Doc# OMA-DM-LightweightM2M-2016-0100-CR_firmware_update_blockwise_transport
[image: image2]

Doc#OMA-DM-LightweightM2M-2016-0100-CR_firmware_update_blockwise_transport [image: image2]

Change Request

	Title:
	Firmware Update: Adding Block-Wise Transfer for CoAP to LWM2M v1.0
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	DM LightweightM2M WG

	Doc to Change:
	OMA-TS-LightweightM2M-V1_0-20160802-D

	Submission Date:
	22 Aug 2016

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Hannes Tschofenig, hannes.tschofenig@arm.com
Hudalla Kai, Kai.Hudalla@bosch-si.com
Padmakumar Subramani, padmakumar.subramani@nokia.com

Achim Kraus, Achim.Kraus@bosch-si.com
Friedhelm Rodermund, rodermund@vodafone.de
Nicolas Damour, ndamour@sierrawireless.com
Thierry Garnier, Thierry.Garnier@gemalto.com

	Replaces:
	n/a

1 Reason for Change

CoAP, as defined in RFC 7252 [CoAP], was not designed for transmission of large payloads. Since the CoAP header itself does not contain length information the UDP length header is used instead. The maximum UDP datagram size is limited to ~64 KiB. Transmitting data beyond the (path) MTU size will, however, lead to inefficiency because of IP fragmentation and fragmentation at the adaptation layer.

Firmware images with implementations of LWM2M clients can, however, easily be larger than 64 KiB.
(Note: 1 KiB = 1024 bytes)

This contribution adds the CoAP Block-wise Transfer functionality to the LWM2M specification to allow LWM2M clients to receive firmware images larger than 64 KiB and to allow efficient transfer of firmware images of smaller size as well.
2 Impact on Other Specifications

None
3 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

4 Recommendation

This contribution recommends adding support for CoAP Block-wise Transfer [CoAP_Blockwise].
5 Detailed Change Proposal

 E.6 LWM2M Object: Firmware Update
	Description
	
	This LWM2M Object enables management of firmware which is to be updated. This Object includes installing firmware package, updating firmware, and performing actions after updating firmware. A reboot of the device MUST occur for taking into account the new successfully installed firmware.

After reboot of the device:

· the “State” Resource must be at Downloaded state (2) if the “Package” Resource contains a valid Package which has not been successfully installed yet, or at Idle state (0) otherwise.

· After Device reboot, the Update Result Resource MUST contain the value it had just before Device reboot occurred
The envisioned functionality with LWM2M version 1.0 is to allow a client to connect to any LWM2M version 1.0 compliant server to obtain a firmware imagine using the object and resource structure defined in this section experiencing communication security protection using DTLS. There are, however, other design decisions that need to be taken into account to allow a manufacturer of a device to securely install firmware on a device. Examples for such design decisions are how to manage the firmware update repository at the server side (which may include user interface considerations), the techniques to provide additional application layer security protection of the firmware image, how many versions of firmware imagines to store on the device, and how to execute the firmware update process considering the hardware specific details of a given IoT hardware product. These aspects are considered to be outside the scope of the LWM2M version 1.0 specification.

A LWM2M server may also instruct a LWM2M client to fetch a firmware image from a dedicated server (instead of pushing firmware imagines to the LWM2M client). The Package URI resource is contained in the Firmware object and can be used for this purpose.

A LWM2M version 1.0 client MUST support block-wise transfer [CoAP_Blockwise] if it implements the Firmware Update object.
A LWM2M version 1.0 server MUST support block-wise transfer. Other protocols, such as HTTP/HTTPs, MAY also be used for downloading firmware updates (via the Package URI resource). For constrained devices it is, however, RECOMMENDED to use CoAP for firmware downloads to avoid the need for additional protocol implementations.

	
	Object definition
	
	Name

Object ID

Instances

Mandatory

Object URN

Firmware Update
5
Single
Optional
urn:oma:lwm2m:oma:5
	
	Resource definitions
	
	ID

Name

Operations

Instances

Mandatory

Type

Range or Enumeration

Units

Description

0

Package

W

Single

Mandatory

Opaque

Firmware package

1

Package URI

W

Single

Mandatory

String

0-255 bytes

URI from where the device can download the firmware package by an alternative mechanism. As soon the device has received the Package URI it performs the download at the next practical opportunity.

Note: The URI provided in the Package URI contains a URI scheme, identifies the endpoint and a resource within that endpoint. For example, coaps://example.org/firmware is a syntactically valid URI. The URI scheme determins the protocol to be used. For CoAP this endpoint MAY be a LWM2M server but does not necessarily need to be. A CoAP server implementing block-wise transfer is sufficient as a server hosting a firmware repository and the expectation is that this server merely serves as a separate file server making firmware images available to LWM2M clients.
2

Update

E

Single

Mandatory

none
no argument
Updates firmware by using the firmware package stored in Package, or, by using the firmware downloaded from the Package URI.
This Resource is only executable when the value of the State Resource is Downloaded.

3

State

R

Single

Mandatory

Integer

0-3
Indicates current state with respect to this firmware update. This value is set by the LWM2M Client.
0: Idle (before downloading or after successful updating)
1: Downloading (The data sequence is on the way)
2: Downloaded
3: Updating
If writing the firmware package to Package Resource is done, or, if the device has downloaded the firmware package from the Package URI the state changes to Downloaded.
Writing an empty string to Package Resource or to Package URI Resource, resets the Firmware Update State Machine: the State Resource value is set to Idle and the Update Result Resource value is set to 0.

When in Downloaded state, and the executable Resource Update is triggered, the state changes to Updating.
If the Update Resource failed, the state returns at Downloaded.
If performing the Update Resource was successful, the state changes from Updating to Idle.

Firmware Update mechanisms are illustrated below in Figure 27
4

Update Supported Objects

RW

Single

Optional

Boolean

After a successful Firmware Update operation (transition from Updating to Idle state), the LWM2M Client MUST inform the registered LWM2M Servers of the Objects and Object Instances changes, insending an Update or Registration message:

· if the “Update Supported Objects” Resource is “true”, the message is sent at the next practical opportunity, in order for the LWM2M Servers to promptly manage newly installed Objects.

· If the “Update Supported
Objects” is false, the message is sent at the next periodic Update time slot.
The default value is false.

5

Update Result

R

Single

Mandatory

Integer

0-9
Contains the result of downloading or updating the firmware
0: Initial value. Once the updating process is initiated (Download /Update), this Resource MUST be reset to Initial value.
1: Firmware updated successfully,
2: Not enough flash memory for the new firmware package.
3. Out of RAM during downloading process.
4: Connection lost during downloading process.
5: Integrity check failure for new downloaded package.
6: Unsupported package type.
7: Invalid URI
8: Firmware update failed
This Resource MAY be reported by sending Observe operation.
9: Unsupported protocol. A LWM2M client indicates the failure to retrieve the firmware imagine using the URI provided in the Package URI resource by writing the value 9 to the /5/0/5 (Update Result resource) when the URI contained a URI scheme unsupported by the client. Consequently, the client is unable to retrieve the firmware image using the URI provided by the LWM2M server in the Package URI when it refers to an unsupported protocol.
6

PkgName

R

Single

Optional

String

0-255 bytes

Name of the Firmware Package

7

PkgVersion

R

Single

Optional

String

0-255 bytes

Version of the Firmware package

8
Firmware Update Protocol Support
R
Multiple
Mandatory
Integer
Enumeration
This resource indicates what protocols the LWM2M client implements to retrieve firmware images. The LWM2M server uses this information to decide what URI to include in the Package URI. A LWM2M server MUST NOT include a URI in the Package URI object that uses a protocol that is unsupported by the LWM2M client.

For example, if a LWM2M client indicates that it supports CoAP and CoAPS then a LWM2M server must not provide an HTTP URI in the Packet URI.
The following values are defined by this version of the specification:

0 – CoAP (as defined in RFC 7252) with the additional support for block-wise transfer

1 – CoAPS (as defined in RFC 7252) with the additional support for block-wise transfer

2 – HTTP 1.1 (as defined in RFC 7230)

3 – HTTPS 1.1 (as defined in RFC 7230)

Additional values MAY be defined in the future. Any value not understood by the server MUST be ignored.
9
Firmware Update Delivery Method

R

Single

Mandatory

Integer

Enumeration

The LWM2M Client uses this resource to indicate its support for transferring firmware images to the client either via the Package Resource (=push) or via the Package URI Resource (=pull) mechanism.

0 –Pull only

1 – Push only

2 – Both. In this case the LWM2M Server MAY choose the preferred mechanism for conveying the firmware image to the LWM2M client.

E.6.1 Firmware Update State Machine

	
	
[image: image1.emf]IdleRes 5 = {0,1,2,3,4,5,6,7}DownloadingRes 5 = {0}DownloadedRes 5 = {0,8}UpdatingWRITE pckg or pkg URI on Res 0 or 1Download Fails Res 5 = {2,3,4,5,6,7}SuccessfulDownload UPDATE Successful UpdateRes 5 = {1}Update FailsRes 5 = {8}WRITE none on Res 0 or 1WRITE noneon Res 0 or 1valid value in Package or Package URI ResourcesRunning processRunning process

Figure 27: Firmware Update Mechanisms

E.6.2 Examples

The example depicted in Figure 28 illustrates a successful message exchange where a LWM2M server pushes a firmware image to a LWM2M client using the block-wise transfer. In this example the server indicates a block size of 128 bytes and the firmware image of 80 KiB (=81920 bytes) will be sent to the LWM2M client in 640 messages with each 128 bytes payload. Since the server-provided block size matches the preferences of the client the exchange proceeds until the full firmware image is downloaded. In this example no messages are lost during transmission.

 LWM2M LWM2M

 Server Client

 | |

 | CON [MID=1], POST, /5/0/0, 1:0/1/128 ------> |

 | |

 | <------ ACK [MID=1], 2.31 Continue, 1:0/1/128 |

 | |

 | CON [MID=2], POST, /5/0/0, 1:1/1/128 ------> |

 | |

 | <------ ACK [MID=2], 2.31 Continue, 1:1/1/128 |

 | |

 | ... 637 exchanges ... |

 | |

 | CON [MID=640], POST, /5/0/0, 1:639/0/128 ------> |

 | |

 | <------ ACK [MID=640], 2.04 Changed, 1:639/0/128 |

 | |

 Figure 28: Example of a LWM2M server pushing a firmware image to a LWM2M client.

The second example shown in Figure 29 illustrates the case where the client was provided with a URI by the LWM2M server (using the Package URI resource) and therefore fetches the firmware image from the indicated server. Note that only the retrieval of the firmware image from the server is shown in Figure 29 and not the initial configuration of the Package URI.

 LWM2M

 Client Server

 | |

 | CON [MID=1], GET, /firmware ------> |

 | |

 | <------ ACK [MID=1], 2.05 Content, 2:0/1/128 |

 | |

 | CON [MID=2], GET, /status, 2:1/0/128 ------> |

 | |

 | <------ ACK [MID=2], 2.05 Content, 2:1/1/128 |

 | |

 | ... 637 exchanges ... |

 | |

 | CON [MID=640], GET, /status, 2:639/0/128 ------> |

 | |

 | <------ ACK [MID=640], 2.05 Content, 2:639/0/128 |

 | |

 Figure 29: Example of a client fetching a firmware image.

E.6.3 Firmware Update Consideration
If some Objects are not supported after firmware update, the LWM2M Client MUST delete all the Object Instances of the Objects that are not supported.

	

	
	

2.1 Normative References
	
	

	[CoAP_Blockwise]
	C. Bormann, Z. Shelby, "Block-wise transfers in CoAP", draft-ietf-core-block-21, (work in progress), July 2016.

8.1 Required features

· CoAP Blockwise transfer for CoAP MUST be supported by the LWM2M Client when the Firmware Update Object (ID:5) is implemented by the client and MUST be supported by the LWM2M Server.

This functionality is motivated by limitations of CoAP, as defined in RFC 7252 [CoAP] since CoAP was not designed for transmission of large payloads. Because the CoAP header itself does not contain length information the UDP length header is used instead. The maximum UDP datagram size is limited to ~64 KiB and transmitting data beyond the (path) maximum transmission (MTU) size will additionally lead to inefficiency because of fragmentation at lower layers (IP layer, adaptation layer, and link layer). Blockwise Transfer for CoAP [draft-ietf-core-block-20] was specifically designed to lift this limitation in order to transfer large payloads larger than ~64 KiB via CoAP, such as firmware images.

Note: [CoAP_Blockwise] is also beneficial for use with firmware images smaller than 64 KiB since the block-wise transmission allows the server to deliver firmware images in chunks suitable to the MTU and thereby avoiding fragmentation at lower layers. A LWM2M client may choose to support block-wise transfer for objects other than the Firmware Update object. This may, for example, be useful with objects that are larger in size, such as the security object which may contain certificates. The specifics of how this functionality is utilized by a LWM2M Server are out of scope for this release of LWM2M.
8.2.4 Device Management & Service Enablement Interface

	Operation
	CoAP Method
	Path
	Success
	Failure

	Read
	GET Accept: Content Format ID (see section 6.3)
	/{Object ID}/{Object Instance ID}/{Resource ID}
	2.05 Content

	4.00 Bad Request, 4.01 Unauthorized, 4.04 Not Found, 4.05 Method Not Allowed, 4.06 Not Acceptable

	Discover
	GET Accept: application/link-format
	/{Object ID}/{Object Instance ID}/{Resource ID}
	2.05 Content
	4.00 Bad Request, 4.04 Not Found, 4.01 Unauthorized, 4.05 Method Not Allowed

	Write
	PUT Content Format:
	/{Object ID}/{Object Instance ID}/{Resource ID}
	2.04 Changed
2.31* Continue
	4.00 Bad Request, 4.04 Not Found, 4.01 Unauthorized, 4.05 Method Not Allowed, 4.06 Not Acceptable
4.08* Request Entity Incomplete
4.13* Request entity too large

	
	POST Content Format:
	/{Object ID}/{Object Instance ID}
	
	

	Write Attributes
	PUT
	/{Object ID}/{Object Instance ID}/{Resource ID}?pmin={minimum period}&pmax={maximum period}>={greater than}<={less than}&stp={step}
	2.04 Changed
	4.00 Bad Request, 4.04 Not Found, 4.01 Unauthorized, 4.05 Method Not Allowed

	Execute
	POST
	/{Object ID}/{Object Instance ID}/{Resource ID}
	2.04 Changed
	4.00 Bad Request, 4.01 Unauthorized, 4.04 Not Found, 4.05 Method Not Allowed

	Create
	POST Content Format:
	/{Object ID}
	2.01 Created
	4.00 Bad Request, 4.01 Unauthorized, 4.04 Not Found, 4.05 Method Not Allowed, 4.06 Not Acceptable

	Delete
	DELETE
	/{Object ID}/{Object Instance ID}
	2.02 Deleted
	4.00 Bad Request, 4.01 Unauthorized, 4.04 Not Found, 4.05 Method Not Allowed

Note (*) : 2.31, 4.08, 4.13 response messages, are relevant only when the CoAP Blockwise Transfer option is supported (see Section 8.1).
8.5 Response Codes

 Modification according to Section 8.2.4
�TBD: Redraw state machine to re-use UML notation; Add new result codes. Move “Update Fails” transition from “Updating” (“Downloaded” to “updating” (“idle” to deal with failure during the update process that are not recoverable (may need to define a new error code).

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 9)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20130101-I]

© 2016 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 9)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20130101-I]

[image: image3.jpg]Idle
Res 5 = {0,1,2,3,4,5,6,7}
Downloading
Res 5 = {0}
Downloaded
Res 5 = {0,8}
Updating
WRITE pckg or pkg URI
on Res 0 or 1
Download Fails
Res 5 = {2,3,4,5,6,7}
Successful
Download
UPDATE
Successful Update
Res 5 = {1}
Update Fails
Res 5 = {8}
WRITE none on Res 0 or 1
WRITE none
on Res 0 or 1
valid value in
Package or Package URI
 Resources
Running process
Running process

