OMA-TS-DRM-XBS-V1_0-20050511-D
Page 59 V(65)

	[image: image1.jpg]
	

	OMA DRM v2.0 Extensions for Broadcast Support

	Draft Version 1.0 – 11 May 2005

	Open Mobile Alliance

	OMA-TS-DRM-XBS-V1_0-20050511-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

51.
Scope

2.
References
6
2.1
Normative References
6
2.2
Informative References
6
3.
Terminology and Conventions
7
3.1
Conventions
7
3.2
Definitions
7
3.3
Abbreviations
7
4.
Introduction
8
5.
Broadcast Device and Domain Management
9
5.1
Device Registration
9
5.1.1
Off-line Notification of Detailed Device Data
9
5.1.2
Off-line Notification of Short-Device Data
15
5.1.3
Broadcast Registration
18
5.2
Domain Management
34
5.2.1
Domain Join
34
5.2.2
Domain Leave
34
6.
Broadcast Rights
35
6.1
Broadcast Rights Objects
35
6.1.1
Goals and Constraints
35
6.1.2
Design Considerations and Decisions
35
6.2
Format of the Broadcast Rights Object
36
6.2.1
Format of the OMADRMBroadcastRightsObject class
36
6.2.2
Format of the OMADRMAsset class
40
6.2.3
Format of the OMADRMPermission class
42
6.2.4
Format of the OMADRMAction class
42
6.2.5
Format of the OMADRMConstraint class
43
6.3
Usage Metering
46
7.
Subscriber Groups
54
7.1
Introduction
54
7.2
Addressing
54
7.2.1
Addressing Modes
54
7.2.2
Subscriber Group Identifier
55
7.3
Confidentiality of Message Content
55
7.3.1
Introduction
55
7.3.2
Exponential Scheme
56
7.3.3
Linear Scheme
56
7.3.4
Logarithmic Scheme
57
8.
Broadcast Service Support
59
8.1
Referencing Broadcast Service as Content
59
8.2
Re-Keying
59
Appendix A.
Change History (Informative)
60
A.1
Approved Version History
60
A.2
Draft/Candidate Version V1_0 History
60
Appendix B.
Static Conformance Requirements (Normative)
61

Figures

46Figure 1: Token-based Metering

48Figure 2: Token Acquisition Trigger

48Figure 3: Token Request Message Description

49Figure 4: Token Response

50Figure 5: Reporting Trigger

51Figure 6: ROAP Report Request

55Figure 7: Addressing modes

Tables

Error! No table of figures entries found.
1. Scope

Open Mobile Alliance (OMA) specifications are the result of continuous work to define industry-wide interoperable mechanisms for developing applications and services that are deployed over wireless communication networks.

The scope of OMA “Digital Rights Management” [DRM-v2] is to enable the consumption of digital content in a controlled manner. The content is consumed on authenticated devices per the usage rights expressed by the content owners. The OMA DRM work addresses the various technical aspects of this system by providing appropriate specifications for content formats, protocols, and the rights expression language.

The scope for this specification is the application of the OMA “Digital Rights Management” specifications in a typical broadcast environment in which devices might only be capable of receiving information broadcast over a shared medium. It refers to the general OMA “Digital Rights Management” [DRM-v2] documents as its foundation. The causes defined in this document take precedence over those specified by the foundation documents, thus creating a broadcast interpretation of the OMA Digital Rights Management standard.

2. References

2.1 Normative References

	[IOPPROC]
	“OMA Interoperability Policy and Process”, Version 1.1, Open Mobile Alliance™, OMA-IOP-Process-V1_1, URL:http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. November 1997, URL:http://www.ietf.org/rfc/rfc2234.txt

2.2 Informative References

	[DRM-v2]
	“Digital Rights Management”, Open Mobile Alliance(, OMA-DRM-DRM-V2_0, URL:http://www.openmobilealliance.org/

	[DRMARCH-v2]
	”OMA DRM Architecture Overview”, Open Mobile Alliance™, OMA-DRM-ARCH-V2-0, URL:http://www.openmobilealliance.org/

	[DRMCF-v2]
	“DRM Content Format”, Open Mobile Alliance(, OMA-DRM-DCF-V2_0, URL:http://www.openmobilealliance.org/

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	Receiver Device
	A OMA DRM Device without explicit return channel, capable only of receiving broadcast material.

Note that a receiver device can still have an implicit return channel: it may present information, triggers and dialogs to the user who may “implement” the return channel in various ways (e.g. telephone, web portal, service desk).

	Enhanced Device
	A OMA DRM Device with bi-directional communications channel, but also suited to receive information via the broadcast channel.

	
	

3.3 Abbreviations

	OMA
	Open Mobile Alliance

	xxx
	Xxx

	
	

4. Introduction

Digital Rights Management [DRM-v2] defines the mechanisms to deliver DRM Content and Rights Objects to a consuming device. In the existing specification suite, devices are assumed to be capable of two-way interaction with other entities, such as a Rights Issuer. In a typical broadcast environment, this may not be the case and devices may exists that can only receive information broadcast over a shared medium.

In general the need for adaptations, extensions and guidelines has been identified for the following OMA Digital Rights Management [DRM-v2] items:

· ROAP Protocol

The ROAP protocol is specified assuming a bi-directional communication mechanism between Device and Rights Issuer. A broadcast (i.e. uni-directional) equivalent for the functionality provided by the ROAP protocol is required. Bandwidth usage is very important in broadcast and protocol messages should be optimised for size.

· Rights Expression Language

There is a need for additional types of usage that are typical to the broadcast model, e.g. time-shift, record, edit. These may also have non-standard constraints such as impulse-pay-per-view, prepaid.

· Subscription Group Addressing

This is a feature that allows – per instance of content protection – to define the exact group of broadcast receivers that will be capable of accessing the protected content. It is required for fine-grained management of broadcast subscription services.

· Authentication of broadcast Rights Objects and broadcast content

The bandwidth efficiency requirements of broadcast systems may necessitate a broadcast specific authentication scheme for rights objects and content.

· Broadcast Service Support

· Usage Metering

This specification is not stand-alone; it must be interpreted in the context of the existing OMA DRM v2.0 suite of specifications. Its goal is to provide alternative mechanisms for those parts of the standard that do not comply to the specific constraints of broadcast systems: one-way communication and bandwidth efficiency. Next to that, it also defines support for additional broadcast concepts such as ‘broadcast service’, (frequent) re-keying of broadcast content protection and broadcast usage models.

5. Broadcast Device and Domain Management

5.1 Device Registration

5.1.1 Off-line Notification of Detailed Device Data

The notification of device data to the RI is executed in either of two cases:

Case 1: The device has never been registered before and is activated by the Customer.

In case there is no direct communication back channel on the device to contact the RI, the device is called “unconnected”. The unconnected device has two possibilities to report device data to the RI:

· The unconnected device is able to make a connection to a connected device (as specified in [DRM-v2] section 14) and uses the backchannel of the connected device to report the device data to the RI. In this case the standard 4-pass ROAP protocol is used, as specified in [DRM-v2].

· The unconnected device is not able to make a connection to a connected device. In this case the 1-pass binary device registration protocol is used, as is specified in this document.

Case 2: The device has been registered at the RI before and must be re-registered.

In this case the RI uses the 1-pass binary rights object acquisition protocol to send a message ordering the device to re-register, as is specified in this document.

Following sequence chart explains the registration for unconnected mode of operation.

[image: image2.wmf][1] notify device data

[2] wait

[3] cert. & cap. request

[4]

validate

[5] cert. & cap. data

[6] check

[7] send registration

data

Customer / Device

Service Operator /

RI

ROT / PKI+CRL

Figure 1: Registration for unconnected mode of operation with one ROT

N.B.: Notification of device data is performed off-line. Transmission of registration data is performed on-line via the broadcast channel.

Explanation of the protocol:

· Once the RI got the device data from the device [1] via a protocol described in section 5.1.2, the RI should contact the ROT [3], while the device is entered into registration mode and waits for the registration data [2].

· The ROT implements a Public Key Infrastructure (a.k.a. PKI). The PKI looks up the certificate and capabilities belonging to the device data in question [4]. The ROT should have a Certificate Revocation List (a.k.a. CRL) implemented. In any case it is the responsibility of the ROT to tell if the requested device data is valid or not and it may pass the requested certificate and capabilities data to the RI or not.

· Assuming the RI got the requested certificate and capabilities from the ROT [5], the RI will perform some last checks [6] and MUST send back a registration data message to the device of the Customer [7].

· The RI uses the 1-pass binary Push Device Registrationdata (a.k.a. PDR) protocol to send the registration data over the network. The PDR protocol is described in another CR, together with the registration data (in the format of the device_registration_respons message). The RI MAY decide to send an error status with the message or send send valid registration data containing all data to create the RI context.

· A device listening for device_registration_respons messages will look for messages with the corresponding message_tag. On every message with a matching message_tag the device will check the long_form_udn parameter. If this matches (any of) the devices local UDN(s) the device will process the message and will start trying to decrypt the secret data in it.

· If the device does not receive registration data within a timeout the device leaves the registration mode and stops listening for device_registration_respons messages.

· Subsequent distribution of Right Objects at regular intervals is done with a message send as an inform message using the 1-pass Inform Registered Device protocol.
This CR focuses on the notification of the detailed device data (arrow number [1] in Figure 1).
5.1.1.1 Theory of operation

offline Notification of Detailed Devicedata protocol

N.B.: This protocol is also known as the “offline NDD protocol”, short for offline Notification of Detailed Data protocol.

[image: image3.wmf][1] notify device data

[2] enter reg. mode

Customer / Device

Service Operator /

RI

Figure 2: Offline NDD protocol

N.B: notification of device data is performed off-line. The device data (device_data_inform message) is defined in section 5.1.1.3.

Explanation of the protocol:

· The device MUST notify [1] its device data via some means to the RI. After user interaction the device SHALL produce the device_data_inform message (refer to section 5.1.1.3 details) and make this data available to the end user.

· The device MAY display a dialogue with instructions. Notifying the device data can be done in various ways, for example by showing the customer of the device a dialogue on the screen of the device, displaying the device data and a telephone number to call for vocal notification of the device data. Another example is to display instructions to send an SMS message via a mobile phone to the RI, or else.

An example of a displayed message follows, where the following information is reported back to the RI
:

[image: image4.wmf]In order to start service with this device

 please contact customer service at:

XXXX-XXX-XXXXXXX

Unique Device Number (UDN):

XXXX XXXX XXXX XXXX XXXX

short UDN:

XXXX XXXX

In order to start service with this device

 please send an SMS with the UDN below to the

following phone number:

XXXX-XXX-XXXXXXX

Unique Device Number (UDN):

XXXX XXXX XXXX XXXX XXXX

short UDN:

XXXX XXXX

An example dialogue showing instructions for

vocal notification of UDN to callcenter

An example dialogue showing instructions for

notification of UDN per SMS to callcenter

Figure 3: Samples of notification displays

· In any case, since a return channel from the device to the RI is missing, the device data (device_data_inform message) MUST be notified off-line, using the offline Notification of Detailed Devicedata protocol. The device data to notify SHALL be reduced by a special protocol (refer to section 5.1.1.2).

· After the notification of the device data the device SHALL be put into registration mode [2], where it will start to listen for the device registration data for a limited time.

5.1.1.2 Unique Device Number (UDN) protocol

To reduce the amount of data that is to be notified to the RI, the device data protocol takes care of data reduction. To ease the detection of errors during the registration process, the device data protocol will also allow detection of errors in the notified device data.

Following algorithm MUST be used to construct a Unique Device Number (a.k.a. UDN):

[image: image5.wmf]Issuer identifier

Device serial number

Checksum

MII

Issuer ID

ROT ID

Figure 4: Unique Device Number

Table 1: Sample

	Field
	Length (digits)
	supporting up to

	rot_id
	3
	1000 ROT

	mii
	1
	9 Major Industries

	issuer_identifier
	4
	100.000 Issuers (10.000 in 10 industries)

	device_serial_number
	9
	1 Billion

	Checksum
	3
	

	
	20
	

Every of 1000 ROT can issue 100.000 issuer ranges, from which every unique issuer can have 1 Billion devices issued.

rot_id - The first 3 digits in the UDN identify the ROT. Every ROT has an own unique ID.

mii - The first digit of the device ID number is the Major Industry Identifier (MII), which represents the category of entity, which issued your device_serial_number. Different MII digits represent the following issuer categories:

Table 2: major industry identifier.

	MII Digit Value
	Issuer Category
	Remarks

	0
	Root of Trust
	

	1
	Telecom
	

	2
	Consumer Electronics
	

	3
	Network Equipment
	

	4
	Reserved
	

	5
	Reserved
	

	6
	Reserved
	

	7
	Reserved
	

	8
	Reserved
	

	9
	National Assignment
	

For example: Philips is in the Consumer Electronics Category and Nokia is in the Telecom sector. If the MII digit is 9, then the next three digits of the issuer identifier are the 3-digit country codes defined in ISO 3166, and the remaining final two digits of the issuer identifier can be defined by the national standards body of the specified country in whatever way it wishes.

issuer_identifier - The issuer_identifier identifies which issuer created the devices serial number. Together with the MII digit this forms the issuer ID.

device_serial_number - The device_serial_number is unique inside a range of an issuer. Each issuer therefore has 1 billion (109) possible device_serial_numbers. It is unlikely that an issuer exceeds 1 billion serial numbers. An issuer whishing to group devices in another way can request a second issuer_identifier for another range (of 1 Billion).

checksum - The final digits of the device ID number are check digits, akin to a checksum. The 4 digits allow 1 out of 104 possible errors to remain undetected. Please refer to section 5.1.1.4 for an explanation of the algorithm.

5.1.1.3 Device data – device_data_inform message

5.1.1.3.1 Message description

The Device data MUST prove that it is unique. In a one way case the device must notify this device data, yet the length of the unique device data SHOULD remain concise.

Because devices can be uniquely identified by the PKI, it is not needed to incorporate unique data like the device certificate into the (device specific) registration data. The OMA certificate is global and the link between the manufacturer and the device can be requested from the PKI, based on the device ID.

Table 2: Notify device data message parameters

	Device_Data_Inform()

	parameter
	(M)andatory / (O)ptional
	Remark

	version
	M
	

	contact_nr
	O
	

	longform_udn
	M
	

version - is a <major> representation of the highest ROAP version number supported by the Device. For this version of the protocol, Version SHALL be set to “1”.

contact_nr - is the number that should be contacted to register. It can be a phone number or an SMS number. This number MAY have been entered into the device at production time and if so MAY be shown in the registration display (refer to section 5.1.1.1 for an example). This number could also be provided in other ways, like a leaflet in the package of the device, a commercial channel which is viewed after selection of a free to air channel via the ESG or via entirely other means.

longform_udn - identifies the unique_device_number to the RI. The UDN must be part of the credentials entered at production time into the device, like the private key and the certificate. Refer to section 5.1.1.1 for details.

5.1.1.3.2 Message syntax

Since this is an offline protocol the device data is not really formed into a message that can be transmitted. The device data is decimal and formatted as follows:

Table 3: Device Data

	Parameter
	Format and length
	Description

	Version
	1 byte
	

	contact_number
	15 bytes
	dependent on target telco network

	longform_udn
	21 bytes
	UDN protocol

5.1.1.4 Checksum algorithms

Definition

The checksum on the UDN is calculates by F-UDN

We use codes over Zp, the integers modulo p,where p=11. That is to say, codewords are strings with entries from for
[image: image6.wmf]{

}

1

,....

1

,

0

-

p

. We consider codes of length n defined by r parity equitions: a string
[image: image7.wmf](

)

cn

c

c

...,

2

,

1

 with elements from Zp is a codeword if and only if it satisfies the following equations:

for
[image: image8.wmf])

(mod

0

,

,...

2

,

1

1

)

(

p

cj

r

i

n

j

i

aj

º

=

å

=

We now describe a [20,17] code, that is deﬁned over 20 symbols from Z11 using the three following check equations as described in the matrix H3 below:

Take n=17, r=3 and p=11. We consider the code deﬁned by the r=3 following check equations:

10*c1 + 1*c2 + 9*c3...+ 8*c17 = 0 (modulo 11)

 0*c1 + 1*c2 + 0*c3...+ 7*c17 = 0 (modulo 11)

 1*c1 + 0*c2 + 1*c3...+ 8*c17 = 0 (modulo 11)

In other words, a string (c1,c2,...,c20) with elements from Z11is a codeword if and only if it has inner product zero (modulo 11) with the rows of the following matrix H3:

	
	n1
	n2
	n3
	n4
	n5
	n6
	n7
	n8
	n9
	n10
	n11
	n12
	n13
	n14
	n15
	n16
	n17
	n18
	n19
	n20

	H3
	1
	0
	1
	0
	1
	0
	1
	0
	1
	0
	1
	2
	3
	4
	5
	7
	8
	1
	0
	0

	
	0
	1
	0
	1
	0
	1
	0
	1
	0
	1
	0
	1
	2
	3
	4
	6
	7
	0
	1
	0

	
	10
	1
	9
	2
	8
	3
	7
	4
	6
	5
	4
	5
	7
	10
	3
	2
	8
	0
	0
	1

Error detection simply takes place by checking if the received word r = (r1,r2,...,r20) satisﬁes the three parity check equations. Encoding can for example be done as follows:

Choose c1,c2,...,c17 in any way. If we deﬁne

c18 = - (10*c1 + 1*c2 + 9*c3 +...+ 8*c17) modulo 11

c19 = - (0*c1 + 1*c2 + 0*c3 +...+ 7*c17) modulo 11

c20 = - (1*c1 + 0*c2 + 1*c3 +...+ 8*c17) modulo 11

then (c1,c2,...,c20) is a codeword. We can view c18, c19 and c20 as parity check digits. Note that we may restrict c1,c2,...,c17 to be any of the numbers 0,1,2. . . ,9. Any of the three parity check digits can be ’10’. This ’10’ can be represented by an alphanumerical character different from 0,1,. . . ,9, for example X or Z.

Decoding is done by:

c18 = (10*c1 + 1*c2 + 9*c3 +...+ 1*c20) modulo 11

c19 = (0*c1 + 1*c2 + 0*c3 +...+ 1*c19) modulo 11

c20 = (1*c1 + 0*c2 + 1*c3 +...+ 1*c18) modulo 11

Summarizing, the code deﬁned with H3 detects all errors of any of the following types:

· Single and double substitution errors.

· Single and double transposition errors.

· Any combination of a single substitution error and a single transposition error.

· All three consecutive substitution errors.

where a transposition is ab => ba and a substitution is a => b.

Example:

N.b.: following example illustrates the use of the algorithm on valid UDN as input number :

	position (n)
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	

	inputnumber
	8
	5
	6
	2
	8
	7
	0
	1
	2
	1
	5
	3
	2
	9
	5
	6
	7
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	matrix H3
	1
	0
	1
	0
	1
	0
	1
	0
	1
	0
	1
	2
	3
	4
	5
	7
	8
	1
	0
	0
	line for C20 & S20

	
	0
	1
	0
	1
	0
	1
	0
	1
	0
	1
	0
	1
	2
	3
	4
	6
	7
	0
	1
	0
	line for C19 & S19

	
	10
	1
	9
	2
	8
	3
	7
	4
	6
	5
	4
	5
	7
	10
	3
	2
	8
	0
	0
	1
	line for C18 & S18

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	coding
	checkdigit = -sum(n1..n17) mod 11

	C18
	8
	0
	6
	0
	8
	0
	0
	0
	2
	0
	5
	6
	6
	36
	25
	42
	56
	
	
	
	9

	C19
	0
	5
	0
	2
	0
	7
	0
	1
	0
	1
	0
	3
	4
	27
	20
	36
	49
	
	
	
	10

	C20
	80
	5
	54
	4
	64
	21
	0
	4
	12
	5
	20
	15
	14
	90
	15
	12
	56
	
	
	
	2

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	codeword
	8
	5
	6
	2
	8
	7
	0
	1
	2
	1
	5
	3
	2
	9
	5
	6
	7
	9
	10
	2
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	decoding
	checkdigit = +sum(n1..n18 or n19 or n20) mod 11

	S18
	80
	5
	54
	4
	64
	21
	0
	4
	12
	5
	20
	15
	14
	90
	15
	12
	56
	0
	0
	2
	0

	S19
	0
	5
	0
	2
	0
	7
	0
	1
	0
	1
	0
	3
	4
	27
	20
	36
	49
	0
	10
	0
	0

	S20
	8
	0
	6
	0
	8
	0
	0
	0
	2
	0
	5
	6
	6
	36
	25
	42
	56
	9
	0
	0
	0

.

5.1.2 Off-line Notification of Short-Device Data

The end user of a device might wish to formulate a particular request to the RI. He uses following specified behaviour:

[image: image9.wmf][1] notify "request"

[2] wait

[3] check

[4] send data

Customer / Device

Service Operator /

RI

Figure 5: Action request round trip

Explanation of the protocol:

· The end user of the device formulates a request and notifies this request to the user [1] as specified in this CR.

· The end user waits after the request has been notified to the Customer Operations Centre in a successful way [2].

· The RI might execute additional checks and composes the data [3].

· The RI MAY send a data message to the device to update data in the device, start the execution of a particular action to produce a desired result or to inform an error status. [4]. The protocol to do this is specified in another CR.

This CR focuses on the notification of the detailed device data (arrow number [1] in Figure 5).
5.1.2.1 Theory of operation

offline Notification of Short Devicedata protocol

N.B.: This protocol is also known as the “offline NSD protocol”, short for offline Notification of Short Data protocol.

[image: image10.wmf][1] notify "request"

Customer / Device

Service Operator /

RI

Figure 6: Offline NSD protocol

N.B.: Notification of device data is performed off-line. Refer to Table 5 for an overview of the possible “requests”.

Explanation of the protocol:

· The user may notify a short decimal code called the action request code (ARC) to the RI via offline methods (e.g. telephone call or SMS or else). The code SHALL be constructed as follows:

[image: image11.wmf]Short_udn

Action_code

Checksum

Figure 7: Action Request Code (ARC)

Table 4: NSD action request code fields

	ARC fields
	Length (digits)
	supporting up to

	short_udn
	8
	100 Million devices

	action_code
	2
	99 action codes

	checksum
	2
	refer to A.1

	
	12
	

short_udn. The offline notification can be performed faster if the long form UDN is not used, but a shorter form instead. After first time notification of the device data to the RI, the RI MAY issue a short version of the full UDN (called short_form_udn) that is carried in the device_registration_respons message. The short_form_udn number is used to speed up the offline interaction with the RI. If this number is stored into the device, subsequent “requests” by the end user of the device can be notified offline much quicker by using the short_form_udn number concatenated by a standardised action code.

Please note: In cases where the device needs to be identified uniquely in another network than it’s home network where it was registered, the short_udn cannot be used because the (new / different) RI does not have the short_udn in it’s database. In this case the only possibility for the hosting RI to identify the device uniquely would be via the long_udn. It is the responsibility of the device to decide when it is appropriate to use the long_udn instead, for example by comparing the Service Operations Centre (SOC) ID received with the SOC ID remembered from registration.

action_code. Following the short_udn the user of the device can notify an action code to the RI. Following action codes are defined:

Table 5: NSD action types

	action type
	action code (d)
	described in section

	join domain
	011-020
	TBD

	leave domain
	021-030
	TBD

	re-registration (only at same RI)
	01
	TBD

	purchase
	02, while content identification is supplied by ESG.
	TBD

	resend BCRO
	03
	TBD

checksum. The constructed short_udn and action_code is appended by checksum digits. Please refer to section A.1 for an explanation of the algorithm.

An example: In order to request to re-register, a sample NSD action request code could look like:
“1660 8731 0112”. An example of a displayed message follows, where the following information is reported back to the RI
:

[image: image12.wmf]In order to start the requested action

 please contact customer service at:

XXXX-XXX-XXXXXXX

action request code:

XXXX XXXX XXXX

An example dialogue showing instructions for

vocal notification of ARC to callcenter

In order to start the requested action

 please send an SMS with the short request

code (NSD) below to the following phone

number:

XXXX-XXX-XXXXXXX

action request code:

XXXX XXXX XXXX

An example dialogue showing instructions for

notification of ARC per SMS to callcenter

Figure 8: Samples of notification displays showing an ARC message

Checksum algorithms

Definition:

The checksum on the ARC is calculated by F-SDN
Take n=12, r=2 and p=11. We consider the code deﬁned by the r=2 following check equations:

3*c1 + 6*c2 + 4*c3 +...+ 1*c12 = 0 (modulo 11)

8*c1 + 8*c2 + 6*c3 +...+ 1*c11 = 0 (modulo 11)

In other words, a string (c1,c2,...,c12) with elements from Z11is a codeword if and only if it has inner product zero (modulo 11) with both rows of the following matrix H1:

	
	n1
	n2
	n3
	n4
	n5
	n6
	n7
	n8
	n9
	n10
	n11
	n12

	H1
	8
	8
	6
	5
	10
	5
	6
	4
	1
	4
	1
	0

	
	3
	6
	4
	2
	6
	8
	2
	1
	2
	4
	0
	1

Error detection simply takes place by checking if the received word r = (r1,r2,...,r12) satisﬁes the two parity check equations. Encoding can for example be done as follows: choose c1,c2,...,c10 in any way. If we deﬁne

c11 = - (3*c1 + 6*c2 + 4*c3 +...+ 4*c10) modulo 11

c12 = - (8*c1 + 8*c2 + 6*c3 +...+ 4*c10) modulo 11

then (c1,c2,...,c12) is a codeword. We can view c11 and c12 as parity check digits. Note that we may restrict c1,c2,...,c10 to be any of the numbers 0,1,2. . . ,9. Any of the two parity check digits can be ’10’. This ’10’ can be represented by an alphanumerical character different from 0,1,. . . ,9, for example X or Z.

Decoding is done by:

c11 = (3*c1 + 6*c2 + 4*c3 +...+ 1*c12) modulo 11

c12 = (8*c1 + 8*c2 + 6*c3 +...+ 1*c11) modulo 11

From this table, we draw the following conclusions.

· All single and double substitution errors are detected.

· All single and double transposition errors are detected.

· Any combination of a substitution error in position 12, and transposition error in positions not involving position 12 is detected.

· A substitution error not in position 12 ”matches” exactly one one transposition er-ror. About 1% not detected.

where a transposition is ab => ba and a substitution is a => b.

Example:

N.b.: following example illustrates the use of the algorithm on valid ARC as input number :

	position (n)
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	

	input number
	1
	6
	6
	0
	8
	7
	3
	1
	0
	1
	
	
	choose a digit (0..9)

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	matrix
	8
	8
	6
	5
	10
	5
	6
	4
	1
	4
	0
	1
	line for C12 & S12

	
	3
	6
	4
	2
	6
	8
	2
	1
	2
	4
	1
	0
	line for C11 & S11

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	coding
	checkdigit = -sum(n1..n10) mod 11

	C11
	3
	36
	24
	0
	48
	56
	6
	1
	0
	4
	
	
	9

	C12
	8
	48
	36
	0
	80
	35
	18
	4
	0
	4
	
	
	9

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	codeword
	1
	6
	6
	0
	8
	7
	3
	1
	0
	1
	9
	9
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	decoding
	checkdigit = +sum(n1..n11 or n12) mod 11

	S11
	3
	36
	24
	0
	48
	56
	6
	1
	0
	4
	9
	0
	0

	S12
	8
	48
	36
	0
	80
	35
	18
	4
	0
	4
	0
	9
	0

.

5.1.3 Broadcast Registration

The notification of device data to the RI is executed in either of two cases:

Case 1: The device has never been registered before and is activated by the Customer.

In case there is no direct communication back channel on the device to contact the RI, the device is called “unconnected”. The unconnected device has two possibilities to report device data to the RI:

· The unconnected device is able to make a connection to a connected device (as specified in [DRM-v2] section 14) and uses the backchannel of the connected device to report the device data to the RI. In this case the standard 4-pass ROAP protocol is used, as specified in [DRM-v2].

· The unconnected device is not able to make a connection to a connected device. In this case the 1-pass binary device registration protocol is used, as is specified in this document.

Case 2: The device has been registered at the RI before and must be re-registered.

In this case the RI uses the 1-pass binary rights object acquisition protocol to send a message ordering the device to re-register, as is specified in this document.

Following sequence chart explains the registration for unconnected mode of operation.

[image: image13.wmf][1] notify device data

[2] wait

[3] cert. & cap. request

[4]

validate

[5] cert. & cap. data

[6] check

[7] send registration

data

Customer / Device

Service Operator /

RI

ROT / PKI+CRL

Figure 9: Registration for unconnected mode of operation with one ROT

N.B.: Notification of device data is performed off-line. Transmission of registration data is performed on-line via the broadcast channel.

Explanation of the protocol:

· Once the RI got the device data from the device [1] via a protocol described in another CR, the RI should contact the ROT [3], while the device is entered into registration mode and waits for the registration data [2].

· The ROT implements a Public Key Infrastructure (a.k.a. PKI). The PKI looks up the certificate and capabilities belonging to the device data in question [4]. The ROT should have a Certificate Revocation List (a.k.a. CRL) implemented. In any case it is the responsibility of the ROT to tell if the requested device data is valid or not and it may pass the requested certificate and capabilities data to the RI or not.

· Assuming the RI got the requested certificate and capabilities from the ROT [5], the RI will perform some last checks [6] and MUST send back a registration data message to the device of the Customer [7].

· The RI uses the 1-pass binary Push Device Registrationdata (a.k.a. PDR) protocol to send the registration data over the network. The PDR protocol is described in section 5.1.3.1, together with the registration data (in the format of the device_registration_respons message in section 5.1.3.2). The RI MAY decide to send an error status with the message or send send valid registration data containing all data to create the RI context.

· A device listening for device_registration_respons messages will look for messages with the corresponding message_tag. On every message with a matching message_tag the device will check the long_form_udn parameter. If this matches (any of) the devices local UDN(s) the device will process the message and will start trying to decrypt the secret data in it.

· If the device does not receive registration data within a timeout the device leaves the registration mode and stops listening for device_registration_respons messages.

· Subsequent distribution of Right Objects at regular intervals is done with a message send as an inform message using the 1-pass Inform Registered Device protocol.
This CR focuses on the notification of the detailed device data (arrow number [7] in Figure 9).
5.1.3.1 Theory of operation

1-pass binary Push Device Registration Protocol

N.B.: This protocol is also known as the “1-pass PDR protocol”, short for Push Device Registration protocol.

[image: image14.wmf][1] send registr. data

Customer / Device

Service Operator /

RI

ROT / PKI+CRL

Figure 10: 1-pass PDR protocol – (first) device registration

N.B.: Transmission of registration data is performed on-line via the broadcast channel. The registration data (device_registration_respons message) is specified in section 5.1.3.2
Explanation of the protocol:

· The RI SHALL use the 1-pass binary Push Device Registrationdata (a.k.a. PDR) protocol to send the device-registration_respons message over the network [1].

· A device listening for device_registration_respons messages SHALL look for messages with the corresponding message_tag. On every message with a matching message_tag the device SHALL check the long_form_udn parameter. If this matches (any of) the devices local UDN(s) the device SHALL start to process the message and SHALL start trying to decrypt the secret data in it.

· After a timeout the device SHALL leave the registration mode and stops listening for device_registration_respons messages.

5.1.3.2 Registration data – device_registration_response message

5.1.3.2.1 Message description

Using the 1-pass PDR protocol the RI MUST send a device_registration_response message with the registration data to the device as specified below:

Table 6: Device_registration_respons message (1-pass device registration protocol)

	Device_Registration_Respons()

	Parameter name
	(M)andatory / (O)ptional
	remark

	message_tag
	M
	global, not encrypted

	longform_udn
	M
	global, not encrypted

	version
	M
	global, not encrypted

	ri_certificate_counter
	M
	global, not encrypted

	c_length
	M
	global, not encrypted

	ri_certificate
	M
	global, not encrypted

	ocsp_response_counter
	M
	global, not encrypted

	r_length
	M
	global, not encrypted

	ocsp_response
	M
	global, not encrypted

	local_time_offset_flag
	M
	device specific, not encrypted

	time_stamp_flag
	M
	device specific, not encrypted

	broadcast_group_key_flag
	M
	device specific, not encrypted

	signature_type_flag
	M
	global, not encrypted

	short_udn_flag
	M
	device specific, not encrypted

	surplus_block_flag
	M
	device specific, not encrypted

	keyset_block_length
	M
	device specific, not encrypted

	unique_group_key
	O
	device specific, encrypted

	broadcast_group_key
	O
	device specific, encrypted

	unique_device_key
	O
	device specific, encrypted

	unique_device_filter
	M
	device specific, encrypted

	ri_authentication_key
	M
	device specific, encrypted

	drm_time
	M
	device specific, not encrypted

	local_time_offset_polarity
	O
	device specific, not encrypted

	local_time_offset
	O
	device specific, not encrypted

	registration_timestamp_start
	O
	device specific, not encrypted

	registration_timestamp_end
	O
	device specific, not encrypted

	shortform_udn
	O
	device specific, not encrypted

	status
	M
	device specific, not encrypted

	signature_block
	M
	device specific, not encrypted

message_tag - This parameter identifies the type of the message. Refer to section {EN: the reference provided by the original text was invalid} for the value of the message_tag.

longform_udn - The long form of the UDN. Refer to section {EN: the reference provided by the original text was invalid} for details. The number is encoded in BCD format.

version - is a numerical representation of the version of the RI certificate. Using the Version parameter the customer device can decide if it is needed to update the RI certificate (if it was stored before).

Table 7: Description of Version parameter

	Parameter Fieldname
	Field Value (b)
	supports

	major_version_number
	0000-1111
	MSB (4 bits)

	minor_version_number
	0000-1111
	LSB (4 bits)

The parameter is divided 2 fields of 4 bits, whereas the first 4 bits (MSB left) express the Major number and the last four bits (LSB right) express the Minor version. 16 Major and 16 Minor versions are supported. For example: Major.Minor version <1.2> is expressed as 0001 0010b.

ri_certificate_counter - This parameter indicates the depth of the RI certificate chain.

	number of certificate in chain
	Value (b)
	remark

	0
	000
	will signal absence of ri_certificate e.g. on error status to save bandwidth.

	1
	001
	

	2
	010
	

	3
	011
	

	4
	100
	

	5
	101
	

	6
	110
	

	7
	111
	

N.B.: The certificate chain can have a depth of up to 7 RI certificates.

c_length - This parameter indicates the length in bits of the ri_certificate.

ri_certificate - This parameter MUST be present. When present, the value of a ri_certificate parameter shall be a certificate chain including the RI’s certificate. The chain MUST NOT include the root certificate. The RI certificate must come first in the list. Each following certificate must directly certify the one preceding it.

The Device MAY store RI certificate verification data indicating that an RI certificate chain has been verified. The purpose of this is to avoid repeated verification of the same certificate chain. The RI certificate verification data stored in this way MUST uniquely identify the RI certificate and MUST be integrity protected. The Device SHOULD check if the RI certificate chain received in this parameter corresponds to the stored certificate verification data for this RI. If so, the Device need not verify the RI certificate chain again, otherwise the Device MUST verify the RI certificate chain.
 If an RI certificate is received that is not in the stored certificate verification data for this RI, and if the Device can determine (in the case of Unconnected Devices that support DRM Time) that the expiry time of the received RI certificate is later than the RI Context for this RI, and the certificate status of the RI certificate as indicated in the OCSP response is good (see [OCSP-MP]), then the Device MUST verify the complete chain and SHOULD replace the stored RI certificate verification data with the received RI certificate data and set the RI context expiry time to that of the received RI certificate expiry time.
However, if the Device does store RI certificate verification data in this way it MUST store the expiry period of the RI’s certificate (as indicated by the notAfter field within the certificate) and MUST compare the Device’s current DRM Time with the stored RI certificate expiry time whenever verifying the signature on signed messages from the RI. If the Device’s current DRM Time is after the stored RI certificate expiry time then the Device MUST abandon processing the RI message and MUST initiate the registration protocol.

ocsp_response_counter - This parameter indicates the depth of the OCSP response chain.

	number of responses in chain
	Value (b)
	remark

	0
	000
	will signal absence of ocsp_response e.g. on error status to save bandwidth.

	1
	001
	

	2
	010
	

	3
	011
	

	4
	100
	

	5
	101
	

	6
	110
	

	7
	111
	

N.B.: The certificate chain can have a depth of up to 7 OCSP responses.

r_length - This parameter indicates the length in bits of the ocsp_response.

ocsp_response - This parameter, when present, SHALL be a complete set of valid OCSP responses for the RI's certificate chain. The Device MUST NOT fail due to the presence of more than one OCSP response element. A Device MUST check that an OCSP response is present in the received message. If no OCSP response is present in the device_registration_respons message, then the Device MUST abort the registration protocol.

local_time_offset_flag - Binary flag to signal presence of the parameter it describes:

	local_time_offset_flag
	Value (b)
	remark

	data absent
	0
	

	data present
	1
	

time_stamp_flag - Binary flag to signal presence of the parameter it describes:

	time_stamp_flag
	Value (b)
	remark

	data absent
	0
	

	data present
	1
	

broadcast_group_key_flag - The flag expresses how many broadcast_group_keys (a.k.a. BGK) are delivered with the registration data. When zero message broadcast is used, a set of 8 keys will support a group size of 256. A set of 9 keys will support a group size of 512. Other values or larger group sizes are not supported. A value larger than zero indicates that the registration data message delivers a set of zero message broadcast_group_key (s) to the device and that the device needs to use zero message broadcast style encryption to deduce the decryption key to decrypt the SEK.

	broadcast_group_key_flag
	Value (b)
	remark

	data absent
	0000
	will signal absence of keyset_block e.g. on error status to save bandwidth.

	reserved
	0001-0111
	not to be used

	set of (8) broadcast_group_key
	1000
	

	set of (9) broadcast_group_key
	1001
	

	reserved
	1010-1111
	not to be used

signature_type_flag - A flag to signal type of signature algorithm used:

	signature_type_flag
	Value (b)
	remark

	RSA 1024
	00
	

	RSA 2048
	01
	CLMA requirement (2004-2007)

	RSA 4096
	10
	

	reserved
	11
	not to be used

short_udn_flag - Binary flag to signal presence of the parameter it describes:

	short_udn_flag
	Value (b)
	remark

	data absent
	0
	

	data present
	1
	

surplus_block_flag - Binary flag to signal the presence of the parameter it describes:

	surplus_block_flag
	Value (b)
	remark

	data absent
	0
	

	data present
	1
	

keyset_block_length - This parameter indicates the length in bits of the total keyset_block. That is the part in the sessionkey_block plus the optional second part from the surplus_block.
unique_group_key - An symmetric AES encryption key to address a unique group. This key is also known as UGK. The keylength MUST be 128 bit.

broadcast_group_key - An (set of) AES symmetric encryption key(s) which are used for the zero message broadcast_group_key deduction of the key needed to decrypt the SEK and/or PEK. These broadcast_group_key is also known as BGK. The keylength MUST be 128 bit.

unique_device_key - An AES symmetric key to address a unique device. This key is also known as UDK. The keylength MUST be 128 bit.

unique_device_filter - A [EUROCRYPT] style addressing scheme used to filter for messages like BROs. A device address consists of 5 bytes and is unique within an operation. The shared address is defined as the 4 most significant bytes of the unique address. The least significant byte (byte 5) defines the position (0….255) in the group that shares an address. This means that each group consists of 256 members. An access mask, in an entitlement, is used to identify individual members. So if for a particular group only member 5 and 100 are allowed to have access to a service then their corresponding bits are set in the access mask. Take the device_id_mask equal to 252 (1111 1100b) then the least significant byte of the device_id is masked and thereby creating a shared address. This adress is also known as UDF.
ri_authentication_key - An AES symmetric key to verify MACs on BCRO and KSM messages. This key is also known as RIAK. The keylength MUST be 128 bit.

drm_time - This parameter defines the time in Universal Time Coordinated (UTC). This 40-bit field contains the current time and date in UTC and MJD. Refer to Appendix A.4 for calculation of the UTC and Modified Julian Date (MJD). This field is coded as 16 bits giving the 16 LSBs of MJD followed by 24 bits coded as 6 digits in 4-bit BCD.

EXAMPLE: 93/10/13 12:45:00 is coded as “0xC079124500”.

local_time_offset_polarity - This 1-bit information indicates the polarity of the following local_time_offset. If this bit is set to “0” the polarity is positive and the local time is advanced to UTC. (Usually east direction from Greenwich). If this bit is set to “1” the polarity is negative and the local time is behind UTC.

local_time_offset - This parameter indicates the local time offset from the (UTC) drm_time.This 16-bit field contains the current offset time from UTC in the range between –12 hours and +13 hours at the area which is indicated by the combination of country_code and country_region_id in advance. These 16 bits are coded as 4 digits in 4-bit BCD in the order hour tens, hour, minute tens, and minutes.
registration_timestamp_start - Indicates from what time onwards the registration data is valid. This is an extra mechanism above the expiration date of the RI certificate. (N.B.: please note that this parameter can also be used against replay attacks.)

registration_timestamp_end - Indicates from what time onwards the registration data is expires. This is an extra mechanism above the expiration date of the RI certificate. (N.B.: please note that this parameter can also be used against replay attacks.)

shortform_udn - This parameter allows the RI to give an own defined short number identifying the device. This number can be used as a shorter alternative to the UDN during offline notifications. The shortform_udn is coded in BCD format.

status - This parameter MUST indicate if the registration request was successfully (status = Success) handled or not. In the latter case an error code is sent, as specified in section 5.1.3.4.

signature_block - The signature MUST enable a single source authenticity check on the message. The algorithm used for the signature is RSA-1024 or RSA-2048 or RSA-4096. The signature will apply to the implementation guidelines of PCKS#1, as outlined in 5.1.3.5.

N.B. Message result:

The stored RI Context SHALL at a minimum contain:

· RI ID, Unique device filter (UDF).

· following keys:

· UGK, BGK1..n and/or UDK

· RIAK.

· SK (refer to section 5.1.3.2.2)

· The RI Context SHALL also contain an RI Context Expiry Time, which is defined to be the timestamp of the registration data if that was send and otherwise the expiration of the RI certificate.

· The RI Context MAY also contain RI certificate validation data.

· For Unconnected Devices that do not support DRM Time, the RI Context is infinite i.e., it does not have an expiry time.

· If the RI Context has expired, the Device MUST NOT execute any other protocol than the 1-pass binary device data registration protocol with the associated RI (context), and upon detection of RI Context expiry the Device SHOULD initiate the offline notification of detailed device data protocol using the RI_ID stored in the RI Context. Depending on the implementation a dialogue will be shown to the user and the offline NDD protocol will be executed.

· Accessing an ESG for purchase is still allowed, as this will require a registration first.

· The device SHALL be rendered inoperable for any purchase protocol or playback of future content. The device MAY use stored BCROs to play old content for which the device obtained ROs, but MUST NOT use these BCROs for new content received after the re-registration request until the device is re-registered with the RI.

Requirements:

· The Device SHALL have at most one RI Context with each RI. An existing RI Context SHALL be replaced with a newly established RI Context after successful re-registration with the same RI.

· The device MUST support at least 6 RI context for broadcast operation.

· The keyset MUST include a valid set of

· UGK, BGK1..n and/or UDK keys

· RIAK key.

· UDF

5.1.3.2.2 Protection of the keyset

The device_registration_respons message is split in two parts: device specific (time bound) data and global (not time bound) data.

[image: image15.wmf]Device global data

(in the clear)

Device specific data

Key material

(encrypted)

Other device data

(in the clear)

Longform_udn

signature

Message_tag

Signature over

complete

message

Figure 11: Device_registration_respons message

The device global data MUST be in the clear. The device specific data contains the keyset for the device. This key material MUST be encrypted, whereas the rest of the device specific data MUST be in the clear. The key material MUST be protected by encryption. The RI SHALL use the device’s public key to encrypt all key material in the device specific data part of the message.

The RI SHALL use his private key to sign the complete messagedata. Upon reception the device SHALL verify the RI signature, by using the issuer’s public key from the RI certificate. The device MUST make sure that this message is correct by using a valid and correct RI certificate.

The complete message SHALL be authenticated by a signature from the RI.

Creation of the encrypted message MUST adhere to the following rules:

1. Generate a (128 or 192 or 256) bit AES key to be used as session key (SK) for the device_registration_respons message.

2. Concatenate the keyset (UGK, BGK1..n, UDK, RIAK and/or UDF) under rules of [FIPS_197] and the Tag Length Format described in section 5.1.3.3.

3. Encrypt the keyset using [FIPS_197] with the generated SK. This will produce the keyset_block.

4. Calculate the part of the keyblock that would fit into the RSA block (depending on the size of RSA used, be that 1024, 2048 or 4096), including the SK and under implementation rules of the PCKS#1. If the keyset_block fits into one RSA block continue at step 5. Else continue at step 4.

5. If the SK plus keyset_block including PCKS#1 header, alining, etc did not fit into one RSA block, then keep the remainder part as surplus_block.

6. Encrypt SK plus the (part of the)keyset_block that fits into the RSA block with the public key of the target device using RSA (1024 or 2048 or 4096) under implementation guidelines of [PKCS#1]. This will produce the sessionkey_block.

7. Concatenate the (non encrypted) parameters that were not used in the key_block and create the message “header” from this. Refer to 5.1.3.2.1 for details. (for reason of completeness: of course the sessionkey_block, the (optional) surplus_block and the signature_block are not part of the message header)

8. Concatenate the message “header” and the sessionkey_block . If the SK plus keyset_block including PCKS#1 header, alining, etc did not fit into one RSA block, then also concatenate surplus_block part. Hash the result under implementation guidelines of [PKCS#1]. Please refer to section 5.1.3.5. This will produce the signature_input_data.

9. Sign the signature_input_data with RSA (1024 or 2048 or 4096) using the private key of the RI. The signature will apply to the implementation guidelines of PCKS#1, as outlined in 5.1.3.5. This will produce the signature_block.

10. The device_registration_respons message comprises of the message “header” plus sessionkey_block, optionally the surplus_block and the signature_block.

[image: image16.wmf]surplus_block

(AES encrypted)

Sessionkey_block

(RSA encrypted)

Signature_block

(RSA signature)

SK (plus part of

keyset_block that fits into

RSA block (size)

RSA signature

Message “header”

(in the clear)

All but input for keyblocks

below

(optional) Remainder of

keyset_block that did not fit

into RSA block

Keyset_block

(AES encrypted)

Figure 12: Structure of device_registration_respons message

Concluding: The number of RSA blocks used must be kept to a minimum. The AES surplus_block is present if and when the keyset does not completely fit into the sessionkey_block given the RSA blocksize used. If present the AES surplus_block contains those keys that did not fit into one RSA block (i.c. the sessionkey_block). The complete keyset needed for operation after registration is included in the encrypted keyset_block, which is concatenated from the first part in the sessionkey_block and optionally the surplus_block. Refer to {EN: the reference provided by the original document was invalid} for calculations on the surplus_block_size.

Decryption of the encrypted message MUST adhere to the following rules:

1. Locate the message via message_tag

2. Verify if the message is intended for this device by comparing the long_form_udn with the UDN stored in the device.

3. Verify the signature_block of the message by using the public key from the RI.

4. Locate the sessionkey_block and decrypt the block with the private key of the local device. Locate the session key (SK) from the header and (eventual) padding (according to PCKS#1). Then locate the keyset_block part from the header and (eventual) padding (according to PCKS#1).

5. (Optionally) If there is a surplus_block concatenate this part to the keyset_block. This will complete the keyset_block.

6. Use the SK to decrypt the keyset_block.

7. Allocate the individual keyset_items from the keyset_block according to [FIPS_197] and the Tag Length Format described in section 5.1.3.3.

N.B.: The SK MUST be stored into protected storage. The AES encrypted keyset_block MAY be stored as is into unprotected storage and the device may decrypt this upon use. If the keyset_block is not stored but the decrypted keys from that block are stored instead, the device MUST store all key data safely. The keys MUST NOT leak outside the device.

5.1.3.2.3 Message syntax

Table 8: Message syntax

	fields
	length
	type

	device_registration_respons{
	
	

	message_tag
	5
	bslbf

	unique_device_number
	84
	bslbf

	Status
	4
	bslbf

	Version
	8
	bslbf

	flags {
	
	

	ri_certificate_counter
	3
	bslbf

	ocsp_response_counter
	3
	bslbf

	local_time_offset_flag
	1
	bslbf

	time_stamp_flag
	1
	bslbf

	broadcast_group_key_flag
	4
	bslbf

	short_udn_flag
	1
	bslbf

	signature_type_flag
	2
	bslbf

	surplus_block_flag
	1
	bslbf

	keyset_block_length
	8
	uimsbf

	}
	
	

	for(cnt=0; cnt < ri_certificate_counter ;cnt++){
	
	

	c_length
	16
	uimsbf

	ri_certificate
	c_length
	bslbf

	}
	
	

	for(cnt=0; cnt < ocsp_response_counter ;cnt++){
	
	

	r_length
	16
	uimsbf

	ocsp_response
	r_length
	bslbf

	}
	
	

	drm_time
	40
	mjdutc

	if (local_time_offset_flag == 1) {
	
	

	local_time_offset_polarity
	1
	bslbf

	local_time_offset
	16
	bslbf

	}
	
	

	if (time_stamp_flag == 1) {
	
	

	registration_timestamp_start
	40
	mjdutc

	registration_timestamp_end
	40
	mjdutc

	}
	
	

	if (short_udn_flag == 1) {
	
	

	short_udn
	32
	bslbf

	}
	
	

	if (signature_type_flag == 0){
	
	

	sessionkey_block
	1024
	bslbf

	} else if (signature_type_flag == 1)
	
	

	sessionkey_block
	2048
	bslbf

	} else if (signature_type_flag == 2)
	
	

	sessionkey_block
	4096
	bslbf

	}
	
	

	if (surplus_block_flag == 1){
	
	

	surplus_block
	(*1)
	bslbf

	}
	
	

	if (signature_type_flag == 0){
	
	

	signature_block
	1024
	bslbf

	} else if (signature_type_flag == 1)
	
	

	signature_block
	2048
	bslbf

	} else if (signature_type_flag == 2)
	
	

	signature_block
	4096
	bslbf

	}
	
	

	}
	
	

key:

(*1) for details please refer to section 5.1.3.4
5.1.3.3 Tag Length Format for keyset_block

5.1.3.3.1 Syntax definition

A Tag Length Format (TLF) is defined to identify the keyset_items in the keyset_block. A keyset_item is identified by following syntax:

<tag> [optional <position>] <length> <keyset_item>

Following values are defined and SHALL be used:

Table 9: Defined tag values

	Keyset_item
	Tag (b)
	remark

	UGK
	000
	

	BGK
	001
	

	UDK
	010
	

	UDF
	011
	

	RIAK
	100
	

If keyset_item == 001 (i.c. BGK) then the optional field “position” SHALL indicate the position of the BGK as a node in the [FIAT NOAR] tree. When m = groupsize, then n = 2 log (m), where n is number of BGKs in tree. Possible positions for the BGKs in the tree are 2(n+1) -1 . Therefore parameter “position” is expressed with 10 bits to express 1023 nodes in a tree. First MSB left will be used as binary indicator to indicate if the BGK position is a node (0, zero) or a leaf (1, one). Bit positions 2..10 (from left to right LSB) are used in binary format as an indicatator of the the node and leaf position. Nodes and leafs SHALL be numbered according to following picture TODO:

[image: image17.wmf]R

NK1

D2

D1

NK2

NK3

D4

D3

NK4

D6

D5

NK5

D8

D7

NK6

NK10

LK4

NK14

LK8

NK13

LK7

NK12

LK6

NK11

LK5

NK9

LK3

NK8

LK2

NK7

LK1

Figure 13: Node and leaf numbering

Key:

The root key R is never numbered. Node keys NK as well as leaf keys LK are numbered per “level” from left to right. For sake of completion the leaf keys in this picture are also indicated as node keys. Although node NK 7 == leaf LK1, in practice a leaf key is always and only numbered as leaf and not as a node !

Table 10: Defined length values

	(key)length prescriber
	Length (b)
	remark

	128 bit AES
	00
	

	192 bit AES
	01
	

	256 bit AES
	10
	

	5 byte EuroCrypt
	11
	

5.1.3.3.2 Examples

E.g.1: A 5 byte Eurocrypt address implementing the UDF will be coded like:

<011> <11> <UDF>

E.g.2: A 128 but AES key implementing the UGK will be coded like:

<000> <00> <UGK>

E.g.3: A 128 bit AES key implementing the BGK on node position NK5 in figure TODO will be coded like:

<001> <0000000101> <00> <BGK>

E.g.4: A 128 bit AES key implementing the BGK on node position LK1 (i.c.NK7) in figure TODO will be coded like:

<001> <1000000001> <00> <BGK>

5.1.3.4 Limits of the surplus_block

upper limit is in following case: RSA-block with largest, most extensive keyset_block:

Max filled keyset_block = 1 UGK, 9 BGK , 1UDK , 1 UDF , 1 RIAK, 1 UDF

Table 11: RSA blocksize 1024

	value
	variable
	key size
	key data
	
	key size
	key data
	
	key size
	key data

	1024
	RSA size
	
	
	
	
	
	
	
	

	1
	UDF
	40
	40
	
	40
	40
	
	40
	40

	1
	UGK
	128
	128
	
	128
	128
	
	128
	128

	9
	BGK
	128
	1152
	
	128
	1152
	
	128
	1152

	1
	UDK
	128
	128
	
	128
	128
	
	128
	128

	1
	RIAK
	128
	128
	
	128
	128
	
	128
	128

	13
	TLF overhead
	5
	155
	
	5
	155
	
	5
	155

	
	keyset_block
	
	1731
	
	
	1731
	
	
	1731

	
	
	
	
	
	
	
	
	
	

	1
	SK
	128
	128
	
	192
	192
	
	256
	256

	
	sessionkey_block
	1024
	
	
	1024
	
	
	1024
	

	
	room in sessionkey_block
	
	896
	
	
	832
	
	
	768

	
	surplus_block
	
	835
	
	
	899
	
	
	963

Table 12: RSA blocksize 2048

	value
	variable
	key size
	key data
	
	key size
	key data
	
	key size
	key data

	2048
	RSA size
	
	
	
	
	
	
	
	

	1
	UDF
	40
	40
	
	40
	40
	
	40
	40

	1
	UGK
	128
	128
	
	128
	128
	
	128
	128

	9
	BGK
	128
	1152
	
	128
	1152
	
	128
	1152

	1
	UDK
	128
	128
	
	128
	128
	
	128
	128

	1
	RIAK
	128
	128
	
	128
	128
	
	128
	128

	13
	TLF overhead
	5
	155
	
	5
	155
	
	5
	155

	
	keyset_block
	
	1731
	
	
	1731
	
	
	1731

	
	
	
	
	
	
	
	
	
	

	1
	SK
	128
	128
	
	192
	192
	
	256
	256

	
	sessionkey_block
	1024
	
	
	1024
	
	
	1024
	

	
	room in sessionkey_block
	
	1920
	
	
	1856
	
	
	1792

	
	surplus_block
	
	no
	
	
	no
	
	
	no

Table 13: RSA blocksize 4096

	value
	variable
	key size
	key data
	
	key size
	key data
	
	key size
	key data

	4096
	RSA size
	
	
	
	
	
	
	
	

	1
	UDF
	40
	40
	
	40
	40
	
	40
	40

	1
	UGK
	128
	128
	
	128
	128
	
	128
	128

	9
	BGK
	128
	1152
	
	128
	1152
	
	128
	1152

	1
	UDK
	128
	128
	
	128
	128
	
	128
	128

	1
	RIAK
	128
	128
	
	128
	128
	
	128
	128

	13
	TLF overhead
	5
	155
	
	5
	155
	
	5
	155

	
	keyset_block
	
	1731
	
	
	1731
	
	
	1731

	
	
	
	
	
	
	
	
	
	

	1
	SK
	128
	128
	
	192
	192
	
	256
	256

	
	sessionkey_block
	1024
	
	
	1024
	
	
	1024
	

	
	room in sessionkey_block
	
	3968
	
	
	3904
	
	
	3840

	
	surplus_block
	
	no
	
	
	no
	
	
	no

TBD: not yet included is the PKCS overhead in the sessionkey_block, so surplus_block could be a little larger.
5.1.3.5 RSA signatures under PKCS#1

RSA signatures are made as described by the implementation guidelines of [PKCS #1] v2.1: RSA Cryptography Standard, RSA Laboratories, June 14, 2002.
The scheme is RSA + SHA1. There are two choices described in the [PKCS#1] as they are RSASSA-PSS and RSASSA-PKCS1-V1_5

Since OMA DRM v2 is used for connected operation and uses RSASSA-PSS, this CR will also use RSASSA-PSS to sign the binary messages for unconnected mode of operation.

5.1.3.6 Conversion between time and date conventions

(please note: this text has been copied from ETSI EN 300 468 V1.6.1)

The types of conversion which may be required are summarized in Figure 14.

[image: image18.png]
Figure 14: Conversion routes between Modified Julian Date (MJD) and Co-ordinated Universal Time (UTC)

The conversion between MJD + UTC and the "local" MJD + local time is simply a matter of adding or subtracting the

local offset. This process may, of course, involve a "carry" or "borrow" from the UTC affecting the MJD. The other five

conversion routes shown on the diagram are detailed in the formulas below:

Symbols used:

D

Day of month from 1 to 31

int

Integer part, ignoring remainder

K, L ,M', W, Y'

Intermediate variables

M

Month from January (= 1) to December (= 12)

MJD

Modified Julian Date

MN

Week number according to ISO 2015 [21]

mod 7

Remainder (0-6) after dividing integer by 7

UTC

Universal Time, Co-ordinated

WD

Day of week from Monday (= 1) to Sunday (= 7)

WY

"Week number" Year from 1900

x

Multiplication

Y

Year from 1900 (e.g. for 2003, Y = 103)

a) To find Y, M, D from MJD

Y' = int [(MJD - 15 078,2) / 365,25]

M' = int { [MJD - 14 956,1 - int (Y' × 365,25)] / 30,6001 }

D = MJD - 14 956 - int (Y' × 365,25) - int (M' × 30,6001)

If M' = 14 or M' = 15, then K = 1; else K = 0

Y = Y' + K

M = M' - 1 - K × 12

b) To find MJD from Y, M, D

If M = 1 or M = 2, then L = 1; else L = 0

MJD = 14 956 + D + int [(Y - L) × 365,25] + int [(M + 1 + L × 12) × 30,6001]

c) To find WD from MJD

WD = [(MJD + 2) mod 7] + 1

d) To find MJD from WY, WN, WD

MJD = 15 012 + WD + 7 × { WN + int [(WY × 1 461 / 28) + 0,41] }

e) To find WY, WN from MJD

W = int [(MJD / 7) - 2 144,64]

WY = int [(W × 28 / 1 461) - 0,0079]

WN = W - int [(WY × 1 461 / 28) + 0,41]

EXAMPLE: MJD = 45 218 W = 4 315

Y = (19)82 WY = (19)82

M = 9 (September) N = 36

D = 6 WD = 1 (Monday)

NOTE: These formulas are applicable between the inclusive dates 1900 March 1 to 2100 February 28.

5.1.4 On-line Registration

A broadcast enabled device may register using the ROAP protocol, either directly in case it is a connected device, or via a connected device that acts as a proxy.

Extensions to the ROAP are required to allow transfer of all subscriber group key material and the authentication key for broadcast rights objects.

5.1.4.1 Registration Request

Rights issuers can derive from the device capabilities in the device certificate the modes of operation supported by the registering device. From this information it should be possible to determine whether to include the extensions (defined in the next section) in the registration response or not. To avoid possible confusion, an extension is defined for the <roap:RegistrationRequest> to allows a rights issuer to determine directly whether or not to include the broadcast extensions in <roap:RegistrationResponse>.

Extensions: The following extensions are defined for the ROAP-RegistrationRequest message in addition to the extensions already defined.

· Broadcast Registration Request: This extension allows a device to indicate to a broadcast enabled Rights Issuer to use the broadcast extensions in the registration response.

The following schema fragment defines the Broadcast Registration extension to the ROAP schema:

<complexType name="roap:BroadcastRegistrationRequest">

 <complexContent>

 <extension base="roap:Extension">

 </extension>

 </complexContent>

</complexType>

When included in a <roap:RegistrationRequest>, this extension MUST be marked as critical.

5.1.4.2 Registration Response

A Rights Issuer that receives a <roap:RegistrationRequest> including the <roap:BroadcastRegistrationRequest> extension and that does not support the broadcast extensions MUST abort the registration procedure and respond accordingly. A Rights Issuer that does support broadcast extensions MUST respond with a <roap:RegistrationRequest> including the following defined <roap:BroadcastRegistration> extension.

Extensions: The following extensions are defined for the ROAP-RegistrationResponse message in addition to the extensions already defined.

· Broadcast Registration: This extension allows an RI to securely transfer broadcast group key material and addressing information as well as the authentication key to use to verify authenticity of broadcast rights objects.

The following schema fragment defines the Broadcast Registration extension to the ROAP schema:

<complexType name=”roap:SubscriberGroupKey”>

 <complexContent>

 <extension base=”ds:KeyInfo”/>

 <attribute name=”node” type=”hexBinary”/>

 </complexContent>

</complexType>

<simpleType name=”roap:ShortUniqueDeviceNumber”>

 <restriction base=”string”>

 <pattern value=”\d{8}”

 </restriction>

</simpleType>

<complexType name="roap:SubscriberGroupRegistration">

 <complexContent>

 <sequence>

 <element name=”subscriberGroupAddress” type=”roap:SubscriberGroupIdentifier”/>

 <element name=”uniqueGroupKey” type=”ds:KeyInfo”/>

 <element name=”uniqueDeviceKey” type=”ds:KeyInfo” minOccurs=”0”/>

 <element name=”subscriberGroupKey” type=”roap:SubscriberGroupKey” minOccurs=”0” maxOccurs=”unbounded”/>

 <element name=”shortUniqueDeviceNumber” type=”roap:ShortUniqueDeviceNumber”/>

 </sequence>

 </complexContent>

</complexType>

<complexType name="roap:BroadcastRegistration">

 <complexContent>

 <extension base="roap:Extension">

 <sequence>

 <element name=”subscriberGroupregistration” type=”roap:SubscriberGroupRegistration” minOccurs=”0”/>

 <element name=”rightsIssuerAuthenticationKey” type=”ds:KeyInfo” minOccurs=”0”/>

 <element name="encKey" type="xenc:EncryptedKeyType"/>
 </sequence>

 </extension>

 </complexContent>

</complexType>

Subscriber Group Registration

The optional <subscriberGroupRegistration> element holds all information regarding the subscriber group feature: subscriber group address, device position and key material.

The <subscriberGroupAddress> element MUST contain the subscriber group base address and the device position. It SHALL NOT contain an access mask.

The <uniqueGroupKey> element holds an <xenc:EncryptedKey> element. This MUST hold a <ds:KeyInfo> element, an empty <xenc:EncryptionMethod> element and an <xenc:CipherData> element. The <ds:KeyInfo> element MUST contains a <ds:RetrievalMethod> element of which the URI attribute references the key used to encrypt the subscriber group’s unique group key (UGK). The <xenc:EncryptedKey> element MUST also hold an empty <xenc:EncryptionMethod> element of which the Algorithm attribute identified the algorithm used to protect the UGK. This algorithm MUST be AES-128 Key Wrap, and the value of the Algorithm attribute MUST be “http://www.w3.org/2001/04/xmlenc#kw-aes128”. The <xenc:CipherData> element contains the <xenc:CipherValue> element that holds the base64 encoded value of the encrypted UGK.

The optional <uniqueDeviceKey> element holds an <xenc:EncryptedKey> element. This MUST hold a <ds:KeyInfo> element, an empty <xenc:EncryptionMethod> element and an <xenc:CipherData> element. The <ds:KeyInfo> element MUST contains a <ds:RetrievalMethod> element of which the URI attribute references the key used to encrypt the subscriber group’s unique device key (UDK). The <xenc:EncryptedKey> element MUST also hold an empty <xenc:EncryptionMethod> element of which the Algorithm attribute identified the algorithm used to protect the UDK. This algorithm MUST be AES-128 Key Wrap, and the value of the Algorithm attribute MUST be “http://www.w3.org/2001/04/xmlenc#kw-aes128”. The <xenc:CipherData> element contains the <xenc:CipherValue> element that holds the base64 encoded value of the encrypted UDK.

The optional <subscriberGroupKey> elements each hold one key associated with the binary tree of key nodes from the subscriber group. Each <subscriberGroupKey> is of type <roap:DerivationKey> which extends the <ds:KeyInfo> type with a single node attribute. The value of the node attribute is the hexBinary encoded node number of the node associated with the derivation key contained by the <subscriberGroupKey> element. Each <subscriberGroupKey> element MUST hold a <ds:KeyInfo> element, an empty <xenc:EncryptionMethod> element and an <xenc:CipherData> element. The <ds:KeyInfo> element MUST contains a <ds:RetrievalMethod> element of which the URI attribute references the key used to encrypt the subscriber group’s node key of node i (NKi). The <xenc:EncryptedKey> element MUST also hold an empty <xenc:EncryptionMethod> element of which the Algorithm attribute identified the algorithm used to protect the NKi. This algorithm MUST be AES-128 Key Wrap, and the value of the Algorithm attribute MUST be “http://www.w3.org/2001/04/xmlenc#kw-aes128”. The <xenc:CipherData> element contains the <xenc:CipherValue> element that holds the base64 encoded value of the encrypted NKi.

The device MUST check the consistency relations between the node keys and its subscriber position as defined by the broadcast extension.

The <shortDeviceUniqueNumber> MUST be included in the RI Context, and MAY be used at a later moment to receive binary push (re)registration messages over the broadcast interface.

Authentication Key

The <rightsIssuerAuthenticationKey> holds an <xenc:EncryptedKey> element. This MUST hold a <ds:KeyInfo> element, an empty <xenc:EncryptionMethod> element and an <xenc:CipherData> element. The <ds:KeyInfo> element MUST contains a <ds:RetrievalMethod> element of which the URI attribute references the key used to encrypt the rights issuer’s authentication key (RIAK). The <xenc:EncryptedKey> element MUST also hold an empty <xenc:EncryptionMethod> element of which the Algorithm attribute identified the algorithm used to protect the RIAK. This algorithm MUST be AES-128 Key Wrap, and the value of the Algorithm attribute MUST be “http://www.w3.org/2001/04/xmlenc#kw-aes128”. The <xenc:CipherData> element contains the <xenc:CipherValue> element that holds the base64 encoded value of the encrypted RIAK.

The <encKey> element is of type xenc:EncryptedKeyType from [XMLEnc]. It consists of a wrapped broadcast registration encryption key, KBRK. The Id attribute of this element SHALL be present and SHALL have the same value as the value of the URI attribute of the <ds:RetrievalMethod> element in any <ds:KeyInfo> elements inside the subscriber group registration extension. The <ds:KeyInfo> child element of the <encKey> element SHALL identify the wrapping key. The child of the <ds:KeyInfo> element SHALL be of type roap:X509SPKIHash, identifying a particular DRM Agent's public key through the (SHA-1) hash of the DER-encoded subjectPublicKeyInfo value in its certificate.

5.2 Domain Management

It does not seem clear whether this is actually going to required? It may be enough to support subscription group addressing?

5.2.1 Domain Join

Efficient message encoding for an invitation to join a domain.

5.2.2 Domain Leave

Efficient message encoding for an invitation to leave a domain. This typically requires a domain upgrade: all remaining devices get invited to re-join the domain (and be provisioned with a new domain key). Because of the difficult nature of broadcast messages (no reception guarantee), it seems that this is a rather weak concept.

Perhaps here we need to define some way of extracting confirmation messages that a user can communicate back to a rights issuer’s service desk / web portal to ‘prove’ the device has received an instruction to leave the domain.

6. Broadcast Rights

6.1 Broadcast Rights Objects

6.1.1 Goals and Constraints

The delivery of rights objects over a Broadcast network without return channel necessitates some changes to the current ROAP because of the following reasons:

· the XML encoding according to the ROAP schema is not optimised for size

· the current ROAP does not support a subscription group addressing mechanism

· the current ROAP uses signatures based on the RSA PKI scheme that yield large signatures.

This chapter defines a new format for the delivery of authenticated and integrity protected rights objects, in which content encryption keys are cryptographically protected with either:

· domain key

· subscription group addressing group key

· subscription group addressing subset key (derived key)

· subscription group addressing device key

The primary design goal is to offer the same or equivalent cryptographic protection on Broadcast Rights Objects as is available for Rights Objects obtained via the standard ROAP protocol. This includes authentication, integrity checking and confidentiality of encryption keys.

The secondary design goal is optimisation of message size. This is motivated by the fact that these rights objects may have to be Broadcast repeatedly, as no return path is available to confirm reception. It is assumed that an out-of-band mechanism is available to perform an equivalent of a RORequest, i.e. the initiation of rights object acquisition.

6.1.2 Design Considerations and Decisions

The Broadcast Rights Objects (BCRO) are intended to be Broadcast to receivers in a well-defined repetitive manner. The particular means of delivery is to be defined in the context of the Broadcast system. It is the intention to support devices without a return channel (next to more capable devices), which implies that Broadcast rights object will be transmitted repeatedly to increase the chance of a receiver to capture rights objects addressed to that device.

The key-wrapping technique used in standard ROAP to cryptographically bind a MAC and REK to a device or domain will not be used. Instead the domain key or subscription group key is directly used to protect the content encryption keys in the Broadcast Rights Object. The motivation for this is that a REK adds little or no extra security, but adds significant size to a Broadcast Rights Object.

Because subscription group addressing offers the possibility to address a single unique device, BCROs will offer only addressing subscription groups or domains. Addressing a device using its device ID will not be supported with a BCRO.

RSA signatures on Broadcast rights objects would contribute very significantly to the size of each BCRO. Instead, each BCRO is protected with a MAC, based on an authentication key that is registered in the rights issuer context in a device. At registration, this authentication key is provided along with the subscription group addressing key material.

The broadcast content is protected with a varying encryption key. The encryption keys associated with assets in the BCRO will be applied to decrypt the key stream messages on the key stream layer. Besides decryption, such messages should also be authenticated. To avoid using the rights issuer authentication key for these frequent messages, the BCRO also carries an authentication key to be used for authenticating key stream messages. [This is subject to specifications of the key stream layer in OMA BCAST.]

6.2 Format of the Broadcast Rights Object

6.2.1 Format of the OMADRMBroadcastRightsObject class

The OMADRMAsset, OMADRMPermission and OMADRMConstraint object correspond in their meaning to their counterparts in OMA-DRM-REL-V2_0. The OMADRMAction object corresponds to the allowed elements in the permissions element from the same specification.

align(8) class OMADRMBroadcastRightsObject

{

int i;

bit(1)
future_extensions_flag;

bit(1)
reserved;

bit(1)
permissions_flag;

bit(1)
locally_changed_flag;

bit(12)
bcro_length;

// MAC protected part starts here

bit(1)
group_size_flag;

bit(1)
timestamp_flag;

bit(1)
stateful_flag;

bit(1)
refresh_time_flag;

bit(2)
address_mode;

bit(1)
domain_ro_flag;

bit(1)
rights_issuer_flag;

bit(32)
address;

if (address_mode == 0x1)

{

if (group_size_flag == 0)

{

bit(256)
bit_access_mask;

}

else

{

bit(512)
bit_access_mask;

}

}

else if (address_mode&0x2 == 0x2)

{

bit(8)
position_in_group;

}

if (domain_ro_flag == 1)

{

bit(32)
domain_id;

}

if (rights_issuer_flag == 1)

{

bit(160)
rights_issuer_id;

}

if (timestamp_flag == 1)

{

bit(40)
bcro_timestamp;

}

if (refresh_time_flag == 1)

{

bit(40)
refresh_time;

}

bit(1)
extended_rights_object_id_flag;

bit(1)
reserved;

if (extended_rights_object_id_flag == 0)

{

bit(14)
rights_object_id;

}

else

{

bit(30)
rights_object_id;

}

bit(8)
number_of_assets;

for (i=0; i<number_of_assets; i++)

{

OMADRMAsset
asset[i];

}

if (permissions_flag == 1)

{

bit(8)
number_of_permissions;

for (i=0; i<number_of_permissions; i++)

{

OMADRMPermission permission[i];

}

}

if (future_extensions_flag == 1)

{

bit(16)
future_extensions_length;

for (i=0; i<future_extensions_length; i++)

{

bit(8)
future_byte;

}

}

// MAC protected part ends here

bit(96)
MAC;

if (locally_changed_flag == 1)

{

bit(160)
stored_rights_issuer_id;

bit(16)
local_length;

for (i=0; i<local_length; i++)

{

bit(8)
local_byte;

}

}

}

future_extensions_flag: 1-bit flag which indicates the version of the BCRO message format. If set to 0 the original format is used. If set to 1 additional information is contained in a later part of the BCRO. The format of this additional information is beyond the scope of this specification.

permissions_flag: 1-bit flag indicating that the BCRO contains at least 1 permission.

locally_changed_flag: 1-bit flag indicating that information (e.g. the RI ID) has been added after the MAC field (after the protected part of the BCRO). This mechanism can be used to store or forward the BCRO together with additional information. Receivers who do not understand the local additions should skip the locally added extensions.

The first two bytes of the BCRO are not protected by the MAC.

bcro_length: 12-bit field indicating the length in bytes of the BCRO starting immediately after this field (excluding locally added information). The size of an BCRO SHALL NOT exceed 4096 bytes. Note however that other restrictions, e.g. the UDP packet size can restrict the size of an BCRO even more.

Note: the fields up to and including ‘length’ are not protected by a MAC. All following fields up to but not including the MAC field will be protected by a MAC.

group_size_flag: 1-bit field indicating the group size used. 0 – a maximum group size 256 is used, 1 – a maximum group size of 512 is used

timestamp_flag: 1-bit field indicating that the BCRO is timestamped.
stateful_flag: 1-bit flag indicating that when set to 1 the BCRO contains stateful information.

refresh_time_flag: 1-bit flag indicating that a refresh_time for the BCRO is contained in this BCRO

address_mode: 2-bit field indicating the addressing mode used by this BCRO.

	Field: address_mode
	Description

	0x0
	addressing whole of unique group

	0x1
	addressing of Subscription group using a bit_mask size of 256 or 512 bit depending on group_size_flag (subset of unique group)

	0x2-0x3
	addressing of unique device

domain_ro_flag: 1-bit flag indicating that the BCRO is addressed to a certain OMA domain. If set the keys in the assets are encoded using the domain key.

rights_issuer_flag: 1-bit flag indicating that the rights issuer id is listed in this BCRO. Normally this information is given via a dedicated BCRO stream. This flag will only be set if BCROs from different rights issuers are carried in the same stream.

rights_issuer_id: The ID of the rights issuer. This is the 160-bit SHA1 hash of the DER encoded public key of the RI. See X509PKISHash in OMA.

address: 4-byte group address. Each rights issuer has its own address space.

bit_access_mask: If the BCRO addresses a subset of a unique group (address_mode 0x1 or 0x2) than the bit_access_mask defines to which receivers in the group this BCRO is addressed to. Receivers not listed in the bit_access_mask cannot decrypt the key material in this BCRO as zero message Broadcast encryption is used for the encryption of the key material. The size of the bit_access_mask is given by the address mode

position_in_group: If the BCRO addresses a unique device then this field specifies the position of the unique device in the given Subscription group. If group_size_flag is 0 than the position in the group is directly given by the position_in_group field. If group_size_flag is 1 then 9 bit are used to identify the position in the group. If group_size_flag is 1 and the address_mode&0x2==0x2 ten bit 0 from the address_mode is used as the 9th bit, the MSB. The real position in the group is then given by:

int real_position_in_group;

if(address_mode&0x2==0x2)

{

if(group_size_flag == 0)

{

//maximum size of 256 devices in group.

real_position_in_group = position_in_group;

}

else

{

//maximum size of 512 devices in group;

real_position_in_group =

((address_mode&0x1)<<8)||position_in_group;

}

}
domain_id: Field indicating the domain id. If the BCRO is addressed to a certain OMA domain then the keys in the asset object are encrypted using the OMA domain key. The value of the domain_id is coded as 8 digits in 4-bit Binary Coded Decimal (BCD).

bcro_timestamp: Field containing a timestamp at the point of issuing of the BCRO. This 40-bit field contains the time and date of the moment of issuing of the BCRO in Universal Time, Co-ordinated (UTC) and Modified Julian Date (MJD). This field is coded as 16 bits giving the 16 LSBs of MJD followed by 24 bits coded as 6 digits in 4-bit Binary Coded Decimal (BCD).

EXAMPLE 1: 93/10/13 12:45:00 is coded as "0xC079124500".

refresh_time: The refresh_time specifies the time when the terminal should acquire a new BCRO. It does not specifies when the keys in the BCRO expire. This field is a hint to a receiver to acquire a new BCRO for the content listed in the BCRO before the keys in the BCRO expires. The encoding is similar to that of the bcro_timestamp field.

extended_rights_object_id_flag: 1-bit flag that when set to 1 indicates that an extended rights_object_id of 30 bit is used to identify this rights object. If the flag is set to 0 the rights_object_id has a size of 14 bit. The rights_object_id is only valid within one Rights Issuer context and rights_object_ids can wrap around.

rights_object_id: 14-bit or 30-bit field specifying the ID of this rights object. [TBD: Is the size of the id ok?]
number_of_assets: This field specifies the number of assets (see below) in this BCRO. Each asset listed in this BCRO has an internal id which is equal to the index of the asset in this BCRO. In other words the first asset listed in this BCRO has the internal asset id (index) of 0, the second of 1 etc. This internal id or index is used by permissions objects (see below) to identify the assets it addresses.

number_of_permissions:This field specifies the number of permissions (see below) in this BCRO.

future_extensions_length:If the version is set to 1 then the future extensions can be listed following this field. The future_extensions_length field specifies the length of the extensions in bytes. Receivers only supporting version 0 SHOULD skip the future extensions.

MAC: This is the authentication code calculated over all bytes before this field with the exception of the first two bytes in the BCRO using AES-XCBC-MAC-96. AES-XCBC-MAC-96 operates on blocks of 128 bit. To calculate the MAC the MAC protected part of the BCRO is divided into 128-bit blocks. If the MAC protected block is smaller then an integer multiple of 128 then the rest of the last block is padded with zeros. The MAC is calculated over all 128-bit blocks. Note that the padding is not transmitted nor part of the BCRO.

The MAC is used to authenticate and check the integrity of the BCRO. The key used to create the MAC is the BCRO authentication key that is provided to the device at registration time. [The registration process for broadcast is to include this authentication key. This will be clarified in a later contribution.]

stored_rights_issuer_id: This field is only present if the locally_changed_flag is set to 1. BCROs received directly from the Broadcast channel will not contain this field. The field is used to retain the relation between RI and BCRO when stored or forwarded.

local_length: This field specifies the number of locally added bytes following this field. This field and the local_bytes are not present in the original BCRO received from a broadcast channel.

6.2.2 Format of the OMADRMAsset class

class OMADRMAsset

{

int i;

bit(96)
BCI;

bit(1)
key_flag;

bit(4)
reserved_for_future_use;

bit(1)
inherit_flag;

bit(2)
asset_type;

if (inherit_flag)

{

bit(1)
extended_parent_rights_objects_id_flag;

bit(1)
reserved;

if (extended_parent_rights_object_id_flag == 0)

{

bit(14)

parent_rights_object_id;

}

else

{

bit(30)

parent_rights_object_id;

}

}

if (key_flag == 1)

{

if (asset_type == 0x0)

{

bit(320)
wrapped_encryption_authentication_key;

}

else

if (asset_type == 0x1)

{

bit(192)
wrapped_encryption_key;

}

}

}

BCI: This 96-bit field is the Binary Content ID. [The encoding of this field might be the SHA1-96 hash of the Content ID in ‘cid’ URI form.]
key_flag:1-bit flag indicating that the asset does contain key material.

inherit_flag: 1-bit flag indicating whether inheritance is used. If set to 1 the asset inherits the rights setting from a parent rights object.

asset_type: 2-bit flag indicating the asset type as defined in the table below. If the asset_type is set to 0 the asset MAY contain a wrapped encryption key and authentication key. If the asset_type is set to 0x1 then the asset MAY contain a wrapped content encryption key.

	Field: asset_type
	Description

	0x0
	Broadcast stream protected IPSec or SRTP as defined in this specification

	0x1
	downloaded file content as defined by OMA

	0x2-0x3
	reserved

extended_parent_rights_object_id_flag: 1-bit flag that when set to 1 indicates that an extended rights_object_id of 30 bit is used to identify the parent rights object. If the flag is set to 0 the parent_rights_object_id has a size of 14 bit. The parent_rights_object_id is only valid within one Rights Issuer context and the parent_rights_object_ids can wrap around.

parent_rights_object_id: 14-bit or 30-bit field specifying the ID of the parent rights object.

wrapped_encryption_authentication_key: If key_type is set to 0 than this field contains a wrapped concatenated encryption key and authentication key. The field itself is protected using AESWrap. In case of where the BCRO is a domain RO, the domain key is used as the wrapping key. In case of a subscription group BCRO, the key to use depends on the addressing mode of the BCRO.

	Field: address_mode
	Keys used

	0x0 (subscription group addressing / whole group)
	UGK (Unique Group Key)

	0x1 or 0x2 (subscription group addressing / derived keys)
	Deduced decryption key (based on bit_access_mask and subscription group keys)

	0x3 (subscription group addressing / unique device)
	UDK (Unique device key)

wrapped_encryption_key: This field contains a wrapped encryption key (without authentication key). The field is protected using AESWrap. In case of where the BCRO is a domain RO, the domain key is used as the wrapping key. In case of a subscription group BCRO, the key to use depends on the addressing mode of the BCRO.

	Field: address_mode
	Key(s) used to decrypt field

	0x0 (unique group)
	UGK (Unique Group Key)

	0x1 or 0x2 (Subscription group)
	Deduced decryption key (based on bit_access_mask and subscription group keys)

	0x3 (unique device)
	UDK (Unique device key)

6.2.3 Format of the OMADRMPermission class

class OMADRMPermission

{

int i;

bit(6)
number_of_assets;

bit(1)
constraint_flag;

bit(1)
actions_flag;

for (i=0; i<number_of_assets; i++)

{

bit(8)
asset_index;

}

if (constraint_flag == 1)

{

OMADRMConstraint
constraint;

}

if (actions_flag == 1)

{

bit(8)
number_of_actions;

for (i=0; i<number_of_actions; i++)

{

OMADRMAction
action[i];

}

}

}

number_of_assets: The number of assets this permission object links to. Assets linked to by this permission object are bound by this permission object.

constraint_flag: 1-bit flag which indicates when set to 1 that a constraint object is present in this permissions object. The constraint object applies to all action listed in this permission object.

action_flag: 1-bit flag. When set to 1, 1 or more actions are contained in this permission object.

asset_index: A list of number_of_assets links to assets in this BCRO. Assets are linked to by using the internal asset id (the index of the asset in this BCRO).

number_of_actions: Field specifying the number of actions (see below) contained in this permission object

6.2.4 Format of the OMADRMAction class

class OMADRMAction

{

bit(7)
action_type;

bit(1)
constraint_flag;

if (constraint_flag)

{

OMADRMConstraint constraint;

}

}

action_type: 7-bit field specifying the type of action as listed in table below:

	Field: action_type
	Description

	0x00
	PLAY_ACTION

	0x01
	DISPLAY_ACTION

	0x02
	EXECUTE_ACTION

	0x03
	PRINT_ACTION

	0x04
	EXPORT_ACTION

	0x05
	ACCESS_ACTION

	0x06-0x7F
	reserved for future use

constraint_flag: 1-bit flag which indicates when set to 1 that a constraint object is present in this action object. The constraint object only applies to the action it is in.

6.2.5 Format of the OMADRMConstraint class

abstract class OMADRMConstraintDescriptor : bit(8) constraint_id = 0

{

bit(8) length;

}

class OMADRMConstraint

{

int i;

int j;

bit(4)
number_of_constraints;

bit(12)
constraint_descriptor_length;

for (i=0; i<number_of_constraint; i++)

{

OMADRMConstraintDescriptor constraint[i];

}

}

number_of_constraints: 4-bit number specifying the number of constraint descriptors (see below)

constraints_descriptor_length: length of all constraint descriptors in bytes which follow this field.

constraint_tag: Tag identifying the specific constraint_descriptor as listed below:

	Field: constraint_tag
	Description

	0x00
	count constraint

	0x01
	timed-count constraint

	0x02
	date time constraint

	0x03
	interval constraint

	0x04
	accumulated constraint

	0x05
	individual constraint

	0x06
	system constraint

	0x07-0xFF
	reserved for future use

6.2.5.1 Count constraint descriptor

class OMADRMCountConstraintDescriptor extends OMADRMConstraintDescriptor

: bit(8) constraint_id = 0x00

{

bit(8*length)

count;

}

length: The number of bytes used for the count field. Length SHALL NOT exceed 4, hence the maximum size of the count field can be 32 bits.

count: The number of times the content can be played. The field can be of size 8, 16, 24 and 32 bits.
6.2.5.2 Timed count constraint descriptor

class OMADRMTimedCountConstraintDescriptor extends OMADRMConstraintDescriptor

: bit(8) constraint_id = 0x01

{

bit(16)

timer;

bit(8*(length-2))
count;

}

length: The number of bytes following this field. The count field is length-2 bytes long and SHOULD NOT exceed 32 bits.

timer: Specifies the number of seconds after which the count state is reduced starting from beginning to render the content.

count: The number of times the content can be played. The field can be of size 8, 16, 24 and 32 bits.
6.2.5.3 Date-time constraint descriptor

class OMADRMDateTimeConstraintDescriptor extends OMADRMConstraintDescriptor

: bit(8) constraint_id = 0x02

{

bit(1)

start_flag;

bit(1)

end_flag;

bit(6)

reserved;

if (start_flag)

{

bit(40)

start_date;

}

if (end_flag)

{

bit(40)

end_date;

}

}

length: The number of bytes of the descriptor immediately following this field.

start_flag: 1-bit field. When set the descriptor contains a start time.

end_flag: 1-bit field. When set the descriptor contains a end time.

start_time: Time field with the semantics of ‘not before’ time for a permission. The start_time must be before the end_time if present.

end_time: Time field with the semantics of ‘not after’ time for a permission. The end_time must be after the start_time if present.

6.2.5.4 Interval constraint descriptor

class OMADRMIntervalConstraintDescriptor extends OMADRMConstraintDescriptor

: bit(8) constraint_id = 0x03

{

bit(8*length)

time_interval;

}

length: The number of bytes following this field. Length specifies the size of the time_interval field.

time_interval: Specifies the number of seconds starting from first receiving this BCRO that the permission is valid. The length of the field is given by the length field and SHOULD NOT exceed 32 bit.

6.2.5.5 Accumulated constraint descriptor

The accumulated_constraint_descriptor specifies the maximum period of metered usage time during which the rights can be exercised over the DRM content.

class OMADRMAccumulatedConstraintDescriptor extends OMADRMConstraintDescriptor

: bit(8) constraint_id = 0x04

{

bit(8*length)

accumulated_time;

}

length: The number of bytes following this field. Length specifies the size of the accumulated_time field.

accumulated_time: Specifies the maximum period of metered usage time during which the rights can be excercised. The period is given in seconds. The length of the field is given by the length field and SHOULD NOT exceed 32 bit.

6.2.5.6 Individual constraint descriptor

Constraint used to bind content to individuals. If the content should be bound to more than one individual multiple individual_constraint_descriptor(s) can be carried in one constraint object.

class OMADRMIndividualConstraintDescriptor extends OMADRMConstraintDescriptor

: bit(8) constraint_id = 0x05

{

bit(4)

reserved;

bit(4)

id_type;

bit(8*(length-1))
individual_id;

}

length: The number of bytes following this field. Length-1 specifies the size of the individual_id field.

id_type: Tag identifying format of the individual_id as listed below:

	Field: id_type
	Description

	0x0
	The individual_id field contains the IMSI number coded as 16 digit 4-bit BCD. The first digit SHALL be 0 and SHALL be ignored. The length of the individual_id field is 64 bit.

	0x1
	The individual_id field contains the PKC id of the WIM to which the content is bound.

	0x2-0xF
	reserved for future use

individual_id: Individual ID. The format and length of this field is identified by the identifier_type and length field see the table above.

6.2.5.7 System constraint descriptor

Constraint used identify systems to which the content and rights objects are allowed to be exported to.

class OMADRMSystemConstraintDescriptor extends OMADRMConstraintDescriptor

: bit(8) constraint_id = 0x06

{

bit(8)

constraint_tag;

bit(8)

length;

bit(64)

system_id;

}

length: The number of bytes following this field.

system_id: The system id of the system the content and RO can be exported to. This is the SHA1-64 encoded hash of the system name as registered with OMNA. [The values are registered with OMNA (currently only strings), we either use SHA1-64 to hash the strings or OMNA registers numbers for that as well]
6.3 Usage Metering

The metering feature allows content usage to be governed and eventually billed based on actual consumption of stateful permissions and constraints. This is required to support OMA BCAST requirement PROV-04. For example, if a user plays a particular content item 3 times in a month, he is billed on that consumption rather than having to specifically request 3 plays ahead of time.

The proposed metering mechanism can be used by both broadcast-only devices and devices with a backchannel. It allows the privacy of users to be protected as consumption does not necessarily have to be tracked by the rights issuer. This feature would be entirely optional as with features like transaction tracking in OMA DRM 2.0.

Metering in this proposal is based on tokens. A token can be exchanged for a certain amount of content usage, e.g. one token = 1 play or 30 minutes of usage of a content item. The service provider or broadcaster defines the consumption “value” of a single token. A user’s store of tokens can be used to use any content which is metered until that store is exhausted.

[image: image19.emf]Token

Store

= 10 tokens

OMA BCAST Device

OMA DRM

Agent

1 token

used

Content

RO

(Token = 30 minutes)

Mobile TV

Rights issuer

Figure 15: Token-based Metering

A number of extensions to OMA DRM 2.0 are required to support token-based metering

1. An extension to the REL to add a new stateful constraint for metering.

2. An extension to ROAP to allow a rights issuer to deliver tokens to a device.

3. An extension to ROAP to report consumption information to a rights issuer.

Extension to the OMA DRM 2.0 REL

Token-based consumption requires a new form of stateful constraint. The associated permission cannot be used unless there are sufficient tokens available to the device from this rights issuer. The difference between this constraint type and others like count is that the number of units defined by the constraint is not defined in the REL but depends on the number of tokens currently available to the device. Metered ROs will include the metering constraint.

The metering element will have the following 3 required attributes:

· token-constraint-type: The type of stateful constraint which is governed by token availability. Currently the only two suitable constraints in the REL are count and duration.

· token-unit: The unit of the specified constraint which corresponds to tokens being decremented, e.g. a single count or 30 minutes of time.

· tokens-consumed: Tokens consumed per token unit, e.g. 3 tokens consumed for every count.

The extensions to the REL DTD are shown below:

<!ELEMENT o-ex:constraint (o-dd:count?, oma-dd:timed-count?, o-dd:datetime?, o-dd:interval?, o-dd:accumulated?, o-dd:individual?, oma-dd:system*, o-dd:metering?>

<!ELEMENT oma-dd:metering>

<!ATTLIST oma-dd:metering

oma-dd:token-constraint-type (count | duration) #REQUIRED

oma-dd:token-unit PCDATA #REQUIRED

oma-dd:tokens-consumed PCDATA #REQUIRED>

>

An example of the usage of this constraint shown below instructs the DRM agent to consume two tokens every time that the corresponding content item is played.

<o-dd:play/>

<o-ex:constraint>

 <oma-dd:metering>

<oma-dd:tokenconstraint>count</o-dd:version>

<oma-dd:tokenunit>1</o-dd:tokenunit>

<oma-dd:tokensconsumed>2</o-dd:tokensconsumed>

 </oma-ex:metering>

</o-ex:constraint>

</o-ex:permission>

Token Delivery

ROAP would be extended to allow tokens to be delivered to a device. Either a 1-pass (for broadcast only devices) or 2-pass version of this element of ROAP could be used. The first element of this ROAP extension would be a trigger as shown in Figure 16.

<complexType name="TokenAcquisitionTrigger">

 <sequence>

 <element name="riID" type="roap:Identifier"/>

 <element name="nonce" type="roap:Nonce" minOccurs="0"/>

 <element name="roapURL" type="anyURI"/>

 <element name="tokenID" type="ID"/>

 <attribute name="id" type="ID"/>

</complexType>

Figure 16: Token Acquisition Trigger

The next element is a token request from the device to a rights issuer. This would be an extension of the existing ROAP request type.

	ROAP-TokenRequest

	Parameter
	Mandatory/Optional

	Device ID
	M

	RI ID
	M

	Device Nonce
	M

	Token ID
	M

	Certificate Chain
	M

	Signature
	O

Figure 17: Token Request Message Description

Device ID identifies the requesting Device.

RI ID identifies the authorizing RI.

Device Nonce is a nonce chosen by the Device.

Token ID identifies the tokens to be issued to this device.

Certificate Chain: This parameter is sent unless it is indicated in the RI Context that this RI has stored necessary Device certificate information. When present, the parameter value SHALL be as described for the Certificate Chain parameter in the ROAP-RegistrationRequest message.

Signature is a signature on this message (besides the Signature element itself). The signature method is as follows:

· The message except the Signature element is canonicalized using the exclusive canonicalization method defined in [XC14N].

· The result of the canonicalization, d, is considered as input to the signature operation.

· The signature is calculated on d in accordance with the rules of the negotiated signature scheme

The RI MUST verify the signature on the ROAP-TokenRequest message.

Finally the RI needs to issue the tokens to the device. In the 1-pass version, this is the only message exchanged between RI and device.

	Parameter
	ROAP-TokenResponse

	
	2-pass

Status = Success
	2-pass

Status ≠ Success
	1-pass

	Status
	M
	M
	M

	Device ID
	M
	-
	M

	RI ID
	M
	-
	M

	Device Nonce
	M
	-
	-

	Protected Tokens
	M
	-
	M

	Certificate Chain
	O
	-
	O

	Signature
	M
	-
	M

Figure 18: Token Response

Status indicates if the request was successfully handled or not. In the latter case an error code specified in Section 5.3.6 is sent.

Device ID identifies the requesting Device. The value returned here MUST equal the Device ID sent by the Device in the ROAP-TokenRequest message that triggered this response in the 2-pass ROAP. In the 1-pass ROAP, the RI selects the Device ID of the recipient Device. If the Device ID is incorrect, the ROAP-TokenResponse processing will fail and the Device MUST discard the received TokenResponse PDU.

RI ID identifies the RI. In the 2-pass protocol, the value MUST equal the RI ID sent by the Device in the preceding ROAP-RORequest message.

Device Nonce: This parameter, if present (2-pass), MUST have the same value as the corresponding parameter value in the preceding ROAP-TokenRequest.

Protected Tokens contains the number of tokens being issued and optionally a latest report time if the device must report token consumption for metered content to the RI. If a report has not been made by this time, then all access to metered content on the content should be blocked. Sensitive information in this part of the message should be encrypted.

Certificate Chain: This parameter MUST be present unless a preceding ROAP-TokenRequest message contained the Peer Key Identifier extension, the extension was not ignored by the RI, and its value identified the RI's current key. When present, the value of a Certificate Chain parameter shall be as described for the Certificate Chain parameter of the ROAP-RegistrationResponse message.

Signature is a signature on data sent in the protocol. The signature is computed using the RI's private key and the current message (besides the Signature element itself). The signature method is as follows:

· All elements except the Signature element are canonicalized using the exclusive canonicalization method defined in [XC14N].

· The resulting data d is considered as input to the signature operation.

· The signature is calculated on d in accordance with the rules of the negotiated signature scheme

The Device MUST verify this signature. A Device MUST NOT accept the token acquisition as successful unless the signature verifies, the RI certificate chain has been successfully verified, and the OCSP response indicates that the RI certificate status is good. If the acquisition protocol failed, the Device MUST NOT install the received tokens.

Reporting

A rights issuer may optionally request that a device report on token consumption. Reporting can be used to implement true post-paid billing. Reporting is only an option for devices with a back-channel. The first element required is an optional trigger. If a reporting date has been defined in the token response, then the trigger may not be required.

<complexType name="ReportingTrigger">

 <sequence>

 <element name="riID" type="roap:Identifier"/>

 <element name="nonce" type="roap:Nonce" minOccurs="0"/>

 <element name="roapURL" type="anyURI"/>

 </sequence>

</complexType>

Figure 19: Reporting Trigger

The report from the device is based on the ROAPRequest type.

	ROAP-ReportRequest

	Parameter
	Mandatory/Optional

	Device ID
	M

	RI ID
	M

	Device Nonce
	M

	Request Time
	M

	Token Info
	M

	Certificate Chain
	O

	Signature
	M

Figure 20: ROAP Report Request

Device ID identifies the requesting Device.

RI ID identifies the RI.

Device Nonce: This parameter, if present, MUST have the same value as the corresponding parameter value in the preceding trigger.

Request Time is the current DRM Time, as seen by the Device.

Token Info contains information on how many tokens were consumed since the last report.

Certificate Chain: This parameter MUST be present. The value of a Certificate Chain parameter shall be as described for the Certificate Chain parameter of the ROAP-RegistrationResponse message.

Signature is a signature on this message (besides the Signature element itself). The signature method is as follows:

· The message except the Signature element is canonicalized using the exclusive canonicalization method defined in [XC14N].

· The result of the canonicalization, d, is considered as input to the signature operation.

· The signature is calculated on d in accordance with the rules of the negotiated signature scheme

The RI MUST verify the signature on the ROAP-ReportRequest message.

Finally, the device must receive and process a ROAP-ReportResponse. The device should clear all token consumption information for the latest report period once this response has been received.

	ROAP-ReportRequest

	Parameter
	Mandatory/Optional

	Status
	M

	Device ID
	M

	RI ID
	M

	Device Nonce
	M

	Certificate Chain
	M

	OCSP Response
	O

	Signature
	M

Status indicates if the request was successfully handled or not. In the latter case an error code specified in Section Error! Reference source not found. is sent.

Device ID identifies the requesting Device, in the same manner as in the ROAP-DeviceHello message as specified in section Error! Reference source not found.. The value returned here MUST equal the Device ID sent by the Device in the ROAP-ReportRequest message that triggered this response in the 2-pass ROAP.

RI ID identifies the RI. The value MUST equal the RI ID sent by the Device in the preceding ROAP-ReportRequest message.
Device Nonce: This parameter MUST have the same value as the corresponding parameter value in the preceding ROAP-RORequest.

Certificate Chain: This parameter MUST be present and the value of a Certificate Chain parameter shall be as described for the Certificate Chain parameter of the ROAP-RegistrationResponse message

The Device SHOULD check if the RI certificate chain received in this parameter corresponds to stored certificate verification data for this RI. If so, the Device need not verify the RI certificate chain again, otherwise the Device MUST verify the RI certificate chain. If an RI certificate is received that is not in the stored certificate verification data for this RI, and if the expiry time of the received RI certificate is later than the RI Context for this RI, and the certificate status of the RI certificate as indicated in the OCSP response is good, then the Device MUST verify the complete chain and SHOULD replace the stored RI certificate verification data with the received RI certificate data and set the RI context expiry time to that of the received RI certificate expiry time.
OCSP Response: This parameter, when present, SHALL be a complete set of valid OCSP responses for the RI's certificate chain. The Device MUST NOT fail due to the presence of more than one OCSP response element. This parameter will not be sent if the Device sent the Extension No OCSP Response in a preceding ROAP-RegistrationRequest (and the RI did not ignore that extension). For the processing of this parameter, see further Section Error! Reference source not found..
Signature is a signature on data sent in the protocol. The signature is computed using the RI's private key and the current message (besides the Signature element itself). The signature method is as follows:

· All elements except the Signature element are canonicalized using the exclusive canonicalization method defined in [XC14N].

· The resulting data d is considered as input to the signature operation.

· The signature is calculated on d in accordance with the rules of the negotiated signature scheme

The Device MUST verify this signature. A Device MUST NOT accept the Report as successful unless the signature verifies, the RI certificate chain has been successfully verified, and the OCSP response indicates that the RI certificate status is good.

7. Subscriber Groups

7.1 Introduction

A subscriber group is a set of devices that share a group address along with cryptographic key material and algorithms that allow any subset of this group to be associated with a cryptographic key. A subscriber group can be cryptographically secure, which means that it has the additional property that any device from the group cannot deduce the distinct cryptographic keys for subsets that exclude the device.

The capability to address multiple devices using a single message provides for improved efficiency of the communication protocols. In particular it is very beneficial in the distribution of rights objects.

7.2 Addressing

7.2.1 Addressing Modes

Subscriber group addressing allows for three addressing modes, as is explained in figure 1 below.

[image: image20.wmf]

Subscriber group 3

Subscriber

group 1

Subscriber

group 2

Total

population

Subscriber

group 3

Subscriber

Group

subset

Unique

device

Whole

subscriber

group

Subscriber

group subset

1

3

2

Figure 1: Subscriber group concept

A whole subscriber group contains all devices in a group. A subscriber group subset can be smaller than or as large as the whole group. One or more subscriber groups form the population of devices.

The following sections describe the relation between the registration data and the Broadcast Rights Object (a.k.a. BCRO). The registration data is sent to the device after successful registration of the device. At a later stage the device may receive a BCRO as a means to obtain the content (encryption) key, which in turn is used to decrypt the encrypted AV content. When using subscriber group addressing, the content key is encrypted with a Deduced Encryption Key (DEK) by the RI.

There are three types of addressing possible.

[image: image21.wmf]Group address

Content key

type

1

[image: image22.wmf]Group address

Bit access mask

Content key

type

2

[image: image23.wmf]Group address

Position

Content key

type

3

Figure 21: Addressing modes

The first addressing mode addresses the whole subscriber group, each of which has a unique address. The second addressing mode allows the rights issuer to specify exactly which devices in a subscriber group may access the BCRO. This is done by adding a Eurocrypt style bit access mask to the group address. Each device in the subscriber group has a unique position in that group (determined at registration time). The bit in the bit access mask at this position determines whether the BCRo may be processed by a device.

The third addressing mode addresses a single unique device. This is achieved by appending the device’s position in the subscriber group to the subscriber group address.

7.2.3 Subscriber Group Identifier

To identify a subscriber group, a subscriber group subset or a subscriber group unique device, a new identifier type is required. The following schema defines the roap:SubscriberGroupIdentifier identifier:

<complexType name="SubscriberGroupIdentifier">

 <sequence>

 <element name="subscriberGroupBase" type="base64Binary"/>

 <choice minOccurs="0"/>

 <element name="subscriberAccessMask" type="base64Binary"/>

 <element name="subscriberPosition" type="base64Binary"/>

 </sequence>

</complexType>

If the <subscriberAccessMask> and the <subcriberPosition> element are not included in the roap:SubscriberGroupIdentifier, then the content of the <subscriberGroupBase> identifies the whole subscriber group. If the <subscriberAccessMask> is present, then the <subscriberGroupBase> identifies the group, and the mask value identifies which devices in that group are addressed. If the <subscriberPosition> is present, then the single device with the corresponding number in the group is addressed.
7.3 Confidentiality of Message Content

7.3.1 Introduction
If the subscriber group addressing is cryptographically secure, then it can be used very effectively to distribute a rights object to such a subset, where the content encryption keys in the rights object are protected with the distinct key associated with that particular subset. All devices in the subset can determine this key, and hence can decrypt the content encryption keys in the rights object. All other devices in the group cannot, and therefore cannot access the protected content.

7.3.2 Exponential Scheme

As there are 2n subsets of a group of n devices, a very inefficient way of implementing this scheme is to generate 2n distinct keys. Each device would be provided with the keys associated with all the subsets that include that device.

	Group size
	Number of subsets
	Number of keys per device

	1
	2
	1

	2
	4
	2

	4
	16
	8

	8
	256
	128

	16
	65536
	32768

	32
	4294967296
	2147483648

This is for all practical purposes completely unusable.

7.3.3 Linear Scheme

An easy optimisation of the grossly impractical scheme is to generate an exclusion key unique per device part of the group. Each device is given all exclusion keys, except its own exclusion key. For any subset of the group that is to be allowed to access content, one can define the complement subset. If all the exclusion keys of the devices in the complement subset are used in a key derivation function, then only those devices in the complement subset cannot compute all the key material required: they lack the key associated with themselves.

[image: image24.wmf]

d1

d2

d3

d4

d5

d6

d7

d8

Device exclusion keys

Encryption key for subset {d1,d2,d6}

xor

xor

xor

xor

Figure 5 Derivation of an encryption key associated with a subset of the group

The figure shows the derivation of an encryption key for the subset {d1, d2, d6}. The derivation function used here is the bitwise XOR. Each of the devices from the complement subset {d3, d4, d5, d7, d8} will find that its key is used in this derivation. Consequently neither of the devices from the complement subset can compute the encryption key. For example, device d4 cannot compute the required:

d3 XOR d4 XOR d5 XOR d7 XOR d8

because it only knows d1, d2, d3, d5, d6, d7 and d8.

The size of the key material to be distributed now scales linear with the size of the group. This is a big improvement over the exponential scaling of the naïve approach.

	Group size
	Number of subsets
	Number of keys per device

	1
	2
	0

	2
	4
	1

	4
	16
	3

	8
	256
	7

	16
	65536
	15

	32
	4294967296
	31

	64
	1.84 x 1019
	63

	128
	3.40 x 1038
	127

	256
	1.16 x 1077
	255

	512
	1.34 x 10154
	511

	1024
	1.80 x 10308
	1023

This is a great improvement, and can make the scheme already practical for modest group sizes.

7.3.4 Logarithmic Scheme

In [Broadcast Encryption, Advances in Cryptology - CRYPTO ’93 Proceedings, Lecture Notes in Computer Science, Vol. 773, 1994, pp. 480–491, A. Fiat, M. Noar] the authors provide a scheme of hierarchical key derivations. Under this scheme, each device is provided key material that allows on-demand computing of the keys associated with all other devices in the group, except itself. The following picture shows schematically how this operates:

[image: image25.wmf]

d1

d2

d3

d4

d5

d6

d7

d8

Key derivation function ‘Left’

Key derivation function ‘Right’

Figure 6 Fiat-Naor key derivation scheme

The figure shows the application of two similar, but different, key derivation algorithms. From a single key, two child keys can be derived using these two distinct functions. A tree hierarchy of keys can thus be formed. The complete tree is determined completely by the two key derivation functions and the single root key.

This scheme allows an efficient version of the linear scheme. Instead of distributing all keys (except its own) to a device, now only a few keys from the tree need to be distributed to each device. It can be shown that instead of n-1 keys, now it is sufficient to distribute log2n keys to each device.

	Group size

(n devices)
	Total number of keys in the group

	Number of keys per device

	
	Linear scheme

n x (n-1)
	Logarithmic scheme

n x log2n
	Linear scheme

(n-1)
	Logarithmic scheme

log2n

	1
	0
	0
	0
	0

	2
	2
	2
	1
	1

	4
	12
	8
	3
	2

	8
	56
	24
	7
	3

	16
	240
	64
	15
	4

	32
	992
	160
	31
	5

	64
	4032
	384
	63
	6

	128
	16256
	896
	127
	7

	256
	65280
	2048
	255
	8

	512
	261632
	4608
	511
	9

	1024
	1047552
	10240
	1023
	10

	…
	
	
	
	

	1048576
	1.10 x 1012
	20971520
	1048575
	20

A practical limit to the subscriber group size is given by the need to communicate which subset of the group is selected to access particular content. This is typically done with a bitvector, indicating which devices are included in the subset. For each communication to a specific subset, such a bitvector of n bits length must be added in order for the devices to determine the used encryption key.

It must be noted that if the subset of devices allowed to access content is the whole group, then the derivation of the content encryption key fails, because there is no device key at all to include in the key derivation algorithm. To address this issue, one can provide all devices with one additional key special key, to be used when the whole group is addressed.

7.3.5 Subscriber Group Key Material

Each subscriber group has a single unique group key that is used to protect the confidentiality of sensitive broadcast information when the subscriber group is addressed as a whole. This unique group key (UGK) is transferred to each device in the subscriber group upon registration with the rights issuer. The UGK is shared between all devices in the same subscriber group.

Each device in a subscriber group also has a unique device key that is used to protect the confidentiality of sensitive broadcast information when device addressing is used (subscriber group address and subscriber position), This unique device key (UDK) is transferred to the device upon registration with the rights issuer.

Each device in a subscriber group also has a set of node keys NKi that is used to compute a derived key (DK) to protect the confidentiality of sensitive broadcast information when device addressing is used (subscriber group address and subscriber position), This set of node keys is transferred to the device upon registration with the rights issuer.

Each node key NKi is associated with a node number. The nodes from the subscriber group key derivation tree are sequentially numbered in a breadth-first manner, starting from the root node with number 0.

[image: image26.wmf]

0

13

14

6

7

8

4

9

11

5

12

1

3

2

10

i

2i+1

2i+2

Figure 1 Subscriber Group Node (and Node Key) Numbering

Each device gets a set of node keys such that it can apply the key derivation functions ‘left’ and ‘right’ to compute the node keys of all leaf nodes, except of the leaf node that is associated with its own position. The relation between subscriber position and associated leaf node number is:

leaf node number = subscriber position + subscriber group size – 1

Each node in the subscriber group key tree can be associated also with a depth in the tree. The root node has depth 0, its child nodes 1 and 2 have depth 1. In general, the child nodes of a node with depth d have depth d+1. With this defined, the set of node keys has the following property: all nodes associated with the node keys given to a device have different depth, and the root node is not part of this set.

7.3.6 Consistency

For any device position, it is easy to derive the node numbers of the key nodes for which the keys must be included in the set of node keys for that device. If sibling(node) yields the unique node that has the same parent as node, parent(node) yields the parent node of node, and key(node) yields the key associated with node, then the following algorithm yields all the nodes of which the key must be included in the device’s set of derivation keys:

KeySet = (
while node (root

node := sibling (node)

KeySet := KeySet (key(node)

node := parent(node)

end

With this algorithm it is easy to check the consistency of the key set and the subscriber position given to a device.

8. Broadcast Service Support

8.1 Referencing Broadcast Service as Content

This should hold any extension that would be required by the way the BCAST group is defining how broadcast services are to be referenced using ContentID’s.

8.2 Re-Keying

This should hold any extension that would be required by the way the BCAST group is defining how (service) encryption keys are to be managed (periodically replaced).

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

	
	
	

	
	
	

A.2 Draft/Candidate Version V1_0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-DRM-XBS-V1_0
	21 Feb 2005
	n/a
	First draft outline based on input to the joined committees (BAC-DLDRM and BAC-BCAST):

 OMA-BCAST-2005-0048-Joint-BCAST-DRM-Task-Workplan

as well as discussions and contributions to the email reflector (prioritisation of work items).

	
	15 Mar 2005
	6.3
	Processed CR: OMA-BCAST-2005-0100R01-token-based-metering (approved at the Chicago BCAST/DLDRM joint meeting).

	
	17 Mar 2005
	6.1 & 6.2

7
	Processed CR: OMA-DLDRM-2005-0064-Broadcast-Rights-Object

(approved in conference call 17 mar 2005)

Processed CR: OMA-DLDRM-2005-0071R01-subscriber-group-addressing

(approved in conference call 17 mar 2005)

	
	8 Apr 2005
	5.1

5.1

5.1
	Processed CR: OMA-DLDRM-2005-0085R01-offline-notification-of-detailed-device-data

(approved in conference call 6 apr 2005)

Processed CR: OMA-DLDRM-2005-0086-Push-binary-Device-Registration-data

(approved in conference call 6 apr 2005)

Processed CR: OMA-DLDRM-2005-0087R01-offline-notification-of-short-device-data

(approved in conference call 6 apr 2005)

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [IOPPROC].

� Note: It is the sequence of the defined values that is specified. The use of dashes as the delimiter is shown with an example placement to be consistent with the examples used elsewhere in this specification. The text portion of this screen is shown as an example only; there is no implied requirement to duplicate the exact wording or formatting shown. The numeric fields MUST be included as defined above (please note: the short UDN will only be displayed after the first registration, when that data MAY available for display).

� Note: It is the sequence of the defined values that is specified. The use of dashes as the delimiter is shown with an example placement to be consistent with the examples used elsewhere in this specification. The text portion of this screen is shown as an example only; there is no implied requirement to duplicate the exact wording or formatting shown. The numeric fields MUST be included as defined above (please note: the short UDN will only be displayed after the first registration, when that data MAY available for display

(2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20050101-I]
(2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20050101-I]

_1173621832.vsd
[1] notify "request"�

[2] wait�

[3] check�

[4] send data�

Customer / Device�

Service Operator / RI�

_1174125364.unknown

_1174125459.unknown

_1174129499.doc

10

4

9

8

7

3

1

0

5

11

12

2

6

13

14

i

2i+1

2i+2

_1174125186.unknown

_1171282232.vsd
[1] notify device data�

[2] enter reg. mode�

Customer / Device�

Service Operator / RI�

_1171282375.vsd
[1] send registr. data�

Customer / Device�

Service Operator / RI�

ROT / PKI+CRL�

_1172925010.vsd
In order to start service with this device
 please contact customer service at:
XXXX-XXX-XXXXXXX

Unique Device Number (UDN):
XXXX XXXX XXXX XXXX XXXX

short UDN:
XXXX XXXX
 �

In order to start service with this device
 please send an SMS with the UDN below to the following phone number:
XXXX-XXX-XXXXXXX

Unique Device Number (UDN):
XXXX XXXX XXXX XXXX XXXX

short UDN:
XXXX XXXX
 �

An example dialogue showing instructions for vocal notification of UDN to callcenter�

An example dialogue showing instructions for notification of UDN per SMS to callcenter�

_1173009739.vsd
text�

�

�

�

�

�

�

NK14
LK8�

NK13
LK7�

NK12
LK6�

�

NK11
LK5�

NK10
LK4�

NK9
LK3�

�

�

D4�

D3�

NK4�

NK8
LK2�

R�

�

NK1�

NK7
LK1�

D2�

D1�

NK2�

NK3�

�

�

D6�

D5�

NK5�

�

�

�

D8�

D7�

NK6�

_1172402599.doc

Subscriber group 1

Subscriber group 2

Subscriber group 3

Total population

Subscriber group 3

Subscriber

Group subset

Unique device

Whole subscriber group

Subscriber group subset

1

3

2

_1170770744.vsd

Entire population�

�

�

Unique group I�

Unique group II�

Unique group III
with f.e. 256 devices�

Broadcast group. F.e. �sport��

2�

3�

Priviliged set (preferred use)
Adress unique group? use unique group key.
Address < unique group? use broadcast group key.
Address only 1 device? use unique device key.�

1�

_1172405627.doc

d1

d2

d4

d3

d8

d7

d6

d5

Encryption key for subset {d1,d2,d6}

Device exclusion keys

xor

xor

xor

xor

_1171444797.vsd
surplus_block
(AES encrypted)�

Sessionkey_block
(RSA encrypted)�

Signature_block
(RSA signature)�

(optional) Remainder of keyset_block that did not fit into RSA block�

SK (plus part of keyset_block that fits into RSA block (size)�

RSA signature�

Message �header�
(in the clear)�

All but input for keyblocks below�

Keyset_block
(AES encrypted)�

_1171282286.vsd
[1] notify "request"�

Customer / Device�

Service Operator / RI�

_1170849333.vsd
Group address�

Bit access mask�

Content key�

type�

2�

_1171273801.vsd
Short_udn�

Action_code�

Checksum�

_1171273947.vsd
In order to start the requested action
 please contact customer service at:
XXXX-XXX-XXXXXXX

action request code:
XXXX XXXX XXXX
�

An example dialogue showing instructions for vocal notification of ARC to callcenter�

In order to start the requested action
 please send an SMS with the short request code (NSD) below to the following phone number:
XXXX-XXX-XXXXXXX

action request code:
XXXX XXXX XXXX�

An example dialogue showing instructions for notification of ARC per SMS to callcenter�

_1171277650.vsd
[1] notify device data�

[2] wait�

[3] cert. & cap. request�

[4] validate�

[5] cert. & cap. data�

[6] check�

[7] send registration data�

Customer / Device�

Service Operator / RI�

ROT / PKI+CRL�

_1170849351.vsd
Group address�

Position�

Content key�

type�

3�

_1171259802.doc

d1

d2

d4

d3

d8

d7

d6

d5

Key derivation function ‘Right’

Key derivation function ‘Left’

_1170585888.vsd
Issuer identifier�

Device serial number�

Checksum�

MII�

Issuer ID�

ROT ID�

_1170849319.vsd
Group address�

Content key�

type�

1�

_1170257600.vsd
Device global data
(in the clear)�

Device specific data
�

�

Key material (encrypted)�

Other device data (in the clear)�

Longform_udn�

signature�

Message_tag�

Signature over complete message�

