS) Release 6, i.e., the 3GPP streaming standard [3GPP PSS], OMA and 3GPP have been working together to define DRM protection of PSS media. The basic principle is the one shown in Figure 15, but there are some extensions that consider special features and properties of the PSS standard, namely

· PSS sessions can consist of a mixture of discrete (e.g., JPEG images) and continuous (e.g., H.263 video) media

· There are 3 different methods to initiate a PSS session using different streaming tokens: either a SMIL presentation description, or an SDP session description, or an RTSP URL. A streaming token can get to a device as a download from a server, or by super-distribution from other devices, or by other means like user input of an RTSP URL via the keyboard.

· Time-continuous protected media like audio and video tracks that are stored on a PSS server in the 3GP file format defined by 3GPP can either be downloaded by (progressive) download of the whole 3GP file, or streamed by extraction of protected media tracks from the 3GP file format and transport using real-time transport protocols. OMA has adopted the 3GP file format for protected packetized content as a special DCF, the Packetized DCF (PDCF) [DRMDCF-v2]. It should thus be understood that a 3GP file holding encrypted tracks as defined in [3GPP PSS spec] is automatically a valid OMA DRM PDCF [DRMDCF-v2].

Figure 16 gives an overview of the involved entities and data flows for DRM protection of 3GPP PSS sessions and media.

[image: image14.emf]rights

issuer

rights

issuer

3GPP PSS

streaming

content

server

3GPP PSS

streaming

content

server

(2) one or

several RO(s)

[OMA DRM]

download

content

server

download

content

server

content portal/

storefront

content portal/

storefront

backend connection (out of scope for this specification)

(1a) streaming

token

[3GPP PSS]

(3) discrete media

objects embedded

in DCFs

[OMA DRM]

(4a) download of PDCF

[3GPP PSS][OMA DRM]

or

(4b) real-time streaming

of protected

media streams

[3GPP PSS]

(1b) streaming

token

[3GPP PSS]

or

super-distribution

from other device

rights

issuer

rights

issuer

3GPP PSS

streaming

content

server

3GPP PSS

streaming

content

server

(2) one or

several RO(s)

[OMA DRM]

download

content

server

download

content

server

content portal/

storefront

content portal/

storefront

backend connection (out of scope for this specification)

(1a) streaming

token

[3GPP PSS]

(3) discrete media

objects embedded

in DCFs

[OMA DRM]

(4a) download of PDCF

[3GPP PSS][OMA DRM]

or

(4b) real-time streaming

of protected

media streams

[3GPP PSS]

(1b) streaming

token

[3GPP PSS]

or

super-distribution

from other device

Figure 16: Application of OMA DRM to the 3GPP Packet-Switched Streaming Service (Release 6). References in brackets indicate where the respective data format or protocol is specified

For a protected PSS presentation, the content provider can confidentiality protect and integrity protect discrete media (images etc.) by embedding them into OMA DCFs. Further, he can confidentiality protect and integrity protect continuous media using the mechanisms defined by 3GPP [reference here, with section number], and storing them in a file in the 3GP file format [reference here], i.e., in a PDCF. The DCFs are stored on a content download server, the protected 3GP files = PDCFs on a 3GPP PSS server. Note that the PDCF can later be used for download or streaming of the included tracks/streams ((4a) or (4b) in.Figure 16).

All information needed to generate ROs for the DCFs and PDCFs must be conveyed to the rights issuer; how this is done is outside the scope of this specification. This information includes the used content encryption keys for the discrete and continuous media, and usage rights/permissions.

The required steps to initiate, set up, receive, and render a protected 3GPP PSS session are then the following:

(A) A streaming session is initiated via a streaming token, i.e. a SMIL presentation, SDP file, or RTSP URL [3GPP PSS]. The streaming token can arrive to the device by download from a server/content portal/content storefront (see (1a) in Figure 16), or by super-distribution (see (1b) in Figure 16), by messaging (MMS), or by other means (e.g. an RTSP URL can be manually entered by the user). The streaming token can optionally be embedded into a DCF.

(B) If the streaming token has been acquired directly from a server or portal, the server can initiate the delivery of one or several ROs to the device that contain the keys and rights for the media referenced by the token (see (2) in Figure 16). In all other cases, the ROs for protected streams are requested during session setup to the streaming server, and the ROs for protected discrete objects after download of the respective DCFs, see (D)

(C) When the user decides to start the PSS streaming session, she or he executes/launches the streaming token which is delivered to the streaming player. The streaming player evaluates the streaming token.

(D) Depending on the type of streaming token, the following applies:

a. SMIL presentation: Referenced discrete objects are downloaded from the respective download servers (see (3) and (4a) in Figure 16.). If ROs are not on the device yet they can be acquired at this point, using the RI URL in the DCFs . Referenced streams are set up and started using PSS streaming protocols [3GPP PSS] (see (4b) in Figure 16.). If ROs are not on the device yet they can be acquired at this point, using the RI URL. Note: SMIL allows to download objects / start streams during a presentation. In this case it may be an implementation optimization to fetch all ROs before starting the presentation.

b. RTSP URL: Referenced streams are set up and started using PSS streaming protocols [3GPP PSS] (see (4b) in Figure 16). If ROs are not on the device yet they can be acquired at this point, using the RI URL.

c. SDP: Referenced streams are set up and started using PSS streaming protocols [3GPP PSS] (see (4b) in Figure 16). If ROs are not on the device yet they can be acquired at this point, using the RI URL.

(E) Discrete objects (DCFs), downloaded PSS content (PDCFs), and PSS streams are decrypted and rendered subject to the terms and permissions of the respective ROs.

(F) The streaming token can be super-distributed to another device. To be able to receive and render the referenced PSS media content, the receiving device must acquire the respective RO(s).

E.1.2 DCF Packaging of Streaming Session Descriptors (Informative)

The section describes an optional variation of the basic architecture and method for protection of streams using OMA DRM. In this variation, the streaming token / streaming session description is itself packaged into a DCF. This is illustrated in Figure XXZ.

[image: image15.emf]rights

issuer

rights

issuer

3GPP PSS

streaming

content

server

3GPP PSS

streaming

content

server

(2) one or

several RO(s)

[OMA DRM]

download

content

server

download

content

server

content portal/

storefront

content portal/

storefront

backend connection (out of scope for this specification)

(1a) streaming token

embedded in DCF

[3GPP PSS][OMA DRM]

(3) discrete media

objects embedded

in DCFs

[OMA DRM]

(4a) download of PDCF

[3GPP PSS][OMA DRM]

or

(4b) real-time streaming

of protected

media streams

[3GPP PSS]

(1b) streaming token

embedded in DCF

[3GPP PSS][OMA DRM]

or

super-distribution

from other device

rights

issuer

rights

issuer

3GPP PSS

streaming

content

server

3GPP PSS

streaming

content

server

(2) one or

several RO(s)

[OMA DRM]

download

content

server

download

content

server

content portal/

storefront

content portal/

storefront

backend connection (out of scope for this specification)

(1a) streaming token

embedded in DCF

[3GPP PSS][OMA DRM]

(3) discrete media

objects embedded

in DCFs

[OMA DRM]

(4a) download of PDCF

[3GPP PSS][OMA DRM]

or

(4b) real-time streaming

of protected

media streams

[3GPP PSS]

(1b) streaming token

embedded in DCF

[3GPP PSS][OMA DRM]

or

super-distribution

from other device

Figure 17: Application of OMA DRM to the 3GPP Packet-Switched Streaming Service (Release 6) with streaming token packaged into DCF. Underlined text denotes differences to Figure 16.

With this method, the typical steps to initiate, set up, receive, and render a protected 3GPP PSS session are similar as described in section E.1.1, with a few differences. The differences are outlined below.

(A) Unchanged, see section E.1.1.

(B) If the streaming token has been acquired directly from a server or portal, the server can initiate the delivery of one or several ROs to the device that contain the keys and rights for the media referenced by the token (see (2) in Figure 17). Otherwise, the device can use the RI URL in the streaming token DCF to request rights objects. If the RO or ROs delivered in response to this request contain the keys and rights for all media elements and streams being part of the PSS session associated with the token, no further RO requests are necessary.

(C) Unchanged, see section E.1.1.

(D) Depending on the type of streaming token, the following applies:

a. SMIL presentation: Referenced discrete objects are downloaded from the respective download servers (see (3) and (4a) in Figure 17). Referenced streams are set up and started using PSS streaming protocols [3GPP PSS] (see (4b) in Figure 17).

b. RTSP URL: Referenced streams are set up and started using PSS streaming protocols [3GPP PSS] (see (4b) in Figure 17). Please note that an RTSP URL per se cannot be packaged into a DCF, because there is no MIME type for RTSP URLs. However, a workaround is to package the RTSP URL into a helper file (e.g. a minimal SMIL file), and package the helper file into a DCF.

c. SDP: Referenced streams are set up and started using PSS streaming protocols [3GPP PSS] (see (4b) in Figure 17).

(E) Unchanged, see section E.1.1.

(F) Unchanged, see section E.1.1.

A difference using the optional method is the point in time when ROs are requested/acquired: it is always (including the super-distribution case) possible to request rights when the DCF containing the streaming token is available on the device, and before streaming of content is initiated. If the RO (or ROs) delivered in response contain rights and keys for all media objects and streams used in the respective PSS presentation, no further RO requests are necessary.

Also, the RI can associate permissions or constraints with the streaming token, in addition to constraints on the referenced media objects or streams. For example, for datetime based restrictions on streams, the same restriction could be imposed on the token. If the user tries to use the streaming token after expiry, this is then recognized when the token is executed, and before any communication with the streaming server is set up.

All DCF-associated functionality is applicable to a streaming token packaged into a DCF (e.g., integrity protection of DCF, preview rights URL, etc.).

The described optional method of packaging streaming tokens into DCFs has no implications on the security or protection of the referenced media objects and streams.

Appendix F. Certificate Profiles and Requirements (Normative)

F.1 DRM Agent Certificates

The profile for DRM Agent certificates follows the profile for "User Certificates for Authentication" in [WAPCertProf] with the following modifications:

	Version
	3

	Signature
	RSA with SHA-1

	Serial Number
	Should be less than, or equal to, 20 bytes in length

	Issuer Name
	Must be present and must use a subset of the following naming attributes from [WAPCertProf] – countryName, organizationName, organizationalUnitName, commonName, and stateOrProvinceName.

	Subject Name
	Must be present and must use a subset of the following naming attributes from [WAPCertProf] – countryName, organizationName, organizationalUnitName, commonName, and serialNumber.

The structure and contents of a Device subject name shall be as follows:

countryName=<Country of manufacturer>

organizationName=<Manufacturer company name>

[organizationalUnitName=<Manufacturing location>]

commonName=<Model name>

serialNumber=<Unique identifier for device, given manufacturer's name and model name. Does not have to be the same as the IMEI>

The countryName, organizationName, commonName, and serialNumber naming attributes must be present. The organizationalUnit name may be present. Other attributes are not allowed and must not be included. For all naming attributes of type DirectoryString, the PrintableString or the UTF8String choice must be used.

Note that the maximum length (in octets) for values of these attributes is as follows: countryName – 4 (country code in accordance with ISO/IEC 3166), organizationName, organizationalUnitName, commonName, and serialNumber – 64.
Example:

C="US";O="DRM Devices 'R Us"; CN="DRM Device Mark V"; SN="1234567890"

	Extensions
	The extKeyUsage extension shall be present, and contain (at least) the oma-kp-drmAgent key purpose object identifier:

oma-kp-drmAgent OBJECT IDENTIFIER ::= {oma-kp 2}

oma-kp OBJECT IDENTIFIER
::= {??}

CAs are recommended to set this extension to critical.

· If CAs include the keyUsage extension (recommended), then both the digitalSignature bit and the keyEncipherment bit must be set, if the corresponding private key is to be used both for authentication and decryption. Otherwise only the applicable bit shall be set. When present, this extension shall be set to critical.

CAs may include the certificatePolicy extension, indicating the policy the certificate has been issued under, and possibly containing a URI identifying a source of more information about the policy.

CAs are recommended to not include any other extensions, but may, for compliance with [RFC3280], include the authorityKeyIdentifier extension. CAs may also include the authorityInfoAccess extension from [RFC3280] for OCSP responder navigation purposes.

CAs must not include any other critical extensions.

RI implementations MUST meet all requirements on entities processing user certificates defined in [WAPCertProf]. In addition, RIs:

· MUST be able to process DRM Agent certificates with serial numbers 20 bytes long; and

· MUST recognize and require the presence of the oma-kp-drmAgent object identifier defined above in the extKeyUsage extension in DRM Agent certificates.

F.2 Rights Issuer Certificates

The profile for RI certificates follows the profile for "X.509-compliant server certificate" in [WAPCertProf] with the following modifications:

	Signature
	Must be RSA with SHA-1

	Serial Number
	Should be less than, or equal to, 20 bytes in length

	Issuer Name
	As specified above for DRM Agent Certificates

	Subject Name
	Must be present and must use a subset of the following naming attributes from [WAPCertProf] – countryName, stateOrProvinceName, localityName, organizationName, organizationalUnitName, and commonName.

The structure and contents of a Rights Issuer subject name shall be as follows:

countryName=<Country of operation>

[stateOrProvinceName=<State/Province>]

[localityName=<City>]

organizationName=<RI company name>

[organizationalUnitName=<RI subsidiary/location>]

commonName=<RI company name> "OMA Rights Issuer" [<serNo>]

(For the commonName attribute, the <serNo> string is specified when a given organization has several RIs.)

The countryName, organizationName, and commonName naming attributes must be present. The stateOrProvinceName, localityName, and/or organizationalUnitName naming attributes may be present. Other attributes are not allowed and must not be included. For all naming attributes of type DirectoryString, the PrintableString or the UTF8String choice must be used.

Note that the maximum length (in octets) for values of these attributes is as follows: countryName – 4, stateOrProvinceName and localityName – 128, organizationName, organizationalUnitName, and commonName – 64.
Example:

C="US";O="ROs for everyone"; CN="ROs for everyone OMA Rights Issuer"

	Extensions
	The extKeyUsage extension shall be present, and contain (at least) the oma-kp-rightsIssuer key purpose object identifier:

oma-kp-rightsIssuer OBJECT IDENTIFIER ::= {oma-kp 1}

CAs are recommended to set this extension to critical.

If the keyUsage extension is present (recommended), then the digitalSignature bit shall be set. When present, this extension shall be set to critical.
CAs may include the certificatePolicy extension, indicating the policy the certificate has been issued under, and possibly containing a URI identifying a source of more information about the policy.

CAs are recommended to not include any other extensions, but may, for compliance with RFC3280, include the authorityKeyIdentifier extension. CAs may also include the authorityInfoAccess extension from [RFC3280] for OCSP responder navigation purposes.
CAs must not include any other critical extensions.

DRM Agents processing Rights Issuer certificates MUST meet the requirements on clients processing "X.509-compliant server certificates" defined in [WAPCertProf]. In addition, DRM Agents:

· MUST be able to process RI certificates up to 1500 bytes long;

· MUST be able to process RI certificates with serial numbers 20 bytes long; and

· MUST recognize and require the presence of the oma-kp-rightsIssuer object identifier defined above in the extKeyUsage extension in RI certificates.

F.3 CA Certificates

The profile for OMA DRM CA certificates follows the profile for "Authority Certificates" in [WAPCertProf] with the following modifications:

	Signature
	Must be RSA with SHA-1

	Serial Number
	Should be less than, or equal to, 20 bytes in length

RIs and DRM Agents MUST meet the requirements on relying parties defined in [WAPCertProf]. Note that this implies, among other things, a requirement on RIs and DRM Agents to also recognize the basicConstraints and the subjectKeyIdentifier extensions. In addition, DRM Agents:

· MUST be able to process authority certificates up to 1500 bytes long; and

· MUST be able to process authority certificates with serial numbers 20 bytes long.
F.4 OCSP Responder Certificates

The profile for OCSP responder certificates in [OCSP-MP] applies. RIs and DRM Agents MUST meet the requirements on "Authority Certificate" relying parties defined in [WAPCertProf]. In addition, RIs and DRM Agents:

· MUST be able to process OCSP responder certificates up to 1500 bytes long;
· MUST be able to process OCSP responder certificates with serial numbers 20 bytes long; and

· MUST recognize the extKeyUsage extension and its id-kp-OCSPSigning object identifier (i.e. support OCSP responder delegation).

F.5 User Certificates for Authentication

The profile specified in [WAPCertProf] MUST be used. Note that this implies a requirement on DRM Agents to also recognize the keyUsage, extKeyUsage, certificatePolicies, subjectAltName, and basicConstraints extensions.
Appendix G. Interactions between the DRM Agent and the WIM
(Informative)

G.1 WIM operations in exercising “permission” to bind Rights Objects to the user identity

This chapter describes messages sent between the DRM Agent and the WIM that come up to exercise permission to bind RO to the user identity procedure. The message flow between the DRM Agent and the WIM is described at a functional level, using service primitives.

The preliminary exchanges based on device control and verification related primitives c.f., [WIM] are intentionally omitted from this flowchart but MAY be required.

The DRM Agent must set the WIM_GENERIC_RSA Security Environment to perform the signature operations.

[image: image18.wmf]Browser

DL-Agent

DRM-Agent

HTTP Stack

Handler &

Dispatcher

Presentation

Server

selection of content item and offer , get URL

HTTP Get content URL

HTTP Response (DD with ROAP Trigger)

DD with ROAP Trigger

RO Request

RO Response (RO)

Ok

post intall-notification

HTTP post install-notification URI

HTTP Response

get next URL

HTTP get Next URL

HTTP Response (WEB/WAP page)

WEB/WAP page

Rights

Issuer

Content

Issuer

ROAP Trigger (e.g. roap://rightIssuer.com/roap?CO=ae123fg456?RO=ty456uo89)

RO installed

cert

cert

HTTP Response (DD)

DD

get ObjetURI

HTTP Get object URI

HTTP Response (CO)

CO

CO installed

post intall-notification

HTTP post install-notification URI

HTTP Response

get next URL

HTTP get Next URL (pointing to DD)

[image: image19.wmf]Browser

DL-Agent

DRM-Agent

HTTP Stack

Handler &

Dispatcher

Presentation

Server

selection of content item and rights , get URL

HTTP Get content URL

HTTP Response (DD)

DD

RO Request

RO Response (CO + RO)

Ok

post intall-notification

HTTP post install-notification URI

HTTP Response

get next URL

HTTP GET Next URL

HTTP Response (WEB/WAP page)

WEB/WAP page

Rights

Issuer

Content

Issuer

Get CO

CO

notify

ROAP Trigger (e.g. roap://rightIssuer.com/roap?CO=ae123fg456?RO=ty456uo89)

CO and RO

installed

cert

cert

Figure 18: DRM UA and WIM Interaction

Read configuration

Before starting the procedure, the DRM Agent needs to know which algorithms the WIM supports and information on keys and certificates stored in the WIM.

To read the configuration the DRM Agent uses data access primitives: WIM-OpenFile, WIM-ReadBinary etc.

Read user certificate

The DRM Agent may read the user certificate stored in the WIM and identified by PKCS_iD.

To read the user certificate the DRM Agent uses data access primitives: WIM-OpenFile, WIM-ReadBinary etc.

Sign random

The WIM has to sign the challenge number sent by the DRM Agent and return the signature. The DRM Agent may successfully verify the signature prior to exercise the permission.

To get the signature the DRM Agent uses the WIM-ComputeDigitalSignature primitive. The primitive returns the signature.

G.2 PIN management

Said user private key is protected by a PIN-G (Global PIN), thus the procedure may require PIN-G verification i.e., the DRM UA may have to send the WIM-Perform-Verification primitive one time per WIM session. Once PIN-G right is granted, the procedure does not require PIN-G verification anymore for the current WIM session.

1. Note: in case the WIM application is present on a UICC smart card platform [UICC] together with a USIM [3GPP TS 31.102] application, the WIM PIN-G can be mapped on the USIM PIN.

Appendix H. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [CREQ].

H.1 Device Requirements
	Item
	Function
	Reference
	Status
	Requirement

	DRM-DRM-
	
	
	M
	

	DRM-DRM-
	
	
	O
	

H.2 Rights Issuer Requirements

	Item
	Function
	Reference
	Status
	Requirement

	DRM-DRM-
	
	
	M
	

	DRM-DRM-
	
	
	O
	

Appendix I. Change History
(Informative)

I.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

I.2 Document History

This section is available in pre-approved versions – it should be removed in the actual approved versions. DELETE THIS COMMENT

	Document Reference
	Description

	OMA-DRM-DRM-V2_0-20040228-D
	Current

	OMA-DRM-DRM-V2_0-20040127-D
	Version discussed in Beverly Hills meeting

	OMA-DRM-DRM-V2_0-20040108-D
	version distributed to the reflector with changes to most of the chapters and a major update to the ROAP section.

	OMA-DRM-DRM-V2_0-20031121-D
	post-London OMA version

	OMA-DRM-DRM-V2_0-20030902-D
	version submitted to Berlin TP

	OMA-DRM-DRM-V2_0-20030810-D
	Version submitted to both DLDRM and Security WGs for review before Berlin.

	OMA-DRM-DRM-V2_0-20030715-D
	Version submitted for discussion in Paris.

� EMBED Unknown ���

� EMBED Word.Picture.8 ���

WIM

DRM UA

Read Configuration

Read User Certificate

Sign Random

� Example: If counter = 946, D will be 00 00 03 b2

� Comment. But the DCF ought to be marked in some way in case the DRM Agent comes across the DCF at some point in the future and attempts to act on the silent/preview flag again.

�This seems somewhat confusing to call it "negotiation". It is essentially capability advertisement or capability expression. Should we change this?

�As discussed in Beverly Hills, these two attributes should be removed? The normative mapping between OMA REL and the target system will be done elsewhere, and, as a result, the RI is not relying on this information for decision-making on the Export permission.

�Needs to be revised based on the discussion in BH around Panasonic Input.

�Does this require user consent? Can this be done immediately?

�PAGE \# "'Page: '#'�'" ��Need MIME type for this one.

�This should be changed to the ROAP version number as per earlier discussions.

�could be understood as contradictory to say MUST and then add the clause 'if possible'.

�Requiring that all DRM Agents MUST support various HTTP mechanisms may adversely impact unconnected devices that don’t do HTTP, such as Music Players?

�Reconcile this section with the REL spec so that the text is consistent.

�Which portions are encrypted needs to be defined.

�MUST XML Encryption be used for this?

�PAGE \# "'Page: '#'�'" ��That is the way ODRL is defined…

�Is this still valid?

�James Semple asked a clarifying question about our WG decision to support RSA as a must; but ECC can be optional. How does that play into the spec text ?

�PAGE \# "'Page: '#'�'" ��Needs to be defined! Probably {joint-iso-itu-t(2) identified-organizations(23) wap(43) oma-kp(6)}

(2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20040205]
(2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20040205]

_1136735213.vsd
�

�

Device�

Rights Issuer�

1�

2�

JoinDomainRequest�

JoinDomainResponse�

_1136736143.vsd
�

�

�

�

Device�

Rights Issuer�

ROAP Trigger {roRequest}�

RO Request�

RO Response�

ROAP Trigger {joinDomain}�

Join Domain Request�

Join Domain Response�

ROAP Trigger {leaveDomain}�

Leave Domain Request�

Leave Domain Response�

_1136746253.vsd
�

�

�

�

Device�

Rights Issuer�

Content Issuer�

Browse and select content to be downloaded�

ROAP Trigger {roAcquisition}�

RO Request�

RO Response; Content DCF�

Generate RO�

Get Content DCF�

_1136746321.vsd
�

�

�

�

Device 1�

Device 2�

Rights Issuer�

Content DCF�

�silent URL�; �preview URL� RO Request Message�

RO Response�

_1136746157.vsd
�

�

�

�

Device�

Rights Issuer�

Content Issuer�

Browse and select content to be downloaded�

Content DCF; ROAP Trigger {roAcquisition}�

RO Request�

RO Response�

Generate RO�

_1136735282.vsd
�

�

Device�

Rights Issuer�

1�

2�

LeaveDomainRequest�

LeaveDomainResponse�

_1136734989.vsd
�

�

Device�

Rights Issuer�

RO Request�

RO Response�

1�

2�

_1136735094.vsd
�

�

Device�

Rights Issuer�

RO Response�

1�

_1135032681.vsd
OMA Compliant Device/Module
Trust Assured by OMA DRM CA�

Other DRM Compliant Device/Module
Trust Assured by Other DRM CA�

Secure Environment�

OMA DRM Agent�

Rights�

Content�

Secrets�

Other DRM Agent�

Rights�

Content�

Secrets�

Should be transcribed securely & consistently�

Should be transferred securely�

_1136734823.vsd
�

�

Device�

Rights Issuer�

Device Hello�

RI Hello�

RegistrationRequest�

RegistrationResponse�

OCSP Responder�

OCSP Request�

OCSP Response�

1�

2�

3�

a�

b�

4�

_1124034340.doc
[image: image1.wmf][image: image2.wmf][image: image3.wmf][image: image4.wmf]

Dpub

Dpriv

DRM Agent

� EMBED MS_ClipArt_Gallery.5 ���

� EMBED MS_ClipArt_Gallery.5 ���

Usage Rules

Rights Object

Usage Rules

Other DRM Agent

(Non-OMA DRM)

Dcert

Other DRM Secret

Transcribing RO

Checking export permission

Decrypting RO

Decrypting content

Storing

Protected Content

Usage Rules

Rights Object

Usage Rules

Protected Content

Removable Media

Usage Rules

Encrypting content

Raw Content

Encrypting RO

_1094904166

_1132126751.vsd

_1123680351.doc
[image: image1.bmp]

audio

Image(1)

Image(2)

play

display

Print

3 times

Media

Objects

Mulitpart DCF

<permission>

elements

<rights>

element

Reference by

Content-ID

