OMA-TS-SCE_GEN-V1_0-20080922-D
Page 13 V(31)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	SCE Generic Mechanisms

	Draft Version 1.0 – 22 Sep 2008

	Open Mobile Alliance

	OMA-TS-SCE_GEN-V1_0-20080922-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

51.
Scope

2.
References
6
2.1
Normative References
6
2.2
Informative References
6
3.
Terminology and Conventions
7
3.1
Conventions
7
3.2
Definitions
7
3.3
Abbreviations
7
4.
Introduction
8
4.1
Communications Model
8
4.2
Contexts
9
4.2.1
ResContext
9
4.2.2
ReqContext
9
5.
Generic XML Schema
10
5.1
Requirements
10
5.2
Canonicalization & Digital Signatures
10
5.3
Identifiers
12
5.4
Nonce
12
5.5
Trigger
12
5.6
Request
14
5.7
Response
15
5.7.1
Processing Results
15
6.
Generic Registration Protocol
17
6.1
Registration Trigger
17
6.2
Hello Request
17
6.3
Hello Response
19
6.4
Registration Request
20
6.4.1
RegReqInfo
21
6.5
Registration Response
21
6.5.1
RegResInfo
22
7.
Cryptographic Components
24
7.1
RSAES-KEM-KWS
24
7.2
KDF
24
7.3
AES-WRAP
25
8.
Capability signalling
26
9.
Generic Transport Mappings
27
10.
Security Considerations (Informative)
28
10.1
Security scope for SCE
28
Appendix A.
Change History (Informative)
30
A.1
Approved Version History
30
A.2
Draft/Candidate Version 0.1 History
30
Appendix B.
Static Conformance Requirements (Normative)
31
B.1
SCR for XYZ Client
31
B.2
SCR for XYZ Server
31

Figures

8Figure 1 - Communications Model

Figure 3: Example implementation
29

Tables

16Table 1: Generic Error Messages

Table 2: Registration Trigger Message Parameters
18
Table 3: Hello Request Message Parameters
19
Table 4: Hello Response Message Parameters
20
Table 5: Registration Request Message Parameters
21
Table 6: Registration Response Message Parameters
23

1. Scope

Open Mobile Alliance (OMA) specifications are the result of continuous work to define industry-wide interoperable mechanisms for developing applications and services that are deployed over wireless communication networks.

The scope of OMA “Digital Rights Management” (DRM) is to enable the distribution and consumption of digital content in a controlled manner. The content is distributed and consumed on authenticated devices per the usage rights expressed by the content owners. OMA DRM work addresses the various technical aspects of this system by providing appropriate specifications for content formats, protocols, and a rights expression language.

A number of DRM specifications have already been defined within the OMA. The latest accepted release of the OMA DRM enabler ([OMADRM20], including [DRMDRM20], [DRMDCF20], [DRMREL20]), is referred to within this document as “OMA DRM 2.0”.

This specification defines the generic mechanisms that are shared by the various specification documents that consititute the SCE enabler.

2. References

2.1 Normative References

	[OMADRM20]
	The OMA DRM 2.0 enabler as described in “Enabler Release Definition for DRM V2.0,
Approved Version 2.0”, OMA-TS-DRM-DRM-V2_0-20060303-A, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[DRMDRM20]
	“DRM Specification, Approved Version 2.0”,
OMA-TS-DRM-DRM-V2_0-20060303-A, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[DRMREL20]
	“DRM Rights Expression Language, Approved Version 2.0”,
OMA-TS-DRM-REL-V2_0-20060303-A, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[DRMDCF20]
	“DRM Content Format, Approved Version 2.0”,
OMA-TS-DRM-DCF-V2_0-20060303-A, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[DRMRD-SCE]
	“Secure Content Exchange Requirements, Draft Version 1.0”,
OMA-RD-SCE-V1_0-20060908-D, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[DRMAD-SCE]
	“Secure Content Exchange Architecture, Draft Version”,
OMA-AD-SCE-Vx_y-D, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[DRMDRM-SCE]
	“DRM Specification – SCE Extensions, Draft Version”,
OMA-TS-DRM-DRM-SCE-Vx_y-D, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[DRMREL-SCE]
	“DRM Rights Expression Language – SCE Extensions, Draft Version”,
OMA-TS-DRM-REL-SCE-Vx_y-D, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[DRMDCF-SCE]
	“DRM Content Format – SCE Extensions, Draft Version”,
OMA-TS-DRM-DCF-SCE-Vx_y-D, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[DRMLRM-SCE]
	 “DRM Local Rights Management, Draft Version”,
OMA-TS-DRM-LRM- SCE-Vx_y-D, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[DRMDOM-SCE]
	“DRM User Domains, Draft Version”,
OMA-TS-DRM-DOM-SCE-Vx_y-D, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[DRMA2A-SCE]
	“DRM Agent-to-Agent transfer, Draft Version”,
OMA-TS-DRM-REL- SCE-Vx_y-D, Open Mobile AllianceTM,
URL:http://www.openmobilealliance.org/

	[XML-SCHEMA]
	TBD

	
	

	
	

2.2 Informative References

	 [OMADICT]
	“Dictionary for OMA Specifications”, Version x.y, Open Mobile Alliance™,
OMA-ORG-Dictionary-Vx_y, URL:http://www.openmobilealliance.org/

	
	

	
	

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	Requester
	An entity that sends a request message to a Responder.

	ReqContext
	A logical context of data needed for communications with a Requester. A Responder maintains a ReqContext for each Requester it communicates with.

	Responder
	An entity that receives a request message from a Requester, processes the request and sends a response message to the Requester.

	ResContext
	A logical context of data needed for communications with a Responder. A Requester maintains a ResContext for each Responder it communicates with.

3.3
Abbreviations

	DA
	Domain Authority

	DEA
	Domain Enforcement Agent

	DRM
	Digital Rights Management

	OMA
	Open Mobile Alliance

	LRM
	Local Rights Manager

	MK
	Message Integrity Key

	RI
	Rights Issuer

	RI/LRM
	RI or LRM

	RO
	Rights Object

	ROAP
	Rights Object Acquisition Protocol

	SA
	Security Association

	SCE
	Secure Content Exchange

	SK
	Session Key

	URL
	Uniform Resource Locator

	XML
	Extensible Markup Language

4. Introduction

The SCE enabler defines five entities: RI, DA, DEA, DRM Agent and LRM and various interfaces between these entities. This document defines a generic framework for the XML protocols between these entities. This framework contains of:

· A client-server model for communications

· A generic set of XML Schema type definitions

· A generic set of cryptographic components

· A generic set of transport mappings for XML messages

· A generic capability signalling mechanism.

This document provides a basis for the communications specified in [SCE-DOM], [SCE-DRM], [SCE-LRM].
4.1 Communications Model

The SCE enabler assumes a client-server model for the communications between the defined entities. In general, a Requester (the client) sends a request message to a Responder (the server). The Responder processes the message and sends a response message to the Requester. However, it is possible for a Responder to send a trigger message to a Requester that causes the Requester to send a request message. The message flow is depicted in the following figure.

[image: image2.png]1 - Trigger

2 - Request A

3 - Response A

5 - Response B

|
|
4 - Request B 4>|
|
|

Figure 1 - Communications Model
In this flow, the Requester and Responder are SCE entities. The SCE enabler defines messages 1 through 5. By definition, messages 2 through 5 constitute the SCE protocol, which is triggered by message 1.

An SCE protocol is typically preceded by other interaction and communications (e.g. a browsing session) between both entities and may involve a human. This interaction and communications is outside the scope of the SCE enabler. In addition, the actual tranport of the messages is outside the scope.
Please note that Figure 1 is a generic case. Some protocols may be initiated through other means than via a trigger. A protocol may consist of any number of requests and responses.

4.2 Contexts
In general, a Requester will “register” with a Responder to enable further communications. As a result of the registration process, the Requester will establish a logical ResContext and the Responder will establish a logical ReqContext.
ResContext

A Requester establishes this logical context after registering with a Responder. A Requester can have multiple ResContext’s but only one per Responder. If the Requestor does not have a ResContext or the ResContext is expired, then the Requestor MUST only execute a registration protocol. At a minimum, the ResContext consists of the following information:
· ID of the Requestor

· ID of the Responder
· The certificate chain for the Responder or a validation indicator for the chain
· The URL used to send request messages

· The selected version of the protocol
· The selected security algorithms
· The Session Key (SK)

· The Message Integrity Key (MK)

Depending on the Responder, the following information may also be present in the context.
· An alias for the Responder
· A whitelist of fully qualified domain names that are trusted
· OCSP verification data

This context expires when the Responder’s certificate expires. Note that any cached OCSP responses have their own validity period, which normally will be much earlier than the expiration of the ResContext. Per [OCSP-MP], if an OCSP response does not have the nextUpdate present, then the Requester MUST not cache the OCSP response.

4.2.1 ReqContext

A Responder establishes this logical context after registering with a Requester. A Responder can have multiple ReqContext’s but only one per Requester. If the Responder does not have a ReqContext or the ReqContext is expired, then the Responder MUST only accept a registration protocol from the Requester. At a minimum, the ReqContext consists of the following information:

· ID of the Requester
· ID of the Responder
· The certificate chain for the Requester or a validation indicator for the chain
· The version of the protocol
· The selected security algorithms
· The Session Key (SK)

· The Message Integrity Key (MK)

This context expires when the Requester’s certificate expires.
5. Generic XML Schema
5.1 This specification defines a generic XML schema that can be used by other specifications of the SCE enabler.
XML data types defined in this section are building blocks that are used by protocol messages. Specific protocol parameters are defined in the other specifications that constitute the SCE enabler. The schema for the

5.2
protocol messages has been designed to be extensible.

5.3 Requirements

Some protocol exchanges rely on the parties being able to compare received values with stored values. Unless otherwise noted, all elements in this document that have the XML Schema "string" type, or a type derived from it, MUST be compared using an exact binary comparison. In particular, implementations MUST NOT depend on case-insensitive string comparisons, normalization or trimming of white space, or conversion of locale-specific formats such as numbers.

The SCE enabler does not define a collation or sorting order for attributes or element values. SCE entities MUST NOT depend on specific sorting orders for values.

SCE entities MUST support at least 256 byte long values for attributes or elements of type anyURI in the schemas specified in this specification. Implementations are RECOMMENDED to use values that are less than 256 bytes in length for such elements or attributes.

In this version and minor upgrade of the specification, the namespace URI for the generic XML Schema for SCE is “urn:oma:drm:sce:gen”. For the sake of convenience, this specification calls the generic XML Schema for SCE as the GEN schema and uses the namespace prefix for the GEN schema namespace as “gen”.
5.4 Canonicalization & Digital Signatures

This specification makes use of digital signatures and message authentication codes (MACs) to ensure integrity and authenticity of exchanged information. All SCE entities MUST support RSA-PSS [PKCS-1] as default digital signature scheme but MAY agree to use a different one. DRM Agents and RIs MUST send all XML messages and triggers in canonicalized form. After canonicalization, DRM Agents and RIs MUST NOT employ any subsequent transformations or modifications to a protocol message.

Note that all XML messages and triggers are XML 1.0 data. XML messages and triggers MUST validate against the SCE schema [SCHEMA_SUPPORT_FILE] and MUST not use namespace prefixes other than those used in that schema.

All canonicalization required by this specification MUST be the XML Exclusive Canonicalization without comments ([XC14N]) and MUST be signalled explicitly. The InclusiveNamespaces PrefixList of this algorithm MUST be empty. This also applies to any canonicalization step required by any of the specifications that are normatively referred to by this specification, unless such a referred specification explicitly requires a different canonicalization algorithm.

In case canonicalization is to be performed on an XML document as a whole or part of a XML document, the effect SHALL be functionally equivalent to the process of parsing the XML document into an XPath node set, applying XPath expression evaluation to select the proper nodes from this node-set, and subsequently applying Exclusive Canonicalisation without comments to produce the octet-string that is subject to further processing.

Note that this specification does not require any implementation to explicitly implement XPath processing. An implementation MAY utilise the fact that received messages are in Exclusive Canonical Form to implement functional equivalences of XPath based processing.
Identifiers

SCE protocols require identification of the Requester and the Responder. The only generic identifier currently defined is the hash of the public key info, as it appears in the certificate of the entity (i.e. the hash of the complete DER-encoded subjectPublicKeyInfo component in the certificate). The default hash algorithm is SHA-1. In case an entity holds multiple public keys, the Requester and Responder MUST select one of these public keys during registration (see section xxx) and MUST use the corresponding identifier in all subsequent protocols. Other identifiers are allowed but interoperability when using them is not guaranteed.

<complexType name="Identifier">

<choice>

<element name="keyIdentifier" type="gen:KeyIdentifier"/>

<any namespace="##other" processContents="strict"/>

</choice>

</complexType>

<complexType name="KeyIdentifier" abstract="true"/>

<complexType name="X509SPKIHash">

<complexContent>

<extension base="gen:KeyIdentifier">

<sequence>

<element name="hash" type="base64Binary"/>

</sequence>

<attribute name="algorithm" type="anyURI" default="http://www.w3.org/2000/09/xmldsig#sha1"/>

</extension>

</complexContent>

</complexType>

<complexType name="KeyIdentifiers">

<sequence minOccurs="0" maxOccurs="unbounded">

<element name="keyIdentifier" type="gen:KeyIdentifier"/>

</sequence>

</complexType>

5.5 Nonce

A Nonce is defined by the following XML schema fragment:

<simpleType name="Nonce">

<restriction base="base64Binary">

<minLength value="14"/>

</restriction>

</simpleType>

The Nonce type is used to carry arbitrary values in the protocol messages. A nonce, as the name implies, must be used only once. For each message that requires a nonce element to be sent, a fresh nonce SHALL be generated randomly each time. Nonce values MUST be at least 14 octets long and are carried as a base64-encoded strings.
When a nonce value is sent in a response message (section 5.7), the value MUST be the value of the <nonce> element of the previous request message (section 5.6).
5.6 Trigger
A Responder may send a Trigger message to cause a Requestor to initiate a particular protocol. The following XML schema fragment defines a generic <trigger> message:

<element name="trigger" type="gen:Trigger"/>

<complexType name="Trigger">

<sequence>

<element name="body" type="gen:TriggerBody"/>

<element name="signature" type="base64Binary" minOccurs="0"/>

</sequence>

<attribute name="type" type="gen:String80" use="required"/>

<attribute name="version" type="gen:Version" use="required"/>

</complexType>

<complexType name="TriggerBody">

<sequence>

<element name="resID" type="gen:Identifier"/>

<element name="resAlias" type="gen:String80" minOccurs="0"/>

<element name="nonce" type="gen:Nonce" minOccurs="0"/>

<element name="reqURL" type="anyURI"/>

<element name="trgInfo" type="gen:TriggerInformation" minOccurs="0"/>

<any minOccurs="0" maxOccurs="unbounded" processContents="lax"/>

</sequence>

<attribute name="id" type="ID"/>

</complexType>

<complexType name="TriggerInformation" abstract=”true”>

<sequence>

<any minOccurs="0" maxOccurs="unbounded" processContents="lax"/>

</sequence>

</complexType>
type:
This attribute is used to identify the trigger type which in turn specifies the targeted protocol. The trigger types defined in the SCE Enabler are specified either in this specification or in other SCE specifications.

version: This attribute is a <major.minor> version representation of the trigger. For this version of the specification, the value of this attribute SHALL be set to "1.0".
body: This element contains child elements described below.
resID: This element identifies the Responder. The Requester MUST use this value to verify that it has a valid ResContext with the Responder. If the Requester does not have a valid ResContext with the identified Responder then the Requester MUST initiate the registration protocol of the protocol suite before initiating the protocol indicated by the <drmTrigger> element. If the implicitly triggered registration protocol does not lead to a valid ResContext with the identified Responder, then the Requester MUST discard the trigger.

resAlias: This element, if present, contains a string value that SHALL be used by the Requester whenever it refers to the Responder in a dialog with the user and it SHALL be saved in the ResContext for future use. An example for such a dialog would be the question whether or not the user would like to register with a certain Responder after receiving a trigger. The maximum length of this element SHALL be 80 bytes.

nonce: This element provides a way to couple triggers with protocol requests. If present, the Requester will use this value as the triggerNonce attribute of the request that is to be triggered (see section 5.5).
reqURL: This element contains the URL that MUST be used by the Requester to send the first request message of the triggered protocol.
trgInfo: This element, if present, contains additional information that is required by the triggered protocol. This element is of type TriggerInformation which is abstract. Thus, any concreted trigger that needs this element, MUST define a concrete TriggerInformation.
signature:

This element, if present, is a signature over the trigger besides the <signature> element itself. Before a Requester has registered with a Responder, the <signature> element is generally a public key signature (the default is an RSA-PSS signature). After a Requestor has registered with a Responder, the <signature> element is generally a MAC signature using the negotiated algorithm (the default is an HMAC-SHA-1 signature) and the MK received during registration.
5.7 Request
A Requester sends a Request message to a Responder when executing a protocol. The following XML schema fragment defines a Request message:
<complexType name="Request" >

<sequence>

<element name="reqID" type="gen:Identifier"/>

<element name="resID" type="gen:Identifier"/>

<element name="nonce" type="gen:Nonce" minOccurs="0"/>

<element name="certificateChain" type="gen:CertificateChain" minOccurs="0"/>

<element name="reqInfo" type="gen:RequestInformation" minOccurs="0"/>

<element name="signature" type="base64Binary" minOccurs="0"/>

</sequence>

<attribute name="triggerNonce" type="gen:Nonce"/>

<attribute name="sessionID" type="gen:String64"/>

</complexType>
<complexType name="RequestInformation" abstract=”true”>

<sequence>

<any minOccurs="0" maxOccurs="unbounded" processContents="lax"/>

</sequence>

</complexType>
triggerNonce: This attribute, if present, MUST contain the value of the <nonce> element sent in a <trigger> message.
sessionID: TBD

reqID: This element contains the identity of the Requester. If the request message is part of a registration protocol, this element contains the identity that the Requester plans to register with. Otherwise, the Requester MUST set this value to equal the Requester’s ID that was stored in the ResContext during registration with the Responder.

resID: This element contains the identity of the intended Responder. The Requester MUST set this value to equal the <resID> that was stored in the ResContext during registration with this Responder. TBD: what if the Requestor has not registered with the Responder and hence there is no ResContext?
nonce: This element, if present, contains a nonce randomly generated by the Requester. Nonces are generated and used as specified in section 5.4.

certificateChain: This element, if present, contains the Requester’s certificate chain. It is sent unless it is indicated in the ResContext that the Responder has stored the necessary certificate information. When present, the parameter value SHALL be as described for the certificateChain parameter in the registration protocol of the protocol suite. TBD: How do you know which registration protocol?
reqInfo: This element, if present, contains additional information about the request message. This element is of type RequestInformation, which is abstract. Any concrete request should define a concrete RequestInformation element.
signature: This element, if present, is a signature over the message besides the <signature> element itself. Before a Requester has registered with a Responder, the <signature> element is generally a public key signature (the default is an RSA-PSS signature). After a Requestor has registered with a Responder, the <signature> element is generally a MAC signature using the negotiated algorithm (the default is an HMAC-SHA-1 signature) and the MK received during registration..
5.8 Response
A Responder sends a Response message to a Requestor after processing a Request message. The following XML schema fragment defines a Response message:
<complexType name="Response">

<sequence>

<element name="reqID" type="gen:Identifier"/>

<element name="resID" type="gen:Identifier"/>

<element name="nonce" type="gen:Nonce" minOccurs="0"/>

<element name="certificateChain" type="gen:CertificateChain" minOccurs="0"/>

<element name="ocspResponse" type="base64Binary" minOccurs="0"/>

<element name="resInfo" type="gen:ResponseInformation" minOccurs="0"/>

<element name="signature" type="base64Binary" minOccurs="0"/>

</sequence>

<attribute name="status" type="gen:String80" use="required"/>

<attribute name="errorMessage" type="gen:String1024"/>

<attribute name="errorRedirectURL" type="anyURI"/>

<attribute name="sessionID" type="gen:String64"/>

</complexType>
<complexType name="ResponseInformation" abstract=”true”>

<sequence>

<any minOccurs="0" maxOccurs="unbounded" processContents="lax"/>

</sequence>

</complexType>
status: This attribute is described in section 5.7.1 below.

errorMessage: This attribute is described in section 5.7.1 below.

errorRedirectURL: This attribute is described in section 5.7.1 below.
sessionID: This attribute, if present, TBD.
reqID: This element identifies the Requester. The value of this element is copied from the <reqID> element in the received request message. If the Responder does not have a ReqContent for the Requester and the request is considered invalid, the Responder MUST respond with a response message with the status attribute set to “NotRegistered”.

resID: This element identifies the Responder. The Responder MUST set this value to equal the <resID> that was stored in the ResContext during registration with this Requester. If the Responder does not have a ResContext for the Requester, then it MUST choose a value as specified in Error! Reference source not found..

nonce: This element contains a nonce chosen by the Responder or a nonce received from the Requester. Nonces are generated and used as specified in section 5.3.12. TBD: Section 5.3.12 does NOT specify how nonces are used.
certificateChain: This element, if present, contains the certificate chain for the Responder. This element is present unless it is indicated in the ReqContext that the Responder has stored the necessary certificate information.
ocspResponse: This element, if present, contains an OCSP response for the Responder. TBD.

resInfo: This element, if present, contains additional information about the Response. This element is of type ResponseInformation, which is abstract. Any concrete response should define a concrete ResponseInformation element.
signature: This element, if present, is a signature over the message besides the <signature> element itself. Before a Requester has registered with a Responder, the <signature> element is generally a public key signature (the default is an RSA-PSS signature). After a Requestor has registered with a Responder, the <signature> element is generally a MAC signature using the negotiated algorithm (the default is an HMAC-SHA-1 signature) and the MK received during registration.
Request Processing Results
After receiving a Request message, the Responder MUST process the message and send a Response message to the Requester with the result of the processing. The result is indicated in the status attribute of a Response message. The following table lists the valid values for the status attribute.

Table 1 - Values
for the status attribute

	Value
	Description

	Success
	The Request message was processed message successfully.

	Abort
	The Request message was rejected for unspecified reasons.

	NotSupported
	The Request message requested a feature currently not supported by the Responder.

	AccessDenied
	The Requester is not authorized to contact this Responder.

	NotFound
	Requested object was not found.

	MalformedRequest
	The Responder failed to parse the Request message.

	UnknownCriticalExtension
	A critical extension used by the Requester was not supported or recognized by the Responder.

	UnsupportedVersion
	The Responder does not support the requested protocol version.

	UnsupportedAlgorithm
	The Responder does not support a requested algorithm.

	NoCertificateChain
	The Responder needs a current certificate chain for the Requester.

	InvalidCertificateChain
	The Responder received or has an invalid certificate chain for the Requeser.

	TrustedRootCertificateNotPresent
	The Responder does not have the appropriate Trusted Root Certificate to verify the Requestor’s certificate chain..

	SignatureError
	The Responder could not verify the Requester’s signature.

	RequesterTimeError
	A request from Requester was invalid due to the Requester’s DRM Time being inaccurate as assessed by the Responder.

	NotRegistered
	The Responder does not have a ReqContext for the Requester.

	InvalidDCFHash
	Responder detected an incorrect DCF hash value in a ROAP-RORequest message

	InvalidUserDomain
	The Responder does not recognize the requested User Domain.

	UserDomainFull
	No more Devices are allowed to join the User Domain.

	UserDomainAccessDenied
	Responder does not allow the Requester access to the Domain, or the identifier of Requester can not be authorised without more information

	RightsExpired
	The requested rights are no longer available (for this Requester)

	TriggerExpiredOrInvalid
	The trigger, from which a session is initiated by the Requester, is Expired or Invalid

	InvalidRO
	State information included in the Requester’s request of at least one RO being uploaded /moved is not valid.

	MovePermissionNotPresent
	The Move operation requested by the Requester is not allowed because the permission is not present in the RO.

	UserDomainAuthorizationRequired
	The Responder needs a current User Domain Authorization from the Requester.

If the processing of the Request message fails (i.e. the status attribute is not equal to “Success”), the Responder MAY add an errorMessage attribute containing a Responder defined description of the error. In addition, the Responder MAY add an errorRedirectURL attribute that points to a support web site enabling the User to recover from the error. If the errorRedirectURL attribute is present, then the errorMessage attribute MUST also be present.
Upon transmission or reception of a Response message for which Status is not "Success", the default behaviour, unless explicitly stated otherwise elsewhere, is that both the Requester and the Responder SHALL immediately close the connection and terminate the protocol. Requesters and the Responders are required to delete any session-identifiers, nonces, keys, and/or secrets associated with a failed run of the protocol.

Depending on the entity, a Requester SHOULD use the value of the errorMessage attribute as part of the error message presented to the User. A Requester SHOULD also either include the value of the errorRedirectURL attribute as part of the error message to the User, or provide the User with an option to be redirected to the errorRedirectURL using a browser.

5.9

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

5.10

5.11

·
·

5.12

6. Generic Registration Protocol

Some SCE protocols suites specify a registration protocol. This section specifies a generic registration protocol that can be referred to in the other SCE specifications.
6.1 Registration Trigger

A Responder MAY send a Registration Trigger message to a Requester so that the Requester will initiate a 4-pass Registration Protocol. The message MUST be a <trigger> element as specified in section 5.6.1 and MUST be formatted as specified in the following table.

	element / attribute
	usage
	value

	id
	O
	Specified by the specific protocol suite

	type
	M
	Specified by the specific protocol suite

	version
	M
	Specified by the specific protocol suite

	
	
	

	resID
	M
	As specified in section xyz

	resAlias
	O
	Specified by the specific protocol suite

	nonce
	O
	As specified in section 5.6.5

	reqURL
	M
	As specified in section xyz

	triggerInfo
	M
	Specified by the specific protocol suite

	
	
	

	
	
	

	
	
	

Table 2: Registration Trigger Message Parameters
The processing of the Registration Trigger is default, as specified in section xxx, except for the handling of the <resID> element. The purpose of the Registration Trigger is to trigger the registration protocol, which will establish a context for the Responder in the Requester. The context for the Responder will typically not yet exist. Upon receipt of a Registration Trigger, the Requester MUST create a context for the Responder and store the <resID> and its own <reqID>
 with it.

6.2 Hello Request

A Requester sends a Hello Request message to a Responder as the first message of a 4-pass registration protocol of a given protocols suite. The message MUST be a <helloRequest> element as defined in the following XML schema fragment:

<element name=”helloRequest” type=”gen:Request”/>
A Hello Request MUST be formatted as specified in the table below:
	element / attribute
	usage
	Value

	triggerNonce
	O
	As specified in section xyz

	sessionID
	O
	As specified in section xyz

	reqID
	M
	As specified in section xyz

	resID
	M
	As specified in section xyz

	nonce
	O
	As specified in section 5.4

	certificateChain
	O
	TBD

	reqInfo
	M
	Specified below

Table 3: Hello Request Message Parameters
The Hello Request message MUST contain a <reqInfo> element as defined by the following XML schema fragment:
6.2.1
<element name="reqInfo" type="gen:HelloReqInfo"/>
<complexType name="HelloReqInfo">

<sequence>

<element name="version" type="gen:Version"/>

<element name="supportedAlgorithms" type="SetOfAlgorithms" minOccurs="0"/>

<any minOccurs="0" maxOccurs="unbounded" processContents="lax"/>

</sequence>

</complexType>
<simpleType name="Version">

<restriction base="string">

<pattern value="\d{1,2}\.\d{1,3}"/>

</restriction>

</simpleType>

<complexType name="SetOfAlgorithms">

<sequence maxOccurs="unbounded">

<element name="selectedAlgorithm" type="anyURI"/>

</sequence>

</complexType>

version:
This element is a <major.minor> representation of the protocol suite version number supported by the Requester. Unless otherwise specified with the specific registration protocol, for this version of the SCE Enabler, the value of this element SHALL be “1.0”

supportedAlgorithms: This element identifies the algorithms that are supported by the Requester. Algorithms are identified using common URIs. The following algorithms and associated URIs MUST be supported by all implementations:

Hash algorithms:

SHA-1: http://www.w3.org/2000/09/xmldsig#sha1
MAC algorithms:

HMAC-SHA-1: http://www.w3.org/2000/09/xmldsig#hmac-sha1
Signature algorithms:

RSA-PSS-Default: http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-1#rsa-pss-default
Key transport algorithms:

RSAES-KEM-KDF2-KW-AES128:

http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-1#rsaes-kem-kdf2-kw-aes128
Key wrapping algorithms:

AES-WRAP: http://www.w3.org/2001/04/xmlenc#kw-aes128
Canonicalisation algorithms:

Exclusive Canonicalisation: http://www.w3.org/2001/10/xml-exc-c14n#

SHA-1 is defined in [SHA-1]. HMAC-SHA-1 is defined in [HMAC]. RSA-PSS-Default is RSASSA-PSS with all parameters having default values (see [PKCS-1] Appendix C). AES-WRAP is defined in [AES-WRAP]. RSA-KEM-KDF2-KW-AES128 is defined in Section7, Key Management. Exclusive Canonicalisation is defined in [XC14N], its use is further explained in Section 5.4 of this document.

Use of other algorithm URIs is optional. Since all implementation must support the algorithms above, they need not be sent. Only URIs for algorithms not in this list needs to be sent in a Hello Request message.

6.3 Hello Response

A Responder send a Hello Response message to the Requester as the second message of a 4-pass registration protocol of a given protocol suite. The root element of the message MUST be a <helloResponse> element as defined in the following XML schema fragment:

<element name=”helloResponse” type=”gen:Response”/>

The response MUST be formatted per the table below:
	element / attribute
	usage
	value

	status
	M
	Default, as specified in section xyz

	sessionID
	M

	Default, as specified in section xyz

	errorMessage
	O
	Default, as specified in section xyz

	errorRedirectURL
	O
	Default, as specified in section xyz

	reqID
	M
	Default, as specified in section xyz

	resID
	M
	Default, as specified in section xyz

	nonce
	M
	Default, as specified in section xyz

	resInfo
	M
	Specified below

Table 4: Hello Response Message Parameters
The Hello Response message MUST contain a <resInfo> element as defined by the following XML schema fragment:
6.3.1
<element name="resInfo" type="gen:HelloResInfo"/>
<complexType name="HelloResInfo">

<sequence>

<element name="selectedVersion" type="gen:Version"/>

<element name="selectedAlgorithms" type="SetOfAlgorithms" minOccurs="0"/>

<element name="trustedAuthorities" type="gen:KeyIdentifiers" minOccurs="0"/>

<element name="serverInfo" type="base64Binary" minOccurs="0"/>

<element name="deviceDetailsRequired" type=”gen:Empty”/>

<any minOccurs="0" maxOccurs="unbounded" processContents="lax"/

</sequence>
</complexType>
<complexType name=”Empty”/>
selectedVersion: This element contains the selected protocol version. The selected version will be min (Requester suggested version, highest version supported by Responder). If the registration is successful, then this information is part of the ResContext and ReqContext.

selectedAlgorithms: This element contains the cryptographic algorithms (hash algorithm, signature algorithm, MAC algorithm and key transport algorithm) to use in subsequent interactions. If the Requester indicated support of only mandatory algorithms (i.e. left out the <supportedAlgorithms> element), or the Responder only supports the mandatory algorithms, then the Responder need not send this field. Otherwise, the Responder MUST provide this parameter and MUST identify one algorithm of each type. This information is part of the ResContext and ReqContext.

trustedDeviceAuthorities: This element is a list of Device trust anchors recognised by the Responder. This parameter is optional. The parameter is not sent if the Responder already has the Requester certificate or otherwise is able to verify a signature made by the Requester. If the parameter is present but empty, it indicates that the Requester is free to choose any Requester certificate to authenticate itself. Otherwise the Requester MUST choose a certificate chaining back to one of the recognised trust anchors. Trust anchors are identified in the same manner as Requesters and Responders.

serverInfo: This element contains server-specific information that the Requester must return unmodified, in the Registration Request. The Requester must not attempt to interpret the value of this parameter. Requesters MUST support the Server Info element being of length 512 bytes and MAY support Server Info elements of length greater than 512 bytes. Responders SHOULD keep Server Info length to 512 bytes or less.

deviceDetailsRequired: This element, if present, is used by the Responder to indicate to the Requester that the Requester needs to provide detailed information about the Device (manufacturer, model and version) in the Registration Request message that follows.
6.4 Registration Request

A Requester sends a Registration Request message to a Responder as the third message in a 4-pass registration protocol of a given protocols suite. The root element of the message MUST be a <registrationRequest> element as defined in the following XML schema fragment:

<element name=”registrationRequest” type=”gen:Request”/>

A Registration Request message MUST be formatted as specified in the table below:
	element / attribute
	usage
	value

	triggerNonce
	TBD
	TBD

	sessionID
	M

	Default, as specified in section xyz

	reqID
	M
	Default, as specified in section xyz

	resID
	M
	Default, as specified in section xyz

	nonce
	M
	Default, as specified in section xyz

	
	
	

	certificateChain
	O
	Default, as specified in section xyz

	reqInfo
	M
	Specified below

	signature
	M
	Specified below

Table 5: Registration Request Message Parameters
The Registration Request message MUST contain a <reqInfo> element as defined in section 6.4.1.
signature: This element contains the signature over the Registration Request message besides the <signature> element itself. The signature is made using the negotiated public key algorithm and the Requester’s private key.
·

The Registration Responder MUST verify the signature on the Registration Request message.

6.4.1 RegReqInfo
The <reqInfo> element of a Requestration Request message is defined by the following XML schema fragment:
<element name="reqInfo" type="gen:RegReqInfo"/>
<complexType name="RegReqInfo">

<sequence>

<element name=”hashOfHelloRequest” type=”base64Binary”/>

<element name=”hashOfHelloResponse” type=”base64Binary”/>

<element name="trustedAuthorities" type="gen:KeyIdentifiers" minOccurs="0"/>

<element name="serverInfo" type="base64Binary" minOccurs="0"/>

<element name="deviceDetails" type="gen:DeviceDetails" minOccurs="0"/>

<any minOccurs="0" maxOccurs="unbounded" processContents="lax"/

</sequence>
</complexType>

<complexType name="DeviceDetails">

<sequence>

<element name="manufacturer" type="roap:String64"/>

<element name="model" type="roap:String64"/>

<element name="version" type="roap:String64"/>

</sequence>

</complexType>
hashOfHelloRequest: this element contains the hash (using the selected hash algorithm) of the previous Hello Request message sent by the Requestor. The message MUST be canonicalised according to Section 5.4 before the hash is computed.
hashOfHelloResponse: this element contains the hash (using the selected hash algorithm) of the previous Hello Response message sent by the Requestor. The message MUST be canonicalised according to Section 5.4 before the hash is computed.
trustedAuthorities: this element, if present, contains a list of Responder trust anchors recognised by the Requester. If not present, it indicates that the Responder is free to choose any certificate. Trust anchors are identified in the same way as Requesters and Responders.

serverInfo: As discussed above, this parameter will only be present if a Server Info parameter was present in the preceding Hello Response message. In that case, the Server Info parameter MUST be present and MUST be identical to the Server Info parameter received in the preceding Hello Response message.

deviceDetails: This parameter defines three fields: manufacturer, model and version. The manufacturer field identifies the Device’ manufacturer, the model field identifies the Device's model and the version field identifies the Device's version as defined by its manufacturer. The <deviceDetails> element, with device details, MUST be sent by a Requester that receives a <deviceDetailsRequired> element with a “true” value in a Hello Response message.

6.5 Registration Response

A Registration Response message is sent from a Responder to a Requester as the last message in a 4-pass registration protocol of a given protocols suite. The root element of the message MUST be a <registrationResponse> element as defined in the following XML schema fragment:

<element name=”registrationResponse” type=”gen:Response”/>
The response MUST be formatted per the table below:

	element / attribute
	usage
	value

	status
	M
	Default, as specified in section xyz

	sessionID
	M

	Default, as specified in section xyz

	errorMessage
	O
	Default, as specified in section xyz

	errorRedirectURL
	O
	Default, as specified in section xyz

	reqID
	M
	Default, as specified in section xyz

	resID
	M
	Default, as specified in section xyz

	nonce
	M
	Default, as specified in section 5.4

	certificateChain
	O
	Default, as specified in section xyz

	ocspResponse
	O
	Default, as specified in section xyz

	resInfo
	O
	Specified below

	signature
	M
	Specified below

Table 6: Registration Response Message Parameters
If the processing of the Registration Request message was successful (status=”Success”), then the Registration Response message MUST contain an <resInfo> element as defined in section 6.5.1.
signature: This element contains the signature over the Registration Response message besides the <signature> element itself. The signature is made using the negotiated public key algorithm and the Responder's private key.
·
·
The Requester MUST verify this signature. A Requester MUST NOT accept the Registration protocol as successful unless the signature verifies, the Responder certificate chain has been successfully verified, and the OCSP response, if present, indicates that the Responder certificate status is good. If the registration fails, the Requester MUST NOT store a ResContext for this Responder.

6.5.1 RegResInfo
The <resInfo> element of a Requestration Response message is defined by the following XML schema fragment:
<element name="resInfo" type="gen:RegResInfo"/>
<complexType name="RegResInfo">

<sequence>

<element name="resURL" type="anyURI"/>

<element name="encSa" type="base64Encoded" minOccurs=”0”/>

<element name="fqdnWhitelist" type="gen:FullyQualifiedDomainNameWhiteList" minOccurs=”0”/>

<any minOccurs="0" maxOccurs="unbounded" processContents="lax"/

</sequence>
</complexType>

<complexType name="FullyQualifiedDomainNameWhiteList">

 <sequence maxOccurs="5">

<element name="fqdn" type="roap:String80"/>

 </sequence>

</complexType>
resURL: this element,contains the URL that the Requester MUST send future requests to the Responder. The value of this element MUST be a URL according to [RFC2396], and MUST be an absolute identifier.

encSa: this element, if present, contains an encrypted security association (SA). The SA contains a symmetric key (referred to as the SK) for encrypting data between the Requester and Responder, concatenated a Message Integrity Key (MK) for providing integrity protection. For the default algorithms, the SA contains a 128-bit AES key followed by a 160-bit HMAC-SHA1 key. The SA is encrypted using the Requester's public key using RSAEP [RSAEP]
. This element MUST be present when an RI/RLM or Device is registering with a DEA.
fqdnWhitelist: this element, if present, contains a list of fully qualified domain names (as defined in [RFC 2396]) that are to be regarded as trusted (for example for the purposes of Silent and Preview headers). The Requester MUST store the fully qualified domain names in the ResContext for this Responder. The Requester MUST treat each domain name received in the Domain Name Whitelist as if it were a fully qualified domain name that had been extracted from an RI URL according to the conditions defined in section xxx of this document. The Requester MUST be capable of storing a minimum of 5 fully qualified domain names for each ResContext supported on the Requester.

7. Cryptographic Components

7.1 RSAES-KEM-KWS

RSA-KEM-KWS is an asymmetric encryption scheme defined in [X9.44] and based on the "generic hybrid cipher" in [ISO/IEC 18033]. In this scheme, the sender uses the recipient's public key to securely transfer symmetric-key material to the recipient. Specifically, given the recipient's public RSA key P=(m,e), consisting of a modulus m and a public exponent e, the sender generates a value Z as a statistically uniform random integer in the interval [0,…,m-1]. The value Z is then converted to a key-encryption key KEK as follows:

KEK = KDF(I2OSP(Z,mLen) NULL, kekLen)

where KDF is defined below, I2OSP converts a nonnegative integer to an octet string of a specified length and is defined in [PKCS-1], mLen is the length of the modulus m in octets, NULL is the empty string, and kekLen shall be set to the desired length of KEK (in octets).

Given KEK, a key-wrapping scheme WRAP and the symmetric key material K to be transported, the sender wraps K to get ciphertext C2:

C2 = WRAP(KEK, K)

After this, the sender encrypts Z using the recipient's public RSA key P to yield C1:

c1 = RSA.ENCRYPT(P,Z)

C1 = I2OSP(c1, mLen)

Where RSA.ENCRYPT is the cryptographic primitive RSAEP in [PKCS-1] defined by

RSA.ENCRYPT(P,Z) = Ze mod m

The scheme output is C = C1 | C2 (C1 concatenated with C2) which is transmitted to the recipient. The decryption operation follows straightforwardly: the recipient recovers Z from C1 using the recipient’s private key, converts Z to KEK, and then unwraps C2 to recover K.

7.2 KDF

KDF is equivalent to the key derivation function KDF2 defined in [X9.44] (and KDF in [X9.42], [X9.63]). It is defined as a simple key derivation function based on a hash function. For the purposes of this specification, the hash function shall be SHA-1.

KDF takes three parameters: the shared secret value Z: an octet string of (essentially) arbitrary length, otherInfo: other information for key derivation, an octet string of (essentially) arbitrary length (may be the empty string), and kLen: intended length in octets of the keying material. kLen shall be an integer, at most (232 – 1)hLen where hLen is the length of the hash function output in octets. The output from KDF is the key material K, an octet string of length kLen. The operation of KDF is as follows (note that "(n(" below denotes the smallest integer larger than, or equal to, n):

1) Let T be the empty string.

2) For counter from 1 to (kLen / hLen (, do the following:

Let D = 4-byte, unsigned big-endian representation of counter

Let T = T | Hash (Z | D | otherInfo).

3) Output the first kLen octets of T as the derived key K.

7.3 AES-WRAP

AES-WRAP is the symmetric-key wrapping scheme based on AES and defined in [AES-WRAP]. It takes as input a key-encryption key KEK and key material K to be wrapped. The scheme outputs the result C of the wrapping operation:

C = AES-WRAP(KEK, K)

8. Capability signalling

9. Generic Transport Mappings

10. Security Considerations (Informative)

10.1 Security scope for SCE

The scope of SCE is to enable the distribution and consumption of digital content in a controlled manner. SCE work addresses various technical aspects of this system by providing appropriate specifications for content formats, protocols, and a rights expression language.

The SCE trust model is built on a PKI. The entities defined in this enabler trust each other to behave correctly if their certificates are verifiable and not revoked. The SCE specified content formats, protocols and other data structures are designed to provide adequate security of Protected Content, provided that the entities involved in the protocols behave as specified in this enabler. It is NOT in scope for SCE to specify technical or other mechanisms that in some way ensure that implementations of SCE cannot be altered such that the security of the Protected Content is compromised. It is on the other hand IN scope for the SCE to define mechanisms that enable the trust authority to deal with security compromises, should they occur and are detected.

It is anticipated that trust authorities enabling the practical use of SCE will require implementations of SCE to ALSO implement additional mechanisms to safeguard against compromises of the implementation itself. Figure 2 depicts an example implementation of SCE.

[image: image4.jpg]device

(compliant according to compliance & robustness
ules of a TAthat builds on OMA defined technology)

‘secure environment

DRM Agent
ROAP CEK content
< > soorets | |—| rendering
Import
norilp non OMA o LRM
protocal content protection
| A | == [seerets | |

LRMP

storage

connectivity

Figure 3: Example implementation

The device in Figure 2 is compliant to the compliance and robustness rules of a certain trust authority. In return the trust authority has provided the manufacturer of this device with a (set of) valid certificates and associated private keys for the functional entities that are implemented in the device. In addition to the SCE defined entities, DRM Agent and LRM, four functional entities not defined by OMA and a “Secure Environment”.

To establish trust with SCE defined entities deployed in other devices or servers (e.g when using ROAP to request a Rights Object), the SCE defined entities in Figure 2 will use the certificates issued by the trust authority and the associated private key. To assure confidentiality of these private keys and in general correct behaviour of the SCE entities, the trust authority is likely to require these entities to be implemented in some “secure environment” to protect against compromises of the device. The specification of such a “secure environment” is OUT of scope for SCE. Please note that it is IN scope for SCE to ensure that the protocols between SCE entities are secure when executed over any type of connectivity.

Since the actual decryption and rendering of Protected Content is not performed by the DRM Agent, the DRM Agent will likely transfer the CEK for a Protected Content to some sort of content rendering entity, after enforcing the permissions and constraints. This process and the content rendering entity itself are OUT of scope for SCE. But since the process involves the CEK, the trust authority is likely to require this to take place in the “secure environment”. Please not that it is IN scope for SCE to ensure that the Protect Content is wrapped in a file that can be stored on any storage medium and transferred via any connectivity.

The device in Figure 2 also implements a LRM, which takes Import Ready data from a non-OMA content protection system. This process is also OUT of scope for SCE but since also in this process the transfer of secrets is required, it is likely to be implemented in the “secure environment”. In this case the “secure environment” has to meet the requirements of not only the trust authority for the OMA system but also the requirements of the equivalent body for the non-OMA content protection system. All of this is OUT of scope for SCE.

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

	
	
	

	
	
	

A.2 Draft/Candidate Version 0.1 History

	Document Identifier
	Date
	Sections
	Description

	OMA-TS-SCE_GEN-V0_1-20070620-D
	20 Jun 2007
	
	Initial version per 2007-0202

Incorporating also 2007-0203R02.

	OMA-TS-SCE_GEN-V0_2-20070830-D
	30 Aug 2007
	5.5, 5.6, 5.7, 5.8
	Incorporated 2007-363R01

	OMA-TS-SCE_GEN-V0_3-20071030-D
	10 Oct 2007
	6
	Incorportaed 2007-447

	OMA-TS-SCE_GEN-V0_4-20080214-D
	14 Feb 2008
	
	Incorporated:

2007-494R02

2007-0519R02

	OMA-TS-SCE_GEN-V0_5-20080314-D
	14 Mar 2008
	
	Incorporated:

2008-0031R01

2008-0053

	OMA-TS-SCE_GEN-V0_5_1-20080611-D
	11 Jun 2008
	
	Incorporated:

2008-0164R02 - Addr. GEN007-010

2008-0165R01 – Addr. GEN011, 012, 014 – 017

	OMA-TS-SCE_GEN-V1_0-20080922
	22 September
	
	Incorporated:

2008-0350R06

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

B.1 SCR for XYZ Client

	Item
	Function
	Reference
	Status
	Requirement

	XYZ-C-001
	Something mandatory
	Section x.y
	M
	(XYZ-C-001 OR XYZ-C-003) AND
 XYZ-C-002

	XYZ-C-002
	Something optional
	Section x.y
	O
	

	XYZ-C-003
	Dependencies on ZYX
	Section x.y
	M
	ZYX:MCF

	XYZ-C-004
	Dependencies on ZYX
	Section x.y
	O
	ZYX:OCF

B.2 SCR for XYZ Server

	Item
	Function
	Reference
	Status
	Requirement

	XYZ-S-001
	Something mandatory
	Section x.y
	M
	XYZ-S-001 OR XYZ-S-002 OR XYZ-S-003

	XYZ-S-002
	Something optional
	Section x.y
	O
	

	XYZ-S-003
	Dependencies on ZYX
	Section x.y
	M
	ZYX:MSF

	XYZ-S-004
	Dependencies on ZYX
	Section x.y
	O
	ZYX:OSF

� Example: If counter = 946, D will be 00 00 03 b2

��Shouldn’t this just refer to the ROAP Identifier?

�Shouldn’t this just refer to the ROAP Nonce?

�What does this mean?

�Editor to put in correct reference (whether internal or external to this document).

�Values strikenthrough are not applicable to SCE.

�What reqID?

�Is this correct?

�Is this correct?

�Is this correct?

�add reference

(2006 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20060925-I]
(2006 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20060925-I]

