OMA-TS-LightweightM2M-V1_0-20120918-D
Page 14 V(24)

	[image: image1.jpg]
	

	Lightweight Machine to Machine

Technical Specification

	Draft Version 1.0 – 18 Sept 2012

	Open Mobile Alliance

	OMA-TS-LightweightM2M-V1_0-20120918-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2012 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

41.
Scope

2.
References
5
2.1
Normative References
5
2.2
Informative References
6
3.
Terminology and Conventions
7
3.1
Conventions
7
3.2
Definitions
7
3.3
Abbreviations
7
4.
Introduction
8
5.
Protocol Overview
9
6.
Interfaces
10
7.
Identifiers and Resources
12
7.1
Resource Model
12
7.2
Identifiers
12
7.3
Resource Data Format
13
7.4
Example Objects and Resources
13
8.
Security Consideration
15
8.1
Channel Security
15
8.2
Access Control
15
9.
Protocol Procedure and Flows
16
9.1
Device Discovery
16
9.2
Device Registration
16
9.3
Bootstrapping
16
10.
Message Payload
17
10.1
Header
17
10.2
Body
17
11.
Transport Layer Binding and Encoding
18
Appendix A.
Change History (Informative)
19
A.1
Approved Version History
19
A.2
Draft/Candidate Version <current version> History
19
Appendix B.
Static Conformance Requirements (Normative)
20
B.1
SCR for XYZ Client
20
B.2
SCR for XYZ Server
20
Appendix C.
<Additional Information>
21
C.1
App Headers
21
C.1.1
More Headers
21

Figures

9Figure 1: Example Figure

Tables

9Table 1: Example Table

1. Scope

<< Define as it relates to Open Mobile Alliance Activity. If it adds clarity, define what is not in the scope. DELETE THIS COMMENT >>

2. References

The policy for reference lists is:

1.
OMA documents listed should have at least one approved version – draft-only docs should not be referenced. Exception exists for documents that will be approved with or after the referenced doc is approved (may be part of same enabler package). In short – approved docs should not reference unapproved docs.

2.
When a reference is made to an OMA specification, then Open Mobile Alliance with the TM symbol (™) should be used in the description.

3.
The name + version (no date) for OMA specifications are generally sufficient – dates should be used only if there is a specific reason to limit the usage.

4.
For references to WAP Forum docs, dates should not be included as DID's for the old WAP Forum specifications are enough and the reference description should refer to WAP Forum™.

5.
References to other affiliate docs should similarly provide sufficient information to uniquely determine the needed document and should provide the appropriate source information.

6.
The URL for OMA material (new OMA and affiliate) should always be http://www.openmobilealliance.org (an exception is OMNA that is reached through http://www.openmobilealliance.org/tech/omna)

Models to use

[REFLABEL]
<General Model> “Ref Title”, Ref information (source, date, id),
URL:http//<ref-source>/

[OMADOC]
<OMA Model> “OMA Document Title”, Open Mobile Alliance™, OMA‑<docname>{‑<version>}, URL:http//www.openmobilealliance.org/

If there are no entries in the table – enter ‘none’ to be clear.
DELETE THIS COMMENT

2.1 Normative References

	[IOPPROC]
	“OMA Interoperability Policy and Process”, Version 1.1, Open Mobile Alliance™, OMA-IOP-Process-V1_1, URL:http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. November 1997, URL:http://www.ietf.org/rfc/rfc2234.txt

	[LWM2M-AD]
	“Lightweight Machine to Machine Architecture”, Open Mobile Alliance™, OMA-AD-LightweightM2M-V1_0, URL:http://www.openmobilealliance.org/

	
	<< Add/Remove reference rows as needed! >>

2.2 Informative References

	
	

	
	<< Add/Remove reference rows as needed! >>

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

.

3.2 Definitions

	Term 1
	Definition

	Term 2
	Definition

	
	

3.3 Abbreviations

	OMA
	Open Mobile Alliance

	xxx
	xxx

	
	

4. Introduction

<< From a market perspective...

· What can you do with this specification?

· What problem does this solve?

· How can this specification be applied?

· Consider the target audience and provide deployment examples as possible.

DELETE THIS COMMENT >>

5. Protocol Overview

6. Interfaces
According to the architecture diagram [LWM2M-AD], there are four interfaces: 1) Device Discovery and Registration 2) Bootstrap 3) Management and Service 4) Information Reporting. The logical operations for the four interfaces can be classified as uplink operations and downlink operations. There are three types of logical operations in the downlink, including “read”, “write”, “execute”. There is one type of logical operation in the uplink “write”.
Figure 1 shows the logical operation model for interface “Device Discovery and Registration”. For this interface, the operation is uplink “write”. The write operation on this interface consists of three different variations, registration, update, and de-registration.

[image: image2.emf]LWM2M

Server

LWM2M

Client

write

Uplink

Figure 1 Device Discovery and Registration
Figure 2 shows the logical operation model for interface “Bootstrap”. For this interface, the operation is downlink “write”. This operation allows the LWM2M Server to set Resources of the bootstrap Object on the LWM2M Client for the purpose of bootstrap configuration.

[image: image3.emf]LWM2M

Server

LWM2M

Client

write

Downlink

Figure 2 Bootstrap
Figure 3 shows the logical operation model for interface “Management and Service”. For this interface, the operations are downlink “read”, “write” and “execute”. These operations are used to interact with the Resources and Objects of the LWM2M Client. Read is used to read the current value of one or more Resources, write is used to update the value of one or more Resources, and execute is used to initiate an action defined by a Resource.

[image: image4.emf]LWM2M

Server

LWM2M

Client

read, write, execute

Downlink

Figure 3 Management and Service

Figure 4 shows the logical operation model for interface “Information Reporting”. For this interface, the operation is uplink “write”. This operation sends the LWM2M Server a new value related to a Resource on the LWM2M Client.

[image: image5.emf]LWM2M

Server

LWM2M

Client

write

Uplink

Figure 4 Information Reporting

The relationship between logical operations and interfaces is listed in the following table 1.

Table 1 the relationship of logical operations and interfaces

	Interfaces
	Direction
	Logical Operation

	Device Discovery and Registration
	Uplink
	Write (Register, Update, De-register)

	Bootstrap
	Downlink
	Write

	Management and Service
	Downlink
	Read, Write, Execute

	Information Reporting
	Uplink
	Write

6.1 Device Discovery & Registration Interface

The Discovery & Registration Interface is used by a LWM2M Client to register with one or more LWM2M Servers, maintain each registration and de-register from a Server. The registration is based on the Resource Model and Identifiers defined in Section 7. When registering, the LWM2M Client indicates its Endpoint Name, registration lifetime and the list of Objects the Client supports. The registration is soft state, with a lifetime indicated by the registration lifetime. The LWM2M Client periodically performs an update and allows the Client to update its registration information. Finally, when shutting down or discontinuing use of a Server, the Client performs a de-registration.

EDITOR NOTE: Remove the heart-beat

EDITOR NOTE: Lifetime should have a default value in the specification, value TBD. Client can set a custom lifetime.

EDITOR NOTE: Explain that the server removes the registration after the lifetime expires (unless there is an update).

6.1.1 Registration

6.1.2 Update

6.1.3 De-registration
6.1.4 Registration Payload

TODO: This section defines the payload format of the registration message, which describes the Objects made available by the Client. This can be done in a simple way using RFC6690 (low overhead, no complex formats like XML).

6.1.5 Flows

TODO: This section includes a message exchange diagram for each flow.
6.2 Bootstrap Interface

TODO: Define that use of the Bootstrap interface is optional, as a device may be sufficiently pre-configured.

TODO: Define that this interface makes use of the LWM2M Bootstrap Object, which will be defined in an appendix of this specification.

6.2.1 Flows

EDITOR NOTE: Need to discuss pre-provisioning of the Bootstrap Object or provisioning from a SIM card in this section.

6.3 Management and Service Interface

TODO: Define how the operations interact with the Objects and Resources of the Resource Model.

TODO: Define how Objects or Resources with multiple instances can be accessed in one request.

6.3.1 Read

6.3.2 Write

6.3.3 Execute

6.3.4 Flows

6.4 Information Reporting Interface

TODO: Define what meta-data needs to be configured on a resouce using the Management and Service Interface, in order for information reporting to succeed.

6.4.1 Flows

7. Identifiers and Resources

This section defines the identifiers and resource model for the LWM2M Enabler.

7.1 Resource Model

The LWM2M Enabler defines a simple resource model where each piece of information made available by the LWM2M Client is a Resource, and Resources are logically organized into Objects. Figure 1 illustrates this structure, and the relationship between Resources, Objects and the LWM2M Client. The LWM2M Client may have any number of Resources, each of which belongs to an Object.
[image: image6.png]
Figure 1 Relationship between LWM2M Client, Object and Resources
Resources are defined per Object, and each resource is given a unique identifier within that Object. Resources are accessed directly by the LWM2M Server. Each Resource is defined to have one or more Operations that it supports. A Resource MAY contain multiple instances of that Resource. Objects and Resources SHOULD have associated Access Control Lists (ACLs) that control what the LWM2M Server can access using what operations. Figure 2 shows which operations the resources support, and how Objects and Resources are associated with ACLs. In the example, Resource 1 supports read, write and execute, while Resource 2 supports only read operations.

[image: image7.png]
Figure 2 Supported operations and access control lists

An Object defines a grouping of Resources, for example the Firmware Update Object would contain all the Resources used for firmware update purposes. Each Object is assigned a unique OMA Management Object ID and corresponding ID Index, which may be used to perform Group Operations on the set of Resources associated with that Object. The LWM2M enabler defines standard Objects and Resources and vendor specific Objects may be added for their own uses.
EDITOR NOTE: Add more clarification about the vendor specific Objects.
7.2 Identifiers

Seven identifiers are defined by the LWM2M Enabler: Endpoint Client Name, LWM2M Server URI, Short Server ID, Human Readable Object URN, Object ID, Resource ID and Resource Instance ID. These identifiers are defined in Table 1.
Table 1 Definition of LWM2M terms

	Identifier
	Semantics
	Description

	Endpoint Client Name
	String (max 63 bytes)
	Uniquely identifies the LWM2M Client on one LWM2M Server. Provided to the Server during Registration For example the IMEI, serial number or a logical name of the device.

	LWM2M Server URI
	URI
	Uniquely identifies the LWM2M Server. Provided to the Client during Bootstrap procedure.

	Short Server ID
	16-bit unsigned integer
	Short integer ID, assigned by the LWM2M Client. This identifier uniquely identifies each LWM2M Server configured for the LWM2M Client.

	Human Readable Object URN
	URN for the OMA Management Object
	Assigned by the object specification

	Object ID
	16-bit unsigned integer
	Uniquely identifies the Object in the LWM2M Client. Short integer ID, assigned by OMA

	Resource ID
	16-bit unsigned integer
	Uniquely identifies the Resource in the Object. Short integer ID, assigned by the object specification

	Resource Instance ID
	16-bit unsigned integer
	Uniquely identifies the Resource Instance in the Resource. Short integer ID, assigned by the LWM2M Server/Client

Editor’s Note: where to store these identifiers is TBD

7.3 Data Formats for Transferring Resource Information
Four data formats are defined by the LWM2M Enabler in this section. The LWM2M Server MUST support all data formats. The plain text and opaque formats MUST be supported by both the LWM2M Server and the LWM2M Client. The LWM2M Client MUST support the TLV data format for Object or multiple-instance Resource requests.

The Object specification defines the data format that a Resource supports, either plain text or opque for singular Resources or TLV for multiple instance Resources.

In addition to the data formats defined in the Object specification, a LWM2M Client MAY choose to support the JSON format for Object or multiple instance Resource requests.

7.3.1 Plain Text

The plain text format is used for write and read operations on singular Resources where the value of the resource is simply represented as as a UTF-8 encoded string (similar to the Media Type text/plain). This string can contain a character sequence, integer number, decimal number or any other sequence of valid UTF-8 characters.
For example a request to Resource 0 from Object 3 would return the following plain text payload:

Open Mobile Alliance
This data format has a Media Type of application/lwm2m-plain (TBD).
7.3.2 Opaque

The opque format is used for write and read operations on singular Resources where the value of the resource is an opaque sequence of binary octets (similar to the Media Type application/octet-stream). This data format is used for binary resources such as firmware images or application specific binary formats.
This data format has a Media Type of application/lwm2m-opaque (TBD).
7.3.3 TLV

For requests to Objects or Resources with multiple instances, the binary TLV (type-length-value) format is used to represent an array of values using a company binary representation, which is easy to process on simple embedded devices.

The format is an array of the following byte sequence, where each array entry represents a Resource or Resource Instance:

	Field
	Format and Length
	Description

	ID
	16-bit unsigned integer
	The Resource ID or Resource Instance ID of the array entry

	Length
	16-bit unsigned integer
	The Length of the following field in bytes

	Value
	Sequence of bytes, length indicated by the Length field
	Either a plain text or opque value depending on the Resource’s data format

EDITORS NOTE: Mention that if there is a singular value in the array, that is OK.

This data format has a Media Type of application/lwm2m-tlv.

7.3.4 JSON

For requests to Objects or Resources with multiple instances, a simple JSON format may be used where a set of values is represented. Each entry of the JSON format is a key:value pair, where the key is the Resource ID for requests to an Object or the instance number for requests to a Resource with multiple instances.

This data format has a Media Type of application/lwm2m-json (TBD).

The format when an Object is requested follows the following syntax:

{ "<Resource ID>":"<Value>",
 "<Resource ID>":"<Value>",

 "<Resource ID>":"<Value>"

}
For example a request to Example Object 3 in the example would return the following JSON payload:

{ "0":"Open Mobile Alliance",
 "1":"LWM2M v1.0",

 "2":"9347112"
}
The format when a Resource with multiple instances is requested follows the following syntax:

{

 "<Resource Instance ID>":"<Value>",
 "<Resource Instance ID>":"<Value>",

 "<Resource Instance ID>":"<Value>"

}

8. Security Consideration

8.1 Channel Security

Editor’s note: if we decide to use CoAP, we can rely on underlying layer security mechanism so we don’t need to define any mechanisms here. However, the related DTLS binding information and mandatory DTLS modes could be defined here instead of in the protocol binding section.
8.2 Access Control

8.2.1 Access Control List (ACL)

To authorize the logical operation sent from the LWM2M Server, the LWM2M Client uses Access Control List (ACL) to determine which the LWM2M Server can do which logical operations on the resources in the LWM2M Client. ACL is assigned per Object and the ACL value is applied to all the Resources and Instances of the Resources which belong to the Object.
ACL is represented in the list of Short Server ID and access right of the corresponding LWM2M Server. Using the Short Server ID instead of the LWM2M Server URI can reduce the space overhead and increase the processing efficiencies. The access right is 1 byte and each bit of the access right represents whether the respective logical operation is authorized or not. For example, if 1st bit of access right is 1, then the LWM2M Server is authorized to read the Object and Resources or Instances of Resources in the Object. Detail information of ACL is described in the table X.
Editor’s Note: Special Short Server ID needs to be defined for wild card
	Field
	Format and Length
	Description

	ACL
	Variable bytes depending on the number of ACL entiries

	List of ACL entries

	ACL entry
	3 bytes
	The first 2 bytes: Short Server ID
The last 1 byte: access right

1st lsb: Read

2nd lsb: Write

3rd lsb: Execute

Other bits are reserved for future use

8.2.2 Access Type

Access type defines which logical operation the Resource supports. Therefore access type is assigned per the Resource and all the Instances of the Resource inherit the access type. The access type is 1 byte and each bit of the access type represents whether the respective logical operation is supported by the Resource or not. For example, if 1st bit of access type is 1, it means that the Resource supports read logical operation.
Editor’s Note: Access Type is a constant value, normally assigned when the resource is created. How the LWM2M Server learns the access type is TBD (e.g., through the resource discovery).
	Field
	Format and Length
	Description

	Access Type
	1 byte
	1st lsb: Read

2nd lsb: Write

3rd lsb: Execute

Other bits are reserved for future use

8.2.3 Authorization of Operations

8.2.3.1 Operations on Resource or Resource Instance
If the LWM2M Server accesses a Resource or Resource Instance(s), the LWM2M Client authorizes the logical operation based on the conjunction of the access right and the access type. The LWM2M Server can execute the logical operation that is permitted by both the access right and the access type. Practically, the permitted logical operations can be computed by the bitwise AND operation of the access right and the access type.
8.2.3.2 Operations on Object
If the LWM2M Server accesses an Object, the LWM2M Client authorizes the logical operation by performing authorization mechanism to each Resource in the Object according to 8.2.3.1.
8.2.4 Quering ACL/Access Type
Editor’s Note: ACL is exposed to the LWM2M Server through an interface which will be defined later. The LWM2M Server can modify the ACL using this interface.
Editor’s Note: how to query ACL and access type is TBD
9.
9.1
9.2
10. Transport Layer Binding and Encoding

Appendix A. Example Objects and Resources

This section lists example Objects and Resources that LWM2M could define. The actual objects will be defined in an object specification.
	Example Object
	Human Readable Object URN

Editor Note: If this is not needed, then we remove it.
	Example Object ID
	Example Resource
	Example Resource ID
	Logical Operations

	Bootstrapping
	urn:oma:mo:lwm2m2:bootstrapping
	1
	
	
	

	
	
	
	Server Location
	0
	R, W

	
	
	
	Endpoint Name
	1
	R

	Firmware Update
	urn:oma:mo:lwm2m2:firmware
	2
	
	
	

	
	
	
	Firmware
	0
	R, W

	
	
	
	Firmware Name
	1
	R

	
	
	
	Last Updated
	2
	R

	
	
	
	Version
	3
	R, W

	
	
	
	Size
	4
	R, W

	
	
	
	Do Upgrade
	5
	E

	Device Info
	urn:oma:mo:lwm2m2:device
	3
	
	
	

	
	
	
	Manufacturer
	0
	

	
	
	
	Model Number
	1
	

	
	
	
	Serial Number
	2
	

	
	
	
	Device ID
	3
	

	Location
	urn:oma:mo:lwm2m2:location
	4
	
	
	

	
	
	
	GPS Location
	0
	

	
	
	
	GPS Fix
	1
	

	
	
	
	APN Location
	2
	

	
	
	
	X,Y Location
	3
	

	
	
	
	Update Period
	4
	

	Bearer Info
	urn:oma:mo:lwm2m2:bearer
	…
	
	
	

Editor’s Note: Add an example about how to access multiple instances of resource.

Editor’s Note: Reserve range for OMA, other SDO, vendors for object ID registration.
Editor’s Note: How to reuse the existing management objects need further study.
Appendix B. Change History
(Informative)

B.1 Approved Version History

	Reference
	Date
	Description

	
	
	

	
	
	

	
	
	

B.2 Draft/Candidate Version <current version> History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-TS-LightweightM2M-V1_0-20120904-D
	04 Sep 2012
	all
	TS baseline agreed as in

 OMA-DM-LightweightM2M-2012-0078-INP_TS_kick_off

	Draft Version

OMA-TS-LightweightM2M-V1_0-20120918-D
	18 Sep 2003
	6, 7
	Incorporates input to committee:
OMA-DM-LightweightM2M-2012-0083R01-CR_Skeleton_Base_Line
OMA-DM-LightweightM2M-2012-0090R02-CR_TS_Resource_Model

OMA-DM-LightweightM2M-2012-0061R04-CR_Interfaces

Appendix C. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [IOPPROC].

The following is a model of a set of SCR tables. DELETE THIS COMMENT

C.1 SCR for XYZ Client

	Item
	Function
	Reference
	Status
	Requirement

	XYZ-C-001
	Something mandatory
	Section x.y
	M
	(XYZ-C-001 OR XYZ-C-003) AND
 XYZ-C-002

	XYZ-C-002
	Something optional
	Section x.y
	O
	

	XYZ-C-003
	Dependencies on ZYX
	Section x.y
	M
	ZYX:MCF

	XYZ-C-004
	Dependencies on ZYX
	Section x.y
	O
	ZYX:OCF

C.2 SCR for XYZ Server

	Item
	Function
	Reference
	Status
	Requirement

	XYZ-S-001
	Something mandatory
	Section x.y
	M
	XYZ-S-001 OR XYZ-S-002 OR XYZ-S-003

	XYZ-S-002
	Something optional
	Section x.y
	O
	

	XYZ-S-003
	Dependencies on ZYX
	Section x.y
	M
	ZYX:MSF

	XYZ-S-004
	Dependencies on ZYX
	Section x.y
	O
	ZYX:OSF

Appendix D. <Additional Information>

If needed, add annex to provide additional information to support the document. In general, this information should be informative, as normative material should be contained in the primary body of the document.

Note that the styles for the headers in the appendix (App1, App2, App3) are different than the main body. The use below is intended to validate the styles to be used. Remove if not needed.

DELETE THIS COMMENT

D.1 App Headers

<More text>

D.1.1 More Headers

<More text>

D.1.1.1 Even More Headers

<More text>

(2012 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20060101-I]
(2012 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20060101-I]

_1409557644.vsd
LWM2M
Server

LWM2M
Client

write

Downlink

_1409557645.vsd
LWM2M
Server

LWM2M
Client

write

Uplink

_1409557643.vsd
LWM2M
Server

LWM2M
Client

read, write, execute

Downlink

_1409557642.vsd
LWM2M
Server

LWM2M
Client

write

Uplink

