OMA-TS-LightweightM2M-V1_0-20130206-D
Page 38 V(53)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	Lightweight Machine to Machine

Technical Specification

	Draft Version 1.0 – 06 Feb 2013

	Open Mobile Alliance

	OMA-TS-LightweightM2M-V1_0-20130206-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2012 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

51.
Scope

2.
References
6
2.1
Normative References
6
2.2
Informative References
7
3.
Terminology and Conventions
8
3.1
Conventions
8
3.2
Definitions
8
3.3
Abbreviations
8
4.
Introduction
9
5.
Protocol Overview
10
6.
Interfaces
11
6.1
Device Discovery & Registration Interface
12
6.1.1
Registration
13
6.1.2
Update
14
6.1.3
De-registration
14
6.2
Bootstrap Interface
14
6.2.1
Bootstrap Information
14
6.2.2
Bootstrap Modes
15
6.2.2.2
SmartCard provisioning
15
6.2.2.4
Server Initiated Bootstrap
16
6.2.3
Re-bootstrap
16
6.3
Device Management & Service Enablement Interface
17
6.3.1
Read
18
6.3.2
Write
18
6.3.3
Execute
19
6.4
Information Reporting Interface
19
6.4.1
Observe
19
6.4.2
Notify
21
6.4.3
Cancel Observation
21
7.
Identifiers and Resources
23
7.1
Resource Model
23
7.2
Identifiers
24
7.3
Data Formats for Transferring Resource Information
25
7.3.1
Plain Text
25
7.3.2
Opaque
25
7.3.3
TLV
25
7.3.4
JSON
26
8.
Security Consideration
28
8.1
Channel Security
28
8.1.1 Pre-Shared Keys
28
8.1.2 Raw Public Keys Certificates
28
8.1.3 X509 Certificates
29
8.2
Access Control
29
8.2.1
Access Control List (ACL)
29
8.2.2
Access Type
29
8.2.3
Authorization
30
8.2.4
Querying ACL/Access Type
31
9.
Transport Layer Binding and Encoding
32
9.1
Required Features
32
9.2
URI Identifier & Operation Mapping
32
9.2.1
Registration Interface
32
9.2.2
Bootstrap Interface
33
9.2.3
Device Management & Service Enablement Interface
34
9.2.4
Information Reporting Interface
35
9.3
Transport Bindings
36
9.3.1
UDP Binding
36
9.3.2
SMS Binding
36
10.
Response Codes
37
Appendix A.
LWM2M Object Template and Guidelines (Informative)
38
A.1
Object Template
38
A.2
Guidelines
38
Appendix B.
LWM2M Objects defined by OMA (Normative)
39
B.1
LWM2M Object: LWM2M Server
39
B.2
LWM2M Object: Access Control
41
B.3
LWM2M Object: Device
42
B.4
LWM2M Object: Connectivity
43
B.5
Firmware
44
Appendix C.
Storage of DM Bootstrap Message on the Smartcard
47
Appendix D.
Change History (Informative)
48
D.1
Approved Version History
48
D.2
Draft/Candidate Version <current version> History
48
Appendix E.
Static Conformance Requirements (Normative)
50
E.1
SCR for XYZ Client
50
E.2
SCR for XYZ Server
50
Appendix F.
<Additional Information>
51
F.1
App Headers
51
F.1.1
More Headers
51

Figures

9Figure 1: Example Figure

Tables

9Table 1: Example Table

1. Scope

<< Define as it relates to Open Mobile Alliance Activity. If it adds clarity, define what is not in the scope. DELETE THIS COMMENT >>

2. References

The policy for reference lists is:

1.
OMA documents listed should have at least one approved version – draft-only docs should not be referenced. Exception exists for documents that will be approved with or after the referenced doc is approved (may be part of same enabler package). In short – approved docs should not reference unapproved docs.

2.
When a reference is made to an OMA specification, then Open Mobile Alliance with the TM symbol (™) should be used in the description.

3.
The name + version (no date) for OMA specifications are generally sufficient – dates should be used only if there is a specific reason to limit the usage.

4.
For references to WAP Forum docs, dates should not be included as DID's for the old WAP Forum specifications are enough and the reference description should refer to WAP Forum™.

5.
References to other affiliate docs should similarly provide sufficient information to uniquely determine the needed document and should provide the appropriate source information.

6.
The URL for OMA material (new OMA and affiliate) should always be http://www.openmobilealliance.org (an exception is OMNA that is reached through http://www.openmobilealliance.org/tech/omna)

Models to use

[REFLABEL]
<General Model> “Ref Title”, Ref information (source, date, id),
URL:http//<ref-source>/

[OMADOC]
<OMA Model> “OMA Document Title”, Open Mobile Alliance™, OMA‑<docname>{‑<version>}, URL:http//www.openmobilealliance.org/

If there are no entries in the table – enter ‘none’ to be clear.
DELETE THIS COMMENT

2.1 Normative References

	[IOPPROC]
	“OMA Interoperability Policy and Process”, Version 1.1, Open Mobile Alliance™, OMA-IOP-Process-V1_1, URL:http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. November 1997, URL:http://www.ietf.org/rfc/rfc2234.txt

	[LWM2M-AD]
	“Lightweight Machine to Machine Architecture”, Open Mobile Alliance™, OMA-AD-LightweightM2M-V1_0, URL:http://www.openmobilealliance.org/

	[CoAP]
	Shelby, Z., Hartke, K., Bormann, C., and B. Frank, "Constrained Application Protocol (CoAP)", draft-ietf-core-coap-12 (work in progress), Sept 2012.

	[OBSERVE]
	Hartke, K. “Observing Resources in CoAP”, draft-ietf-core-observe-07 (work in progress), Sept 2012.

	[RFC6690]
	Shelby, Z. “Constrained RESTful Environments (CoRE) Link Format”, RFC6690, Aug 2012.

	[RFC6347]
	Rescorla, E. and N. Modadugu, "Datagram Transport Layer Security Version 1.2", RFC 6347, January 2012.

	[RFC6655]
	McGrew, D. and D. Bailey, "AES-CCM Cipher Suites for TLS", RFC6655, July 2012.

	[RFC5487]
	Pre-Shared Key Cipher Suites for TLS with SHA-256/384 and AES Galois Counter Mode

	[RFC5246]
	The Transport Layer Security (TLS) Protocol Version 1.2

	[RFC5289]
	TLS Elliptic Curve Cipher Suites with SHA-256/384 and AES Galois Counter Mode (GCM)

	[PKCS#15]
	PKCS #15 v1.1: Cryptographic Token Information Syntax Standard”, RSA Laboratories, June 6, 2000. URL: ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-15/pkcs-15v1_1.pdf

	
	<< Add/Remove reference rows as needed! >>

2.2 Informative References

	
	

	
	<< Add/Remove reference rows as needed! >>

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

.

3.2 Definitions

	Queue Mode
	The interaction model between an LWM2M Client and LWM2M Server is based on that LWM2M Server queues the requests.

	LWM2M Device LAA
	An LWM2M Device with low communication access availability over the LWM2M Server interface (these devices may go into sleep-mode and cannot always be activated over the interface) that requests LWM2M Server to queue the requests.

	
	

3.3 Abbreviations

	OMA
	Open Mobile Alliance

	xxx
	xxx

	
	

4. Introduction

4.1 Version 1.0

This enabler defines the application layer communication protocol between the LWM2M Server and the LWM2M Client which is placed in the LWM2M Device. The OMA Lightweight M2M enabler includes device management and service enablement for LWM2M Devices. The target LWM2M Devices for this enabler are mainly resource constrained devices. Therefore, this enabler provides a light and compact protocol as well as an efficient resource data model.
Client-Server architecture is introduced for LWM2M enabler. The LWM2M enabler has two components, LWM2M Server and LWM2M Client. Four interfaces are designed between these two components as shown below:

· Device Discovery and Registration

· Bootstrap

· Device management and service enablement

· Information Reporting
The enabler defines two types of constrained LWM2M Device categories:

· LWM2M Devices with communication access availability over LWM2MServer interface (these devices may go into sleep-mode, but can always be activated over the interface).
· LWM2M Devices with low access communication availability over the listed interfaces (these devices may go into sleep-mode and cannot always be activated over the interface). An LWM2M Client on this device category request LWM2M Server to queue requests (i.e. inter-work with LWM2M Device in Queue Mode).

·
·
·
·

5. Protocol Overview

6. Interfaces
According to the architecture diagram [LWM2M-AD], there are four interfaces: 1) Device Discovery and Registration 2) Bootstrap 3) Device Management and Service Enablement 4) Information Reporting. The logical operations for the four interfaces can be classified as uplink operations and downlink operations. The logical operations of each interface are defined in this section, and then mapped to protocol mechanisms in Section 9
Figure 1 shows the logical operation model for the interface “Device Discovery and Registration”. For this interface, the operations are uplink and consists of Registration, Update, and De-registration.
[image: image2.png]| Regser Updae Dereger | vz
Clon i

Figure 1 Device Discovery and Registration
Figure 2 shows the logical operation model for interface “Bootstrap”. For this interface, the operations are uplink Client Initiated Bootstrap or downlink Server Initiated Bootstrap. These operations are used to initialize the needed Object for the Client to register with one or more LWM2M Server. Bootstrapping is also defined using Manufacturer Pre-configuration (e.g. storage in Flash) or SmartCard Provisioning (storage in a SmartCard).
[image: image3.png]Client Initated Bootstrap
R

Server Initiated Bootstrap
e R

Lwizm
Server

Figure 2 Bootstrap
EDITOR’S NOTE: Change SIM to Smart Card in Figure 2.

Figure 3 shows the logical operation model for interface “Device Management and Service Enablement”. For this interface, the operations are downlink and consist of “Read”, “Write” and “Execute”. These operations are used to interact with the Resources, Objects and Object Instances of the LWM2M Client. Read is used to read the current value of one or more Resources, Write is used to update the value of one or more Resources, and Execute is used to initiate an action defined by a Resource.
[image: image4.png]o |, e e Execve |
e s

Figure 3 Device Management and Service Enablement
Figure 4 shows the logical operation model for interface “Information Reporting”. For this interface, the operation is downlink Observe or Cancel Observation, and uplink Notify. This interface is used to send the LWM2M Server a new value related to a Resource on the LWM2M Client.
[image: image5.png]Lwzm
Client

Observe, Cancel Observation

Notify
P Ny)

Lwizm
Server

Figure 4 Information Reporting

The relationship between logical operations and interfaces is listed in the following table 1.

Table 1 the relationship of logical operations and interfaces

	Interface
	Direction
	Logical Operation

	Device Discovery and Registration
	Uplink
	Register, Update, De-register

	Bootstrap
	Uplink
	Client Initiated Bootstrap

	Bootstrap
	Downlink
	Server Initiated Bootstrap

	Device Management and Service Enablement
	Downlink
	Read, Write, Execute

	Information Reporting
	Downlink
	Observe, Cancel Observation

	Information Reporting
	Uplink
	Notify

6.1 Device Discovery & Registration Interface

The Discovery & Registration Interface is used by a LWM2M Client to register with one or more LWM2M Servers, maintain each registration and de-register from a Server. The registration is based on the Resource Model and Identifiers defined in Section 7. When registering, the LWM2M Client indicates its Endpoint Name, registration lifetime and the list of Objects the Client supports. The registration is soft state, with a lifetime indicated by the registration lifetime. The LWM2M Client periodically performs an update and allows the Client to update its registration information. If the lifetime of a registration expires without receiving a new registration or update from the Client, the Server removes the registration. Finally, when shutting down or discontinuing use of a Server, the Client performs a de-registration.
For an LWM2MClient deployed on an LWM2M Device LAA the same procedure as described above is used with the exception that the registration information also contains information that the LWM2M Server is requested to queue the requests to the LWM2M Client.
[image: image6.png]LWM2M
Client

Registration Write

LWM2M
Server

Registration

<>, </2>, </3>

Success

Update

Update Write

Success

De-registration Write

De-register

2.02 Deleted

Figure 1 Registration Interface example flows.

6.1.1 Registration

Registration is performed when a Client sends a registration write operation to the Server. The registration includes the Endpoint Client Name (which MUST be unique on that Server) along with optional Lifetime and SMS Binding Support parameters, and the list of Objects that the Client supports.

Note: Server records the IP address from the registration message

Table 2 Registration parameters

	Parameter
	Required
	Default Value
	Notes

	Endpoint Client Name
	Yes
	
	See section 7.2

	Lifetime
	No
	86400
	The lifetime of the registration in seconds. The registration is removed by the Server if a new registration or update is not received within this lifetime.

	SMS Binding Support
	No
	
	Inclusion of this parameter indicates the Client supports the SMS binding. The value of this parameter is the MSISDN of the Client can be reached at.

	Objects and Object Instances
	Yes
	
	The list of Objects supported and Object Instances available on the Client.

	Queue Mode Support
	No
	
	Indicates that the LWM2M Device requests the LWM2M Server to work in Queue Mode.

TBD: Describe relationship SMS binding and Queue Mode
The list of Supported Objects and Object Instances is included in the payload of the registration message. Each Object is described as a Link in the CoRE Link Format [RFC6690]. The Target component of the link is required, and consists of the Object path. Any other parameters included in the link MUST be silently ignored, unless specified for use by this specification. The Media Type of this payload is application/link-format.

The payload for a Client supporting LWM2M Server, Access Control, Device, Connectivity and Firmware Objects from Appendix B would simply be:

</1>,</2>,</3>,</4>,</5>
If Objects Instances are also available on the client, then the format would be (this example assumes existing Instances for everything except the Firmware Object):

</1/0>, </2/0>, </2/1>, </3/0>,</4/0>,</5>

6.1.2 Update

Periodically, the Client updates its registration with a Server by sending an update write Operation to the Server. This update message MAY contain some registration parameters to update Client status when the parameters are changed. Different from registration message, for update message, all the registration parameters specified in Table 2 are OPTIONAL. When a Client’s IP addres or port changes for any reason, the Client MUST send a new update write Operation to the Server only if UDP binding is used.

6.1.3 De-registration
When a Client will no longer be available, the Client SHOULD send a de-registration write Operation to the Server. Upon receiving this message, the Server will remove the registration information from the Server.

6.2 Bootstrap Interface

Bootstrap process is used to provision essential information into the LWM2M Client to make the LWM2M Client be able to register to a certain LWM2M Server.
This chapter describes what information is conveyed in bootstrap message, where the LWM2M Client puts that information and how to provision the bootstrap information. Please note the LWM2M Client SHALL support at least one bootstrap mode (manufacturer pre-configuration, SmartCard provisioning, LWM2M Server-initiated bootstrap, LWM2M Client-initiated bootstrap) whereas the LWM2M Server MUST support this interface.

Editor’s Note: Security Mechanism for bootstrap interface must be provided. This security mechanism must be differentiated from security mechanism of the other interfaces.
6.2.1 Bootstrap Information

This section specifies what information is conveyed in the bootstrap message to the LWM2M Client and where the LWM2M Client stores the information.

The information is listed in Table X. A LWM2M Client MAY be configured to use one or more LWM2M Servers, with a set of bootstrap information for each LWM2M Server.

Table X. Bootstrap Information List
	Entity
	Semantics
	Description

	LWM2M Server
	Object Instance
	Stores account of the LWM2M Server according to Appendix B.1

	Additional Objects (e.g: Connectivity Object)
	Object or Object Instances
	Stores the specific Object information

6.2.2 Bootstrap Modes
The LWM2M enabler defines several bootstrap modes: manufacturer pre-configuration bootstrap, SmartCard provisioning, server initiated bootstrap and client initiated bootstrap.
Note: discuss LWM2M Server for Bootstrap could be different from LWM2M Server for Registration

6.2.2.1 Manufacturer pre-configuration
In this mode, the LWM2M Client is already provisioned at manufacturer stage. Therefore the LWM2M Client doesn’t need any communication with the LWM2M before the registration.

6.2.2.2 SmartCard provisioning

When the Device supports a SmartCard, the LWM2M Client SHALL support retrieval, and processing of Bootstrap Message contained in the SmartCard as described in Appendix C. When Bootstrap Message retrieval is successful, the LWM2M Client SHALL process the Bootstrap Message from the SmartCard and SHALL apply it to the Device configuration.
In this mode, the LWM2M Client SHALL also check that the bootstrap data previously bootstrapped from the SmartCard are unchanged in the SmartCard; if changed, the previous bootstrap information SHALL be disabled in the LWM2M Client, and the LWM2M Client SHALL apply the new bootstrap data from SmartCard to the Device configuration.
6.2.2.3 Client initiated Bootstrap

In this mode, the LWM2M Client retrieves the bootstrap message from a LWM2M Bootstrap Server, Prior to the client initiated bootstrap, the LWM2M Client needs to be pre-provisioned at the manufacturer stage with a bootstrap URI. The below figure shows the client initiated bootstrap flows.

[image: image7.emf]LWM2M Client

1. Request bootstrap to bootstrap URI

2. Provision bootstrap information

LWM2M Server

Figure 6. Procedure of Client Initiated Bootstrap

Step #1: Request bootstrap to bootstrap URI

The LWM2M Client requests bootstrap to bootstrap URI which has been pre-provisioned. When requesting the bootstrap, the LWM2M Client sends its Endpoint Client Name.

Step #2: Provision bootstrap information

The LWM2M Server provisions bootstrap information which is specified in 6.2.1.
6.2.2.4 Server Initiated Bootstrap

In this mode, the Device leaves the assembly line in a clean and empty state. Once this Device is personalized , e.g. by inserting a SmartCard , the prerequisites for this process are in place. The problem is now to inform the LWM2M Server of the Device identity; this can be achieved - for instance – by the network the first time the Device registers to the network. When this happens a trigger could be sent from the network to the LWM2M Server with the Device identity used by the LWM2M Client.

Regardless the Device identity reaches the LWM2M Server, the LWM2M Server is now in a position where it can send out a Bootstrap Message. This message contains enough information for the LWM2M Client to be able to initiate a management session with the LWM2M Server that sent out the Bootstrap Message.
The below figure shows the server initiated bootstrap flows.

[image: image8.emf]LWM2M Client

1. Provision bootstrap information

LWM2M Server

Figure X. Procedure of Server Initiated Bootstrap

Step #1: Provision bootstrap information

The LWM2M Server provisions bootstrap information which is specified in 6.2.1.
6.2.3 Re-bootstrap

If the LWM2M Client and the LWM2M Server cannot communicate by the other interfaces due to security key mismatch or some other reasons, the LWM2M Client or the LWM2M Server MAY perform re-bootstrap process.

Re-bootstrap is based on the client initiated bootstrap to provide variable bootstrap information (e.g. security key, security mode). In re-bootstrap process of the LWM2M Server, the LWM2M Server provisions the bootstrap information specified in 6.2.1 and the LWM2M Client removes the account of the LWM2M Server and all the information related to the LWM2M Server (e.g. ACL) and installs new account of the LWM2M Server.

Bootstrap information in re-bootstrap may contain a “keepServerInfo” parameter which indicates to keep the LWM2M Server related information so if the parameter is contained in bootstrap information, the LWM2M Client doesn’t removes the LWM2M Server related information and just updates the account of the LWM2M Server. Since the LWM2M Server related information is changed dynamically, this parameter may help in this situation to keep latest information the LWM2M Server owns in the LWM2M Client. The below figure shows the re-bootstrap flows.

[image: image9.emf]LWM2M Client

1. Request re-bootstrap to bootstrap URI

2. Provision bootstrap information

LWM2M Server

0. Notify needs of re-bootstrap (Optional)

Figure 2. Re-bootstrap Procedure

Step #0: Notify needs of re-bootstrap

The LWM2M Server may notify the LWM2M Client of the fact that re-bootstrap is needed. This step is only valid when the LWM2M Server initiates the re-bootstrap procedure. The notification contains URI for re-bootstrap.

Step #1: Request re-bootstrap to bootstrap URI

The LWM2M Client requests re-bootstrap to bootstrap URI which has been sent in step 1. When requesting the re-bootstrap, the LWM2M Client sends its device information and supported security mode.

Step #2: Provision bootstrap information

The LWM2M Server provisions bootstrap information which is specified in 6.2.1. The bootstrap information may contain “keepServerInfo” parameter to keep the LWM2M Server related information.

Editor’s Note: related LWM2M Server information should be updated.
Note: list of steps regarding bootstrap
6.3 Device Management & Service Enablement Interface

This interface is used by the LWM2M Server to access Resources available from a LWM2M Client using Read, Write or Execute operations. The operations that a Resource supports are defined in the definition of its Object.

[image: image10.png]LWM2M LWM2M
Client Server

Read 1310

Success
‘Open Mobile Alliance

Write /311
Model X341
Success

Execute /2/5

Success

Editor’s note: Object Instance ID needs to be included in above feagure. E.g. /3//0 or /3/2/0
6.3.1 Read

The Read operation is used to access the value of a Resource, an array of Resource Instances, an entire Object Instance at once. The Read operation has the following parameters:
Table 1 Read parameters
	Parameter
	Required
	Default Value
	Notes

	Object ID
	Yes
	-
	Indicates the Object.

	Object Instance ID
	Yes
	-
	Indicates the Object Instance to read. If no Resource ID is indicated, then the whole Object Instance is returned.

	Resource ID
	No
	-
	Indicates the Resource to read.

6.3.2 Write

The Write operation is used to change the value of a Resource, an array of Resources Instances or multiple Resources from an Object Instance at once. The Write operation has the following parameters:
Table 2 Write parameters
	Parameter
	Required
	Default Value
	Notes

	Object ID
	Yes
	-
	Indicates the Object.

	Object Instance ID
	Yes
	-
	Indicates the Object Instance to write. If no Resource ID is indicated, then the included payload is an Object Instance containing the Resource values to be written.

	Resource ID
	No
	-
	Indicates the Resource to write. The payload is the new value for the Resource.

	New Value
	Yes
	-
	The new value included in the payload to update the Object Instance or Resource.

6.3.3 Execute

The Execute operation is used to initiate some action, and can only be performed on individual resources. A LWM2M Client MUST return an error on receiving an operation to execute an Object Instance.
Table 3 Execute parameters
	Parameter
	Required
	Default Value
	Notes

	Object ID
	Yes
	-
	Indicates the Object.

	Object Instance ID
	Yes
	-
	Indicates the Object Instance.

	Resource ID
	Yes
	-
	Indicates the Resource to execute.

6.4 Information Reporting Interface

This interface is used by a LWM2M Server to observe any changes in a Resource on a LWM2M Client, receiving notifications when new values are available. This observation relationship is initiated by sending an Observe operation to the L2M2M Client for an Object Instance or Resource. This operation MAY contain optional Maximum and/or Minimum Period parameters to control how often these notifications are sent. The Minimum Period has a default value of 1 second, and to limit congestion notifications for an Observation SHOULD NOT be sent faster than this. An observation ends when a Cancel Observation operation is performed or the LWM2M Server is no longer reachable.

[image: image11.png]LwM2M LWM2M
Client Server

Observe 21/4

Success

_

223

Notity

227

Notity
B

Editor’s note: Object Instance ID needs to be included in above feagure. E.g. /21/0/4 or /21/3/4
6.4.1 Observe

The Observe operation includes the following parameters:
Table 4 Observe parameters
	Parameter
	Required
	Default Value
	Notes

	Object ID
	Yes
	-
	Indicates the Object.

	Object Instance ID
	Yes
	-
	Indicates the Object Instance to observe. If no Resource ID is indicated, then the whole Object Instance is observed.

	Resource ID
	No
	-
	Indicates the Resource to observe.

	Minimum Period
	No
	1
	When present, the minimum period indicates the minimum time in seconds the server SHOULD wait between sending a new notification. In the absence of this parameter, the Minimum Period is defined by the Default Minimum Period set in the LWM2M Server Object Instance related to that Server.

	Maximum Period
	No
	-
	When present, the maximum period indicated the maximum time in seconds the server SHOULD wait between sending the next notification (regardless if the value has changed). In the absence of this parameter, the maximum period is up to the server. The maximum period MUST be greater than the minimum period parameter. In the absence of this parameter, the Maximum Period is defined by the Default Maximum Period set in the LWM2M Server Object Instance related to that Server.

EDITOR’S NOTE: Explain that the period is calculated from the last notification about that resource.

EDITOR’S NOTE: Explain that to set an exact period set min=max=period. Change text in table note to “maximum period MUST be greater or equal to the minumum period”.

EDITOR’S NOTE: Specify that a Client MAY adjust periods according to its sleep or communication schedules.

The following example shows how the Minimum and Maximum period parameters work as shown in Figure 1. A Server makes an Observation for a temperature resource that is updated inside the Client at irregular periods (based on change). The Server makes an Observation with Minimum Period = 10 Seconds and Maximum Period = 60 Seconds. The Client will wait at least 10 Seconds before sending a Notification to the Server (even if the resource has changed before that), and no longer than 60 Seconds before sending a Notification (even if the resource has not changed yet). The Notification is sent anywhere between 10-60 seconds upon change.

[image: image12.png]LwmzM
Server

Observe 6/13 Min=10, Max=60
serve Observe Temperature
Success

0s |[———=
223
New Value ————»

Notit
10s 4

227

Notify
a0

New Value -# 50 (40's)

Notify

1105 (605) |[————————————————»

a0

Figure 1 Example of Minimum and Maximum periods in an Observation.
Editor’s note: Object Instance ID needs to be included in above feagure. E.g. /6/0/13 or /6/1/13
6.4.2 Notify

The Notify operation is sent to the LWM2M Server during a valid observation on an Object, Object Instance, or Resource. This operation includes the new value of the Object, Object Instance or Resource.
Table 5 Notify parameters
	Parameter
	Required
	Default Value
	Notes

	Updated Value
	Yes
	-
	The new value included in the payload about the Object Instance or Resource.

6.4.3 Cancel Observation

The Cancel Observation operation is sent to the LWM2M Client to end an observation relationship. The operation includes the following parameters:
Table 5 Cancel Observation parameters
	Parameter
	Required
	Default Value
	Notes

	Object ID
	Yes
	-
	Indicates the Object.

	Object Instance ID
	Yes
	-
	Indicates the Object Instance to stop observing. If no Resource ID is indicated, then the whole Object Instance is indicated.

	Resource ID
	No
	-
	Indicates the Resource to stop observing.

7. Identifiers and Resources

This section defines the identifiers and resource model for the LWM2M Enabler.

7.1 Resource Model

The LWM2M Enabler defines a simple resource model where each piece of information made available by the LWM2M Client is a Resource, and Resources are logically organized into Objects. Figure 1 illustrates this structure, and the relationship between Resources, Objects and the LWM2M Client. The LWM2M Client may have any number of Resources, each of which belongs to an Object.
[image: image13.png]LWM2M Client

Object 0

Resource 1

Resource 2

Resource 3

Resource 4

Object 1

Resource 1

Resource 2

Resource 3

Resource 4

Figure 1 Relationship between LWM2M Client, Object and Resources
Resources are defined per Object, and each resource is given a unique identifier within that Object. Each Resource is defined to have one or more Operations that it supports. A Resource MAY contain multiple instances as defined in Object specification..
An Object defines a grouping of Resources, for example the Firmware Object contains all the Resources used for firmware update purposes. Each Object is assigned a unique OMA Management Object identifier and corresponding index which identifies an Object defined in this specification. The LWM2M enabler defines standard Objects and Resources and other Objects may be added to enable a certain M2M Services.
Object MUST be instantiated either by the LWM2M Server or the LWM2M Client, which is called Object Instance before using the functionality of an Object. After Object Instance is created, the LWM2M Server can access that Object Istance and Resources which belong to that Object Instance.
The LWM2M Server can perform Operation per Object Instance or Resource in Object Instance only. How to convey Operation data is defined in 7.3.
The LWM2M enabler defines access control mechanism per Object Instance. Object Instances SHOULD have associated Access Control Obejct Instance which contains Access Control Lists (ACLs) that control what the LWM2M Server can access using what operations. How the mechanism works is defined in 8.2. Figure 2 shows which operations the resources support, and how Object Instances and Resources are associated with ACLs. In the example, Resource 1 supports read, write and execute, while Resource 2 supports only read operations.

[image: image14.png]LWM2M Client

Object 0
Resource 1 R, W, E
Resource 2 R

ACL

Figure 2 Supported operations and access control lists

Editor’s Note: Need to update above figure.
7.2 Identifiers

Seven identifiers are defined by the LWM2M Enabler: Endpoint Client Name, LWM2M Server URI, Short Server ID, Human Readable Object URN, Object ID, Object Instance ID, Resource ID and Resource Instance ID. These identifiers are defined in Table 1.
Table 3 Definition of LWM2M terms

	Identifier
	Semantics
	Description

	Endpoint Client Name
	String (max 63 bytes)
	Uniquely identifies the LWM2M Client on one LWM2M Server. Provided to the Server during Registration For example the IMEI, serial number or a logical name of the device.

	LWM2M Server URI
	URI
	Uniquely identifies the LWM2M Server. Provided to the Client during Bootstrap procedure.

	Short Server ID
	16-bit unsigned integer
	Short integer ID, assigned by the LWM2M Client. This identifier uniquely identifies each LWM2M Server configured for the LWM2M Client.
Default Short Server ID is 0 and default Short Server ID MUST not be used for identifying the LWM2M Server

	Human Readable Object URN
	URN for the OMA Management Object
	Assigned by the Object specification

	Object ID
	16-bit unsigned integer
	Uniquely identifies the Object in the LWM2M Client. Short integer ID, assigned by OMA

	Object Instance ID
	16-bit unsigned integer
	Uniquely identifies the Object Instance in the Object. Short integer ID, assigned by the LWM2M Server/Client

	Resource ID
	16-bit unsigned integer
	Uniquely identifies the Resource in the Object. Short integer ID, assigned by the object specification

	Resource Instance ID
	16-bit unsigned integer
	Uniquely identifies the Resource Instance in the Resource. Short integer ID, assigned by the LWM2M Server/Client

Editor’s Note: where to store these identifiers is TBD

7.3 Data Formats for Transferring Resource Information
Four data formats are defined by the LWM2M Enabler in this section. The LWM2M Server MUST support all data formats. The plain text and opaque formats MUST be supported by both the LWM2M Server and the LWM2M Client. The LWM2M Client MUST support the TLV data format for Object Instance or multiple-instance Resource requests.

The Object specification defines the data format that a Resource supports, either plain text or opque for singular Resources or TLV for multiple instance Resources.

In addition to the data formats defined in the Object specification, a LWM2M Client MAY choose to support the JSON format for Object Instance or multiple instance Resource requests.

7.3.1 Plain Text

The plain text format is used for write and read operations on singular Resources where the value of the resource is simply represented as as a UTF-8 encoded string (similar to the Media Type text/plain). This string can contain a character sequence, integer number, decimal number or any other sequence of valid UTF-8 characters.
For example a request to Resource 0 from Object Instance of Object 3 would return the following plain text payload:

Open Mobile Alliance
Editor’s Note: need to be updated.
This data format has a Media Type of application/lwm2m-plain (TBD).
7.3.2 Opaque

The opque format is used for write and read operations on singular Resources where the value of the resource is an opaque sequence of binary octets (similar to the Media Type application/octet-stream). This data format is used for binary resources such as firmware images or application specific binary formats.
This data format has a Media Type of application/lwm2m-opaque (TBD).
7.3.3 TLV

For requests to Object Instance or Resource with multiple instances, the binary TLV (Tag-Length-Value) format is used to represent an array of values or a singular value using a company binary representation, which is easy to process on simple embedded devices.

The format is an array of the following byte sequence, where each array entry represents a Resource or Resource Instance:

	Field
	Format and Length
	Description

	Tag
	16-bit unsigned integer
	The Resource ID or Resource Instance ID of the array entry

	Length
	16-bit unsigned integer
	The Length of the following field in bytes

	Value
	Sequence of bytes, length indicated by the Length field
	Value of the tag. Type of the value depends on the Resource’s data type.

For example a request to Example Resource 1 of Object 1 is:
Tag=0x0001, Length=0x0000.
And the example return is:
Tag=0x0001, Length=0x000c, Value=“EndpointName”.
EDITOR’S NOTE: The example above refers to the removed Example Objects table (former Annex A), thus, the example needs to be changed.

EDITOR’S NOTE: Mention that if there is a singular value in the array, that is OK.

This data format has a Media Type of application/lwm2m-tlv.

7.3.4 JSON

For requests to Object Instance or Resource with multiple instances, a simple JSON format may be used where a set of values is represented. Each entry of the JSON format is a key:value pair, where the key is the Resource ID for requests to an Object Instance or the instance number for requests to a Resource with multiple instances.

This data format has a Media Type of application/lwm2m-json (TBD).

The format when an Object Instance is requested follows the following syntax:

{ "<Resource ID>":"<Value>",
 "<Resource ID>":"<Value>",

 "<Resource ID>":"<Value>"

}
For example a request to Object Instance of Object 3 in the example would return the following JSON payload:

{ "0":"Open Mobile Alliance",
 "1":"LWM2M v1.0",

 "2":"9347112"
}
The format when a Resource with multiple instances is requested follows the following syntax:

{

 "<Resource Instance ID>":"<Value>",
 "<Resource Instance ID>":"<Value>",

 "<Resource Instance ID>":"<Value>"

}

8. Security Consideration

8.1 Channel Security

The LWM2M protocol is based on [CoAP] principles. [CoAP] runs over UDP. The UDP channel security is defined by the Datagram Transport Layer Security (DTLS) [RFC6347] which is the equivalent of TLS v1.2 [RFC5246] for HTTP.

DTLS supports most of the Cipher Suites defined in TLS. (Refers to TLS Cipher Suite registry http://www.iana.org/assignments/tls-parameters/tls-parameters.xml)

Considering that every M2M devices can be managed by an LWM2M server the choice of Cipher Suites is not limited to the list defined in Section 9 of CoAP.

The DTLS binding for [CoAP] is defined in Section 9 of [CoAP]. DTLS is a long-lived session based security solution for UDP. It provides a secure handshake with session key generation, mutual authentication, data integrity and confidentiality. DTLS is also used for authorization on individual [CoAP] resources.

An LWM2M Client and Server SHOULD keep a DTLS session in use as long as possible (even across sleep cycles).
8.1.1 Pre-Shared Keys

An LWM2M server MUST support the Pre-Shared Key mode of DTLS with the Cipher Suites below:

· TLS_PSK_WITH_AES_128_CCM_8 [RFC6655] as defined in Section 9.1.3.1 of [CoAP]

· TLS_PSK_WITH_AES_128_CBC_SHA256 as defined in [RFC5487]

An LWM2M client MUST support the Pre-Shared Key mode of DTLS with at least one of the Cipher Suites specified above.

The use of other Cipher Suites is OPTIONAL for LWM2M.

For all Cipher Suites using AES in a LWM2M implementation the hashing functions SHALL NOT be SHA-1. The use of SHA256 is recommended.

An LWM2M client will negotiate with the LWM2M server the best method during the DTLS handshake for establishing the DTLS session.

8.1.2 Raw Public Keys Certificates

If an LWM2M server supports Raw Public Keys Certificates it MUST support the Cipher Suites below :

· TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 as defined in Section 9.1.3.2 of [CoAP].

· TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 as defined in [RFC5289]

If an LWM2M client supports Raw Public Keys Certificates it MUST support at least one of the above Cipher Suites.

For ECDHE and ECDSA, SHA-1 SHALL NOT be used and the minimum key length SHALL be 256 bits

The use of other Cipher Suites is OPTIONAL for LWM2M.

8.1.3 X509 Certificates

If an LWM2M server supports X509 Certificates it MUST support the Cipher Suites below :

· TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 as defined in Section 9.1.3.3 of [CoAP].

· TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 as defined in [RFC5289]

If an LWM2M client supports X509 Certificates it MUST support at least one of the above Cipher Suites.

For ECDHE and ECDSA, SHA-1 SHALL NOT be used and the minimum key length SHALL be 256 bits.

The use of other Cipher Suites is OPTIONAL for LWM2M.

8.2 Access Control

8.2.1 Access Control List (ACL)

To authorize the logical operation sent from the LWM2M Server, the LWM2M Client uses Access Control List (ACL) to determine which the LWM2M Server can do which logical operations on the resources in the LWM2M Client. ACL is stored in Access Control Object Instance and ACL is assigned per Object Instance and the ACL value is applied to all the Resources which belong to the Object Instance.
ACL Resource has list of Resource Instances called ACL entry consisting of Short Server ID and access right of the corresponding LWM2M Server. Using the Short Server ID instead of the LWM2M Server URI can reduce the space overhead and increase the processing efficiencies. The access right is 1 byte and each bit of the access right represents whether the respective logical operation is authorized or not. For example, if 1st bit of access right is 1, then the LWM2M Server is authorized to read all the Resources in the Object Instance. Detail information of ACL is described in Appendix B.2.

Default ACL entry, consisting of default Short Server ID (i.e. 0) and its access right, MAY be used to grant an access right to LWM2M Servers which are not specified in ACL Resource. It means that the LWM2M Servers which own its ACL entry in ACL Resource, have the access right of that ACL entry and the other LWM2M Servers which do not own its ACL entry in ACL Resource, have the access right of the default ACL entry if default ACL entry exists in ACL Resource. Therefore if ACL Resource has default ACL entry only, all the LWM2M Servers have the same access right of the default ACL entry.
Each Access Control Object Instance MUST be managed by a LWM2M Server called Access Control Owner. The other Servers except Access Control Owner MUST not manage the Access Control Object Instance.
8.2.2 Access Type

Access type defines which logical operation the Resource supports. Therefore access type is assigned per the Resource and all the Instances of the Resource inherit the access type. The access type is 1 byte and each bit of the access type represents whether the respective logical operation is supported by the Resource or not. For example, if 1st bit of access type is 1, it means that the Resource supports read logical operation.

Editor’s Note: Access Type is a constant value, normally assigned when the resource is created. How the LWM2M Server learns the access type is TBD (e.g., through the resource discovery).
	Field
	Format and Length
	Description

	Access Type
	1 byte
	1st lsb: Read

2nd lsb: Write

3rd lsb: Execute

Other bits are reserved for future use

8.2.3 Authorization
For authorizing logical operation sent from the LWM2M Server, the LWM2M Client verifies the access based on the conjunction of the access right and the access type. This chapter specifies how the LWM2M Client obtains access right of the LWM2M Server and authorizes logical operation on Resource and on Object Instance separately.
The LWM2M Server and the LWM2M Client MUST support the authorization procedure described in this section.
8.2.3.1 Obtaining Access Right

For obtaining access right of Object Instance for a certain LWM2M Server, the LWM2M Client MUST performs the following procedure:

1. If the LWM2M Client has only one LWM2M Server Object Instance, the LWM2M Server has full access right (i.e. write, read, execute) without checking Access Control Object Instance.

2. If the LWM2M Client has more than one LWM2M Server Object Instance, the LWM2M Client finds an Access Control Object Instance which contains ACL of Obect Instance which the LWM2M Server accesses.

A. If the ACL Resource has ACL entry which contains Short Server ID of the LWM2M Server, the LWM2M Server has an access right of the ACL entry.

B. If ACL doesn’t have ACL entry of the LWM2M Server, the LWM2M Server has an access right of a default ACL entry if the default ACL entry exists.

C. If ACL doesn’t have ACL entry of the LWM2M Server and the default ACL entry doesn’t exist, the LWM2M Server has no access right.
8.2.3.1 Operation on Resource
If the LWM2M Server accesses a Resource, the LWM2M Client gets an access right of the LWM2M Server for Object Instance that Resource belongs to according to 8.2.3.1 and check whether the access right is granted enough to perform the logical operation. If it is not granted, the LWM2M Client MUST send “ACL Permission Denied” error code to the LWM2M Server. If the access right is granted, the LWM2M Client verifies whether the Resource supports the logical operation. If the logical operation is not supported by the Resource, the LWM2M Client MUST send “Access Type Permission Denied” error code to the LWM2M Server. If the Resource supports the logical operation, the LWM2M Client performs the logical operation and sends response if needed
8.2.3.2 Operation on Object Instance
If the LWM2M Server accesses an Object Instance, the LWM2M Client finds an access right of the LWM2M Server for Object Instance according to 8.2.3.1 and check whether the access right is granted enough to perform the logical operation. If the logical operation is not granted, the LWM2M Client MUST send “ACL Permission Denied” to the LWM2M Server. If the access right is granted, the LWM2M Client checks whether each Resource supports the logical operation. If the logical operation is “write”, the LWM2M Client MUST perform the logical operation on the Object Instance and sends response only if all the Resources in the operation are allowed to perform the “write” logical operation. If it is not allowed, the LWM2M Client MUST inform the LWM2M Server of which Resources don’t support the logical operation of by sending “Access Type Permission Denied” error code for the Resources. If the logical operation is “read”, the LWM2M Client MUST retrieve all the Resources except the Resource(s) which doesn’t support “read” operation and sends the retrieved Resource(s) information to the LWM2M Server. If the logical operation is “execute”, the LWM2M Client MUST not perform the logical operation.
8.2.4 Querying ACL/Access Type

Editor’s Note: ACL is exposed to the LWM2M Server through an interface which will be defined later. The LWM2M Server can modify the ACL using this interface.
Editor’s Note: how to query ACL and access type is TBD
9. Transport Layer Binding and Encoding

The LWM2M interfaces use the IETF Constrained Application Protocol [CoAP] as an underlying transfer protocol across IP and SMS bearers. This protocol defines the message header, request/response codes, message options and retransmission mechanisms. This section defines the subset of features from the IETF CoAP specification to be used by LWM2M interfaces.
9.1 Required Features

For realization of the LWM2M interfaces, only the basic binary CoAP message header, and a small subset of options are required. This section explicitly defines the features of the CoAP standard that are required for LWM2M.

· The 4-byte binary CoAP message header is defined in Section 3 of [CoAP]. This same base message is used for Request and Response interactions.

· Confirmable, Acknowledgement and Reset messages MUST be supported. The Reset message is used as a message layer error message in response to a malformed Confirmable message. Non-Confirmable messages MAY be used by a Client for sending Information Reporting notifications as per [Observe].

· GET, PUT, POST and DELETE methods MUST be supported. LWM2M Operations map to these methods.

· A subset of Response Codes MUST be supported needed for LWM2M response message mapping.

· The Uri-Path Option MUST be supported to indicate the identifier of the interface, Object Instance and Resource being requested.

· The Location-Path Option MUST be supported to indicate the handle of a registration for future update and delete operations.

· The Uri-Query Option MUST be supported.

· The Content-Type Option MAY be used to indicate the media type of the payload. A default value of plain/text is assumed, allowing this option to be elided for most payloads.

· The Token Option MAY be used to enable multiple requests in parallel with an endpoint, and MUST be supported for the Information Reporting interface.

9.2 URI Identifier & Operation Mapping

Although CoAP supports a URI in requests, it is not used in the same way as in HTTP. The URI in CoAP is broken down into binary parts, minimizing overhead and complexity. In LWM2M only path segment and query string URI components are needed. The URI path is used to simply identify the interface, Object Instance or Resource that the request is for, and is encoded in Uri-Path options. The LWM2M Registration interface also makes use of query string parameters to pass on meta-data with the request separately from the payload. Each query parameter is encoded in a Uri-Query Option. Likewise, the LWM2M Operations for each interface are mapped to CoAP Methods.
Firewall/NAT

For a firewall to support LWM2M, it MUST be configured to allow outgoing UDP packets to destination port 5683 (other ports MAY be configured), and allow incoming UDP packets back to the source address/port of the outgoing UDP packet for a period of at least 240 seconds. These UDP packets may contain DTLS or CoAP payloads. When a firewall is configured as such any Clients behind it should use Queued Mode.

For a firewall to support LWM2M it MAY be configured to allow both outgoing and incoming UDP packets to destination port 5683 (other ports MAY be configured). These UDP packets may contain DTLS or CoAP payloads. When a firewall is configured as such any Clients behind it are not required to use Queued Mode, but may use it for other reasons (e.g. a battery powered sleeping device).
Any Clients behind a NAT may use Queued Mode. Other alternatives are for TBD.
9.2.1 Registration Interface

The registration interface is used by a LWM2M Client to register with a LWM2M Server, identified by the LWM2M Server URI. Registration is performed by sending a CoAP POST to the LWM2M Server URI, with registration parameters passed as query string parameters as per Table 1 and supported Objects included in the payload as per [RFC6690]. The response includes Location-Path Options, which indicate the path to use for updating or deleting the registration.

Registration update is performed by sending a CoAP PUT to the Location path returned to the LWM2M Client as a result of a successful registration.

De-registration is performed by sending a CoAP DELETE to the Location path returned to the LWM2M Client as a result of a successful registration.

	Logical Operation
	CoAP Method
	URI
	Success
	Failure

	Write Uplink
	POST
	/rd?ep={Endpoint Client Name}<={Lifetime}&sms={MSISDN}&q
	2.01 Created
	4.00 Bad Request

	Update Uplink
	PUT
	/{location}?ep={Endpoint Client Name}<={Lifetime}&sms={MSISDN}
	2.04 Changed
	4.00 Bad Request

	Delete Uplink
	DELETE
	/{location}
	2.02 Deleted
	4.00 Bad Request

Table 2: Operation to Method and URI Mapping

[image: image15.png]Update

De-register

2,01 Created Location: /523!

PUT /5231

2.04 Changed

DELETE /5a3f

2,02 Deleted
< 202Dcleted

Figure 1: Example registration, update and de-registration exchanges (shorthand in [CoAP] example style, actual messages using CoAP binary headers)

Editor’s Note: add example of update message when the parameter value is changed.
9.2.2 Bootstrap Interface

The bootstrap interface is used to optionally configure a LWM2M Client so that it can successfully register with a LWM2M Server. The client bootstrap operation is performed by sending a CoAP GET request to the LWM2M Server at the /bs path including the Endpoint Client Name as a query string parameter. The response will include the needed resources of the Bootstrap Object for that Client in TLV format.

Editor’s Note: The re-bootstrap interface needs definition.

	Logical Operation
	CoAP Method
	URI
	Success
	Failure

	Read Uplink
	GET
	/bs?ep={Endpoint Client Name}
	2.05 Content
	4.00 Bad Request

Table 4: Operation to Method and URI Mapping

[image: image16.png]ep=
Cilent Bootswap GET /os7ep=node34141

2,05 Content

{Bootstrap resources in TLV fortmat)

Figure 2: Example of a client bootstrap exchange.

9.2.3 Device Management & Service Enablement Interface

The Device Management & Service Enablement Interface is used to access an Object Instance or an individual Resource of an Object Instance. An Object Instance is identified by the path /{Object ID}/{Object Instance ID}. If Object doesn’t support multiple Object Instances, the Object Instance is identified by the path /{Object ID}/0. A Resource is identified by the path /{Object ID}/{Object Instance ID}/{Resource ID}.
An Object Instance or Resource is Read by sending a CoAP GET to the corresponding path. The response includes the value in the corresponding Plain Text, TLV or JSON format.

An Object Instnace or Resource is Written to by sending a CoAP PUT to the corresponding path. The request includes the value to be written in the corresponding Plain Text, TLV or JSON format.

A Resource is Executed by sending a CoAP POST to the corresponding path.

	Logical Operation
	CoAP Method
	Path
	Success
	Failure

	Read Downlink
	GET
	/{Object ID}/{Object Instnace ID}/{Resource ID}
	2.05 Content
	4.00 Bad Request, 4.04 Not Found, 4.05 Method Not Allowed

	Write Downlink
	PUT
	/{Object ID}/{Object Instnace ID}/{Resource ID}
	2.04 Changed
	4.00 Bad Request, 4.04 Not Found, 4.05 Method Not Allowed

	Execute Downlink
	POST
	/{Object ID}/{Object Instnace ID}/{Resource ID}
	2.04 Changed
	4.00 Bad Request, 4.04 Not Found, 4.05 Method Not Allowed

Table 3: Operation to Method Mapping

[image: image17.png]LWM2M LwmzM
Client Server

GET /30
| Read

2.05 Content
‘Open Mobile Aliance.

PUT /AN Write
Model X341
2,04 Changed
POST 1215 Execute

2,04 Changed

Figure 3: Example of Device Management & Service Enablement interface exchanges.

Editor’s Note: Update above figure /3/0/ (/3/0/0, /3/1/ (/3/0/1, /2/5/ (/2/0/5,
9.2.4 Information Reporting Interface

Periodic and event-triggered reporting about resource values from the LWM2M Client to the LWM2M Server is achieved through CoAP Observation [OBSERVE]. This simple mechanism allows the LWM2M Server to send an Observe GET request for an Object Instance, which results in asynchronous notifications whenever that Object Instance changes (periodically or as a result of an event). The minimum and maximum period of notifications can be controlled by including the minimum (pmin) and/or maximum (pmax) period for notifications to be sent in seconds.

	Logical Operation
	CoAP Method
	Path
	Success
	Failure

	Read Downlink
	GET with Observe option
	/{Object ID}/{Object Instnace ID}/{Resource ID}?pmin={minimum period}&pmax={maximum period}
	2.05 Content with Observe option
	4.00 Bad Request, 4.04 Not Found, 4.05 Method Not Allowed

	Write Uplink
	Asynchronous Response
	
	2.04 Changed
	

Table 7: Operation to Method Mapping
[image: image18.png]LWM2M LWM2M
t Server

GET /21/4 Observe Observe

2.05 Content Observe: 0
223

2,04 Changed Observe: 1
27

Notity

2,04 Changed Observe: 1
310

Notity

Figure 4: Example of an Information Reporting exchange.

Editor’s Note: Update above figure /21/4 (/21/0/4
9.3 Queue Mode Operation

When the Client has registered with low communication access availability Queue Mode (it has included the “q” query string parameter when registering), The Server does not immediately send downlink requests on this interface, but instead waits until the Client is online.

A Client lets the Server know it is awake by sending a registration update message as a Confirmable message. The Server then makes any queued requests to the Client in a serial fasion. The Client SHOULD wait at least ACK_TIMEOUT [COAP] seconds from the last CoAP message it sent to the Server before intentionally going offline. If the Server is not successful in sending a request, then it stops emptying the queue and keeps the request for the next time the Client is online.

A typical Queue Mode sequence follows the following steps:

1. The device (i.e. LWM2M Client) registers to the LWM2M Server and requests the LWM2M Server to run in Queue mode by including the “q” query string parameter.

2. The device uses the CoAP ACK_TIMEOUT parameter to set a timer for how long it shall stay awake since last sent message to the LWM2M Server.

3. When LWM2M Server receives a message from the Client (e.g. a notification or a registration update), it checks its request queue for the device and performs the needed CoAP operation(s) (e.g. GET, PUT, and POST). Note: There could be several requests in the queue). Each request is sent serially to the Client, waiting for request to be Acknowledged before sending the next request. If a request is unsuccessful then it is returned to the queue. The device may have pending Observer notifications.
Below is an example flow for Queue Mode in relation to Device Management & Service Enablement Interface

[image: image19.emf]LWM2M

Server

PUT / 5a3f

2.04 Changed

Body: Success,

GET / 2/0

2.05 Content

Re-registration

POST/ rd?ep=node34141&q

</1>, </2>, </3>,

2.04 Changed /5a3f

Registration with

Queue Mode

indication

LWM2M Server waits for

LWM2M Client to

go on-line. During waiting

time LWM2M Server

creates a queuing

Write request

LWM2M Server fetches

1st queued request

and sends it to LWM2M

Client

Device turns into

sleeping mode

Device turns

into sleeping

mode

Device wakes up

and informs

LWM2M Server

LWM2M Server has an

empty request queue

LWM2M

Client

2.04 Changed

LWM2M Server fetches

Next queued request

and sends it to LWM2M

Client

Body: Enabled

PUT / 2/0

Body: Disabled

Figure 3: Example of Device Management & Service Enablement interface exchanges for Queue Mode.

Below is an example flow for Queue Mode in relation to Information Reporting Interface

[image: image20.emf]LWM2M

Client

LWM2M

Server

PUT / 5a3f

2.04 Changed

GET /3/1 Observe

2.05 Content Observe: 0

Body: 22.5

Re-registration

POST/ rd?ep=node34141&q

</1>, </2>, </3>,

2.04 Changed /5a3f

Registration with

Queue Mode

indication

LWM2M Server waits for LWM2M

Client to go on-line. During waiting

time LWM2M Server creates a

queuing Write request

LWM2M Server fetches

queued request reporting

and sends to LWM2M

Client

Device turns

into sleeping

mode

Device turns

into sleeping

mode

Device wakes

up and informs

LWM2M Server

LWM2M Server has an

empty request queue

PUT / 5a3f

2.04 Changed

Re-registration

Device wakes

up and informs

LWM2M Server

2.05 Content Observe: 1

Body: 22.9

LWM2M Server receives

notification.

Device turns

into sleeping

mode

An Observe

request triggers

device to send

notification

Figure 4: Example of an Information Reporting exchange for Queue Mode.

9.4 Transport Bindings
9.4.1 UDP Binding

The CoAP binding for UDP is defined in [CoAP]. The protocol has a IANA registered scheme of coap:// and a default port of 5683. The UDP binding is used in NoSec (no security) mode. Reliability over the UDP transport is provided by the built-in retransmission mechanism of CoAP.

9.4.2 SMS Binding

CoAP is used over SMS in this transport binding by placing a CoAP message in the SMS payload using 8-bit encoding. SMS concatenation MAY be used for messages larger than 140 characters. CoAP retransmission is disabled for this binding. An LWM2M Client indicates the use of this binding by including a parameter (sms) in its registration to the LWM2M Server including the node’s MSISDN number. The LWM2M Client MAY interact with the server using both UDP and SMS bindings.

10. Response Codes

The response codes are an integer value. The only valid values are the standard values defined in this specification.
Editor’s Note: How to format Response codes is TBD
Note: CoaP codes will be used in this table
	Status Codes
	Reason Phrase

	Successful

	
	

	
	

	Recipient Exception

	XXX
	ACL Permission Denied

	XXX
	Access Type Permission Denied

	Originator Exception

	
	

	
	

	
	

Appendix A. LWM2M Object Template and Guidelines (Informative)

Editor’s Note: Add an example about how to access multiple instances of resource.

Editor’s Note: Reserve range for OMA, other SDO, vendors for object ID registration

Editor’s Note: How to reuse the existing management objects need further study

This Appendix provides the template to be used for the specification of LWM2M objects. Furthermore, guidelines for the creation of LWM2M objects are provided.
A.1 Object Template

Appendix C.x
 LWM2M Object: <LWM2M object name>
Decription:

Object info:

	Object
	Object ID
	Object URN
	Multiple Instances?

	
	
	
	

Resource info:
	Resource Name
	Resource ID
	Access Type
	Multiple

Instances?
	Type
	Range or Enumeration
	Units
	Descriptions

	Resource Name
	0
	R, W, E
	Yes/No
	String,

Integer,

Decimal,

Boolean,

Binary,

Time,

Date
	If any
	If any
	Descriptions

A.2 Guidelines

LWM2M objects must be registered with OMNA. The registration process is outlined here: <link

Appendix B. LWM2M Objects defined by OMA (Normative)

This Appendix provides LWM2M Objects defined by OMA. Other organizations and companies may define additional LWM2M according to the guidelines and template provided in Annex B

The following LWM2M objects have been defined by OMA

· LWM2M Server

· Access Control

· Device

· Connectivity

· Firmware

B.1 LWM2M Object: LWM2M Server

Description: This LWM2M objects provides the data related to a LWM2M server, the initial access rights, and security related data.
Object Info:
	Object
	Object ID
	Object URN
	Multiple Instances?

	LWM2M Server
	1
	
	Yes

Resource Info:

	Resource Name
	Resource ID
	Access Type
	Multiple

Instances?
	Type
	Range or Enumeration
	Units
	Descriptions

	LWM2M Server URI
	0
	R, W
	No
	String

	0 – 255 bytes
	-
	Uniquely identifies the LWM2M Server, and is in the form:

“coaps://host:port”, where host is an IP address or FQDN, and port is the UDP port of the Server.

	Security Mode
	1
	R, W
	No
	Integer
	8-bit
	-
	Determines which security mode of DTLS is used
0: Pre-Shared Key mode
1: Raw Public Key mode
2: Certificate mode

	Security Key
	2
	R, W
	No
	Binary
	Variable
	-
	Stores security key of security mode. The format of the keying material is defined by the security mode.

	Short Server ID
	4
	R
	No
	Unsigned Integer
	16-bit
	-
	Short integer ID, assigned by the LWM2M Client. This identifier uniquely identifies each LWM2M Server configured for the LWM2M Client.

default Short Server ID (i.e. 0) MUST not be used for identifying the LWM2M Server

	Default Minimum Period
	5
	R, W
	No
	Unsigned Integer
	16-bit
	s
	The default value the Client should use for the Minimum Period of an Observation in the absence of this parameter being included in an Observation.

	Default Maximum Period
	6
	R, W
	No
	Unsigned Integer
	16-bit
	s
	The default value the Client should use for the Maximum Period of an Observation in the absence of this parameter being included in an Observation.

	Disabled
	7
	R, W
	No
	Boolean
	1-bit
	
	If true, this LWM2M Server is disabled for a certain period defined in the Disabled Timeout Resource. In this period, the LWM2M Client MUST NOT send any message to the Server and ignore all the messages from the Server. When disabled, Client MUST perform de-registration process and underlying network connection between the Client and Server MUST be disconnected.

	Disabled Timeout
	8
	R, W
	No
	Unsigned Integer
	32-bit
	s
	A period to disable the Server. After this period, the LWM2M Client MUST set false to the value of Disabled Resource and perform registration process to the Server. If this Resource is not set, a default timeout value is 86400 (1 day).

B.2 LWM2M Object: Access Control

Description: Access Control Object is used to check whether the LWM2M Server has access right for performing an operation. Each Access Control Object Instance contains ACL for a certain Object Instance.

Object Info:

	Object
	Object ID
	Object URN
	Multiple Instances?

	Access Control
	2
	
	Yes

Resource Info:

	Resource Name
	Resource ID
	Access Type
	Multiple

Instances?
	Type
	Range or Enumeration
	Units
	Descriptions

	Object ID
	0
	R, W
	NO
	Unsigned Integer
	16-bit
	-
	See Table 3.

	Object Instance ID
	1
	R, W
	NO
	Unsigned Integer
	16-bit
	-
	See Table 3.

	ACL
	2
	R, W
	YES
	Binary
	8-bit
	-
	Resource Instance ID MUST be the same with Short Server ID of a certain LWM2M Server which has an access right.

Resource Instance ID 0 is for default ACL entry.

Value corresponding to the Resource Instance ID is 1 byte access right value specified as below.

1st lsb: Read

2nd lsb: Write

3rd lsb: Execute

Other bits are reserved for future use

	Access Control Owner
	3
	R, W
	NO
	Unsigned Integer
	16-bit
	-
	Short Server ID of a certain LWM2M Server. This LWM2M Server only can manage these Resources of theObject Instance.

Editors’note: Add Example of Object Instance

B.3 LWM2M Object: Device

Description: This LWM2M objects provide a range of device related information which can be queried by the LWM2M server, and a device reboot and factory reset function.

Object info:

	Object
	Object ID
	Object URN
	Multiple Instances?

	Device
	3
	
	No

Resource Info:

	Resource Name
	Resource ID
	Access Type
	Multiple

Instances?
	Type
	Range or Enumeration
	Units
	Descriptions

	Manufacturer
	0
	R
	No
	String

	
	-
	Manufacturer name

	Model Number
	1
	R
	No
	String
	
	-
	A model identifier (manufacturer specified string)

	Serial Number
	2
	R
	No
	String
	
	-
	Serial Number

	LWM2M client version
Editor’s note: Where to put this Resource is TBD
	5
	R
	No
	String
	
	-
	Client version identifier

	Firmware version
	7
	R
	No
	String
	
	-
	Current firmware version

	Reboot
	8
	E
	No
	-
	
	-
	Reboot the device to restore the Device from unexpected firmware failure.

	Factory reset
	9
	E
	No
	-
	
	-
	Perform factory reset of the device to make the Device have the same configuration as at the initial deployment.

	Power source status
	10
	R
	No
	Integer
	
	
	0=power connected

1=running on battery

	Battery level
	11
	R
	Yes
	Integer
	
	-
	Contains the current battery level as a percentage (with a range from 0 to 100). This value is only valid when the value of Power source status is 1.

	Memory free
	16
	R
	No
	Integer
	
	-
	Estimated current available amount of storage space which can store data and software in the device (expressed in kilobytes).

	Device state
	17
	R
	No
	Integer
	
	
	0=Idle
1=Active
2=Power Saving Mode

	Error condidtion
	18
	R
	No
	Integer
	
	
	0=no error

1=hardware error

2=software error

3= …

<more error codes to be specified>

B.4 LWM2M Object: Connectivity

Description: This LWM2M objects enables management of parameters related to connectivity.

Object info:

	Object
	Object ID
	Object URN
	Multiple Instances?

	Connectivity
	4
	
	No

Resource Info:

	Resource Name
	Resource ID
	Access Type
	Multiple

Instances?
	Type
	Range or Enumeration
	Units
	Description

	Resource Name
	0
	R, W, E
	Yes/No
	String,

Integer,

Decimal,

Boolean,

Binary,

Time,

Date
	If any
	If any
	Descriptions

B.5 Firmware

Description: This LWM2M objects enables FW management incl. querying the installed FW, updating FW and activate FW.

Object Info:

	Object
	Object ID
	Object URN
	Multiple Instances?

	Firmware
	5
	
	No

Resource Info:

	Resource Name
	Resource ID
	Access Type
	Multiple

Instances?
	Type
	Range or Enumeration
	Units
	Descriptions

	Version
	0
	R
	No
	String
	-
	-
	Current firmware package version
Editor’s Note: Where to put this Resource is TBD

	Package
	1
	W
	No
	Binary
	-
	-
	Firmware package

	Update
	2
	E
	No
	-
	-
	-
	Updates firmware by using the firmware package stored in Package

This Resource is only executable when the value of the State Resource is Downloaded.

	State
	3
	R
	No
	Unsigned Integer
	
	
	Indicates current state with respect to this firmware update. This value is set by the LWM2M Client.
1: Idle (before downloading or after updating)
2: Downloaded

If writing the firmware package to Package Resource is done, the state changes to Downloaded.

If writing an empty string to Package Resource is done, the state changes to Idle.
If performing the Update failed, the state remains at Downloaded.

If performing the Update was successful, the state changes from Downloaded to Idle.

	UpdateSupportedObjects
	4
	R, W
	No
	Boolean
	1-bit
	
	If this value is true, the LWM2M Client MUST inform the registered LWM2M Servers of Supported Objects by sending an update message after the firmware update operation at the next practical opportunity if Supported Objects have changed, in order for the Servers to promptly manage newly installed Objects.
If false, Supported Objects MUST be reported at the next periodic update message.
The default value is false.

Appendix C. Storage of DM Bootstrap Message on the Smartcard

This section aims at specifying the storage mechanism of Bootstrap Message on the SmartCard ; this section is based on DM 1.3 appendix D relatively to PKCS#15 file structure.
Appendix D. Change History
(Informative)

D.1 Approved Version History

	Reference
	Date
	Description

	
	
	

	
	
	

	
	
	

D.2 Draft/Candidate Version <current version> History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-TS-LightweightM2M-V1_0-20120904-D
	04 Sep 2012
	all
	TS baseline agreed as in

 OMA-DM-LightweightM2M-2012-0078-INP_TS_kick_off

	Draft Version

OMA-TS-LightweightM2M-V1_0-20120918-D
	18 Sep 2003
	6, 7
	Incorporates input to committee:
OMA-DM-LightweightM2M-2012-0083R01-CR_Skeleton_Base_Line
OMA-DM-LightweightM2M-2012-0090R02-CR_TS_Resource_Model

OMA-DM-LightweightM2M-2012-0061R04-CR_Interfaces

	Draft Version

OMA-TS-LightweightM2M-V1_0-20121024-D
	24 Oct 2012
	6, 7, Appendix A
	OMA-DM-LightweightM2M-2012-0095R01-CR_TS_Interface_and_Resource_Additions

	Draft Version

OMA-TS-LightweightM2M-V1_0-20121030-D
	30 Oct 2012
	7, 8
	OMA-DM-LightweightM2M-2012-0097R01-CR_Identifiers_and_Security_Considerations

	Draft Version

OMA-TS-LightweightM2M-V1_0-20121117-D
	17 Nov 2012
	2, 6, 7, 8, 9, 10
	OMA-DM-LightweightM2M-2012-0088R04-CR_Transfer_Protocol

OMA-DM-LightweightM2M-2012-0098R02-CR_Bootstrap_Information_and_Modes

OMA-DM-LightweightM2M-2012-0099R01-CR_Default_ACL_Entry

OMA-DM-LightweightM2M-2012-0100R02-CR_Authorization_Procedure_and_Error_Code

OMA-DM-LightweightM2M-2012-0104R01-CR_Registration_Interface

	Draft Version

OMA-TS-LightweightM2M-V1_0-20121130-D
	30 Nov 2012
	
	OMA-DM-LightweightM2M-2012-0107R01-CR_Appendix_for_LWM2M_Objects.

OMA-DM-LightweightM2M-2012-0106R02-CR_Information_Interfaces.

OMA-DM-LightweightM2M-2012-0108R01-CR_LWM2M_Server_Account_Object.

OMA-DM-LightweightM2M-2012-0109R01-CR_Authorization_Update

	Draft Version

OMA-TS-LightweightM2M-V1_0-20121206-D
	06 Dec 2012
	6
	OMA-DM-LightweightM2M-2012-0110R01-CR_Interfaces_Intro_Update

	Draft Version

OMA-TS-LightweightM2M-V1_0-20121219-D
	19 Dec 2012
	6,7,8,9,
Annex
	OMA-DM-LightweightM2M-2012-0111R01-CR_Object_Instance_Introduction

OMA-DM-LightweightM2M-2012-0112-CR_Object_Template_Update
OMA-DM-LightweightM2M-2012-0113R02-CR_Access_Control
OMA-DM-LightweightM2M-2012-0114-CR_Update_Operation_Modification

OMA-DM-LightweightM2M-2012-0115-CR_Connection_Control

	Draft Version

OMA-TS-LightweightM2M-V1_0-20130123-D
	22 Jan 2013
	2, 7, 8, 9, Annex
	OMA-DM-LightweightM2M-2012-0101R03-CR_change_of_the_TLV_data_format

OMA-DM-LightweightM2M-2012-0117-CR_remove_example_objects_and_resources

OMA-DM-LightweightM2M-2013-0001R04-CR_Firmware_Object

OMA-DM-LightweightM2M-2013-0003R01-CR_LwM2M_Client_and_Server_Security_Considerations

OMA-DM-LightweightM2M-2013-0006-CR_Security_Mode_in_RessourceInfo_Table

	Draft Version

OMA-TS-LightweightM2M-V1_0-20130206-D
	6 Feb 2013
	
	OMA-DM-LightweightM2M-2013-0004R03-CR_SmartCard_Bootstrap

OMA-DM-LightweightM2M-2013-0005R01-CR_device_object OMA-DM-LightweightM2M-2013-0007-CR_Object_Instance_Modification

Appendix E. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [IOPPROC].

The following is a model of a set of SCR tables. DELETE THIS COMMENT

E.1 SCR for XYZ Client

	Item
	Function
	Reference
	Status
	Requirement

	XYZ-C-001
	Something mandatory
	Section x.y
	M
	(XYZ-C-001 OR XYZ-C-003) AND
 XYZ-C-002

	XYZ-C-002
	Something optional
	Section x.y
	O
	

	XYZ-C-003
	Dependencies on ZYX
	Section x.y
	M
	ZYX:MCF

	XYZ-C-004
	Dependencies on ZYX
	Section x.y
	O
	ZYX:OCF

E.2 SCR for XYZ Server

	Item
	Function
	Reference
	Status
	Requirement

	XYZ-S-001
	Something mandatory
	Section x.y
	M
	XYZ-S-001 OR XYZ-S-002 OR XYZ-S-003

	XYZ-S-002
	Something optional
	Section x.y
	O
	

	XYZ-S-003
	Dependencies on ZYX
	Section x.y
	M
	ZYX:MSF

	XYZ-S-004
	Dependencies on ZYX
	Section x.y
	O
	ZYX:OSF

Appendix F. <Additional Information>

If needed, add annex to provide additional information to support the document. In general, this information should be informative, as normative material should be contained in the primary body of the document.

Note that the styles for the headers in the appendix (App1, App2, App3) are different than the main body. The use below is intended to validate the styles to be used. Remove if not needed.

DELETE THIS COMMENT

F.1 App Headers

<More text>

F.1.1 More Headers

<More text>

F.1.1.1 Even More Headers

<More text>

�TBD: Shall it be an indication that the device is behind a NAT/firewall?

(2012 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20060101-I]
(2012 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20060101-I]

_1413617090.vsd
LWM2M Client

1. Request re-bootstrap to bootstrap URI

2. Provision bootstrap information

_1422710509.ppt

LWM2M

Server

PUT / 5a3f

2.04 Changed

Body: Success,

GET / 2/0

2.05 Content

Re-registration

POST/ rd?ep=node34141&q

</1>, </2>, </3>,

2.04 Changed /5a3f

Registration with

Queue Mode

indication

LWM2M Server waits for LWM2M Client to

go on-line. During waiting

time LWM2M Server

creates a queuing

Write request

LWM2M Server fetches

1st queued request

and sends it to LWM2M

Client

Device turns into sleeping mode

Device turns into sleeping mode

Device wakes up and informs LWM2M Server

LWM2M Server has an

empty request queue

LWM2M

Client

2.04 Changed

LWM2M Server fetches

Next queued request

and sends it to LWM2M

Client

Body: Enabled

PUT / 2/0

Body: Disabled

_1422713198.ppt

LWM2M

Client

LWM2M

Server

PUT / 5a3f

2.04 Changed

GET /3/1 Observe

2.05 Content Observe: 0

Body: 22.5

Re-registration

POST/ rd?ep=node34141&q

</1>, </2>, </3>,

2.04 Changed /5a3f

Registration with

Queue Mode

indication

LWM2M Server waits for LWM2M

Client to go on-line. During waiting

time LWM2M Server creates a

queuing Write request

LWM2M Server fetches

queued request reporting

and sends to LWM2M

Client

Device turns into sleeping mode

Device turns into sleeping mode

Device wakes up and informs LWM2M Server

LWM2M Server has an

empty request queue

PUT / 5a3f

2.04 Changed

Re-registration

Device wakes up and informs LWM2M Server

2.05 Content Observe: 1

Body: 22.9

LWM2M Server receives

notification.

Device turns into sleeping mode

An Observe request triggers device to send notification

_1417537659.vsd
LWM2M Client

1. Provision bootstrap information

_1413379784.vsd
LWM2M Client

1. Request bootstrap to bootstrap URI

2. Provision bootstrap information

