OMA-TS-LightweightM2M-V1_0-20130522-D	Page 85 V(85)
	[image: oma]
	

	Lightweight Machine to Machine
Technical Specification

	Draft Version 1.0 – 22 May 2013

	Open Mobile Alliance

	OMA-TS-LightweightM2M-V1_0-20130522-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.
Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.
You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.
Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.
NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.
THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.
© 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents
1.	Scope	7
2.	References	8
2.1	Normative References	8
2.2	Informative References	9
3.	Terminology and Conventions	10
3.1	Conventions	10
3.2	Definitions	10
3.3	Abbreviations	10
4.	Introduction	11
4.1	Version 1.0	11
5.	Interfaces	12
5.1	Bootstrap Interface	13
5.1.1	Bootstrap Information	14
5.1.2	Bootstrap Modes	14
5.1.3	Bootstrap Sequence	16
5.1.4	Bootstrap Security	17
5.1.5	LWM2M Object: LWM2M Bootstrap Server	18
5.2	Device Discovery & Registration Interface	19
5.2.1	Registration	20
5.2.2	Update	21
5.2.3	De-registration	22
5.3	Device Management & Service Enablement Interface	22
5.3.1	Read	24
5.3.2	Write	24
5.3.3	Execute	25
5.3.4	Create	25
5.3.5	Delete	25
5.4	Information Reporting Interface	26
5.4.1	Observe	26
5.4.2	Notify	27
5.4.3	Cancel Observation	29
6.	Identifiers and Resources	31
6.1	Resource Model	31
6.2	Identifiers	32
6.2.1	Reusable Resources	33
6.3	Data Formats for Transferring Resource Information	33
6.3.1	Plain Text	33
6.3.2	Opaque	34
6.3.3	TLV	34
6.3.4	JSON	37
7.	Security	39
7.1	Channel Security	39
7.1.1	Pre-Shared Keys	39
7.1.2	Raw Public Key Certificates	40
7.1.3	X.509 Certificates	40
7.2	Access Control	41
7.2.1	Access Control Object	41
7.2.2	Access Type	41
7.2.3	Authorization	41
8.	Transport Layer Binding and Encodings	44
8.1	Required Features	44
8.2	URI Identifier & Operation Mapping	44
8.2.1	Firewall/NAT	44
8.2.2	Registration Interface	45
8.2.3	Bootstrap Interface	46
8.2.4	Device Management & Service Enablement Interface	47
8.2.5	Information Reporting Interface	50
8.3	Queue Mode Operation	51
8.4	Response Codes	54
8.5	Transport Bindings	56
8.5.1	UDP Binding	56
8.5.2	SMS Binding	56
Appendix A.	Change History (Informative)	57
A.1	Approved Version History	57
A.2	Draft/Candidate Version <current version> History	57
Appendix B.	Data Types	62
Appendix C.	LWM2M Object Template and Guidelines (Informative)	64
C.1	Object Template	64
C.2	OMNA Guidelines	64
C.2.1	Object Registry	64
C.2.2	Resource Registry	65
Appendix D.	LWM2M Objects defined by OMA (Normative)	66
D.1	LWM2M Object: LWM2M Server	66
D.1.1	Security Key Resource Format	69
D.1.2	Unbootstrapping	69
D.2	LWM2M Object: Access Control	70
D.2.1	Object Instance Consideration	71
D.3	LWM2M Object: Device	71
D.4	LWM2M Object: Connectivity Monitoring	73
D.5	LWM2M Object: Firmware	76
D.5.1	Firmware Update Consideration	78
D.6	LWM2M Object: Location	78
D.7	LWM2M Object: Connectivity Statistics	79
Appendix E.	Example LWM2M Client (Informative)	80
Appendix F.	Storage of LWM2M Bootstrap Message on the Smartcard (Normative)	85
F.1	File structure	85
F.2	Bootstrap Message on UICC (Activated in 3G Mode)	85
F.2.1	Access to the file structure	85
F.2.2	Files Overview	86
F.2.3	Access Method	86
F.2.4	Access Conditions	86
F.2.5	Requirements on the 3G UICC	86
F.3	Files Description	87
F.3.1	Object Directory File, EF ODF	87
F.3.2	Bootstrap Data Object Directory File, EF DODF-bootstrap	87
F.3.3	EF LWM2M_Bootstrap	88
Appendix G.	Static Conformance Requirements (Normative)	89
G.1	SCR for XYZ Client	89
G.2	SCR for XYZ Server	89
Appendix H.	<Additional Information>	90
H.1	App Headers	90
H.1.1	More Headers	90

Figures
Figure 1: Bootstrap	12
Figure 2: Device Discovery and Registration	12
Figure 3: Device Management and Service Enablement	12
Figure 4: Information Reporting	13
Figure 5: Procedure of Client Initiated Bootstrap	15
Figure 6: Procedure of Server Initiated Bootstrap	16
Figure 7: Device Discovery & Registration Interface example flows.	19
Figure 8: Example flows of Device Management & Service Enablement Interface	23
Figure 9: Example flow for Information Reporting Interface	26
Figure 10: Example of Minimum and Maximum periods in an Observation.	29
Figure 11: Relationship between LWM2M Client, Object and Resources	31
Figure 12: Supported operations and access control lists	32
Figure 13: Example registration, update and de-registration exchanges (shorthand in [CoAP] example style, actual messages using CoAP binary headers)	45
Figure 14: Example of Client initiated Bootstrap exchange.	46
Figure 15: Example of Server initiated Bootstrap exchange.	47
Figure 15: Example of Device Management & Service Enablement interface exchanges.	49
Figure 16: Example of an Information Reporting exchange.	51
Figure 17: Example of Device Management & Service Enablement interface exchanges for Queue Mode.	52
Figure 18: Example of an Information Reporting exchange for Queue Mode.	53
Figure 19: Example of Device Management & Service Enablement interface exchanges for Queue Mode with SMS Registration Update Trigger.	54
Figure 20: File structure for Bootstrap Message on 3G UICC	83

Tables
Table 1: Relationship of logical operations and interfaces	13
Table 2: Bootstrap Information List	14
Table 3: Registration parameters	20
Table 4: Read parameters	24
Table 5: Write parameters	24
Table 6: Execute parameters	25
Table 7: Create parameters	25
Table 8: Delete parameters	26
Table 9: Observe parameters	27
Table 10: Notify parameters	27
Table 11: Cancel Observation parameters	29
Table 12: LWM2M Identifiers	32
Table 13: TLV format and description	34
Table 14: JSON format and description	37
Table 15: Access Type operations	41
Table 16: Operation to Method and URI Mapping	45
Table 17: Operation to Method and URI Mapping	46
Table 18: Operation to Method Mapping	47
Table 19: Operation to Method Mapping	50
Table 20: Response Codes	54
Table 21: Object instances of the example.	80
Table 22: LWM2M Server Object [1]	80
Table 23: LWM2M Server Object [2]	80
Table 24: Access Control Object [0] (for the Device Object)	81
Table 25: Access Control Object [1] (for the Connectivity Monitoring Object)	81
Table 26: Access Control Object [2] (for the Firmware Object)	82
Table 27: Device Object	82
Table 28: Connectivity Monitoring Object	82

[bookmark: _Ref511812747][bookmark: _Toc51149231][bookmark: _Toc357006203]Scope
[bookmark: _Toc51149232]<< Define as it relates to Open Mobile Alliance Activity. If it adds clarity, define what is not in the scope. DELETE THIS COMMENT >>

[bookmark: _Toc357006204]References
[bookmark: _Toc51147377][bookmark: _Toc51149235]The policy for reference lists is:
1.	OMA documents listed should have at least one approved version – draft-only docs should not be referenced. Exception exists for documents that will be approved with or after the referenced doc is approved (may be part of same enabler package). In short – approved docs should not reference unapproved docs.
2.	When a reference is made to an OMA specification, then Open Mobile Alliance with the TM symbol (™) should be used in the description.
3.	The name + version (no date) for OMA specifications are generally sufficient – dates should be used only if there is a specific reason to limit the usage.
4.	For references to WAP Forum docs, dates should not be included as DID's for the old WAP Forum specifications are enough and the reference description should refer to WAP Forum™.
5.	References to other affiliate docs should similarly provide sufficient information to uniquely determine the needed document and should provide the appropriate source information.
6.	The URL for OMA material (new OMA and affiliate) should always be http://www.openmobilealliance.org (an exception is OMNA that is reached through http://www.openmobilealliance.org/tech/omna)
Models to use
	[REFLABEL]	<General Model> “Ref Title”, Ref information (source, date, id),
URL:http//<ref-source>/
	[OMADOC]	<OMA Model> “OMA Document Title”, Open Mobile Alliance™, OMA‑<docname>{‑<version>}, URL:http//www.openmobilealliance.org/
If there are no entries in the table – enter ‘none’ to be clear.
DELETE THIS COMMENT
[bookmark: _Toc357006205]Normative References
	[IOPPROC]
	“OMA Interoperability Policy and Process”, Version 1.1, Open Mobile Alliance™, OMA-IOP-Process-V1_1, URL:http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. November 1997, URL:http://www.ietf.org/rfc/rfc2234.txt

	[LWM2M-AD]
	“Lightweight Machine to Machine Architecture”, Open Mobile Alliance™, OMA-AD-LightweightM2M-V1_0, URL:http://www.openmobilealliance.org/

	[CoAP]
	Shelby, Z., Hartke, K., Bormann, C., and B. Frank, "Constrained Application Protocol (CoAP)", draft-ietf-core-coap-14 (work in progress), Mar 2013.

	[OBSERVE]
	[bookmark: _Toc342064474]Hartke, K. “Observing Resources in CoAP”, draft-ietf-core-observe-08 (work in progress), Mar 2013.

	[RFC6690]
	Shelby, Z. “Constrained RESTful Environments (CoRE) Link Format”, RFC6690, Aug 2012.

	[RFC6347]
	Rescorla, E. and N. Modadugu, "Datagram Transport Layer Security Version 1.2", RFC 6347, January 2012.

	[RFC6655]
	McGrew, D. and D. Bailey, "AES-CCM Cipher Suites for TLS", RFC6655, July 2012.

	[RFC5487]
	Pre-Shared Key Cipher Suites for TLS with SHA-256/384 and AES Galois Counter Mode

	[RFC5246]
	The Transport Layer Security (TLS) Protocol Version 1.2

	[RFC5289]
	TLS Elliptic Curve Cipher Suites with SHA-256/384 and AES Galois Counter Mode (GCM)

	[bookmark: reference_PKCS_15][PKCS#15]
	PKCS #15 v1.1: Cryptographic Token Information Syntax Standard”, RSA Laboratories, June 6, 2000. URL: ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-15/pkcs-15v1_1.pdf

	[bookmark: reference_TS102_221][ETSI TS 102.221]
	“Smart Cards; UICC-Terminal interface; Physical and logical characteristics”, (ETSI TS 102 221 release 11), URL:http://www.etsi.org/

	
	

[bookmark: _Toc51147378][bookmark: _Toc357006206]Informative References
	
	

	
	<< Add/Remove reference rows as needed! >>

[bookmark: _Toc357006207]Terminology and Conventions
[bookmark: _Toc51147380][bookmark: _Ref511812783][bookmark: _Toc51149239][bookmark: _Toc357006208]Conventions
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].
All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.
.
[bookmark: _Toc51147381][bookmark: _Toc357006209]Definitions
	Queue Mode
	The interaction model between an LWM2M Client and LWM2M Server is based on that LWM2M Server queues the requests.

	
	

	
	

[bookmark: _Toc51147382][bookmark: _Toc357006210]Abbreviations
	OMA
	Open Mobile Alliance

	LWM2M
	Lightweight Machine to Machine (refers to this OMA enabler)

	
	

[bookmark: _Toc357006211]Introduction
[bookmark: _Toc160850338][bookmark: _Ref161456245][bookmark: _Toc341770967][bookmark: _Toc357006212]Version 1.0
This enabler defines the application layer communication protocol between the LWM2M Server and the LWM2M Client which is placed in the LWM2M Device. The OMA Lightweight M2M enabler includes device management and service enablement for LWM2M Devices. The target LWM2M Devices for this enabler are mainly resource constrained devices. Therefore, this enabler provides a light and compact protocol as well as an efficient resource data model.
Client-Server architecture is introduced for LWM2M Enabler. The LWM2M Enabler has two components, LWM2M Server and LWM2M Client. Four interfaces are designed between these two components as shown below:
· Device Discovery and Registration
· Bootstrap
· Device management and service enablement
· Information Reporting

[bookmark: _Toc51149240]
[bookmark: _Toc357006213]Interfaces
According to the architecture diagram [LWM2M-AD], there are four interfaces: 1) Bootstrap 2) Device Discovery and Registration 3) Device Management and Service Enablement 4) Information Reporting. The logical operations for the four interfaces can be classified as uplink operations and downlink operations. The logical operations of each interface are defined in this section, and then mapped to protocol mechanisms in Section 8 Transport Layer Bindings and Encodings.

Figure 1 shows the logical operation model for interface “Bootstrap”. For this interface, the operations are uplink operation named “Client Initiated Bootstrap” and a downlink operation named “Server Initiated Bootstrap”. These operations are used to initialize the needed object(s) for the LWM2M Client to register with one or more LWM2M Servers. Bootstrapping is also defined using Manufacturer Pre-configuration (e.g. storage in Flash) or SmartCard Provisioning (storage in a SmartCard).
[image:]
[bookmark: _Toc357007816]Figure 1: Bootstrap
Figure 2 shows the logical operation model for the interface “Device Discovery and Registration”. For this interface, the operations are uplink operations named “Registration”, “Update” and “De-register”.
[image:]
[bookmark: _Toc357007817]Figure 2: Device Discovery and Registration
Figure 3 shows the logical operation model for interface “Device Management and Service Enablement”. For this interface, the operations are downlink operations named “Read”, “Create”, “Delete”, “Write” and “Execute”. These operations are used to interact with the Resources, Resource Instances, Objects and Object Instances of the LWM2M Client. The “Read” operation is used to read the current value of one or more Resources; the “Write” operation is used to update the value of one or more Resources and the “Execute” operation is used to initiate an action defined by a Resource. The “Create” and “Delete” operations are use to create or delete Object Instances.
[bookmark: _Toc245116548][image:]
[bookmark: _Toc357007818]Figure 3: Device Management and Service Enablement
Figure 4 shows the logical operation model for interface “Information Reporting”. For this interface, the operation are downlink operations “Observe” or “Cancel Observation” and an uplink operation “Notify”. This interface is used to send the LWM2M Server a new value related to a Resource on the LWM2M Client.
[image:]
[bookmark: _Toc357007819]Figure 4: Information Reporting

The relationship between logical operations and interfaces is listed in the following table 1.
[bookmark: _Toc357006325]Table 1: Relationship of logical operations and interfaces
	Interface
	Direction
	Logical Operation

	Device Discovery and Registration
	Uplink
	Register, Update, De-register

	Bootstrap
	Uplink
	Request Bootstrap

	Bootstrap
	Downlink
	Write

	Device Management and Service Enablement
	Downlink
	Read, Create, Delete, Write, Execute

	Information Reporting
	Downlink
	Observe, Cancel Observation

	Information Reporting
	Uplink
	Notify

[bookmark: _Toc357006214]Bootstrap Interface
The Bootstrap Interface is used to provision essential information into the LWM2M Client to enable the LWM2M Client to perform the logical operation “Register” with one or more LWM2M Servers.
There are four bootstrap modes supported by the LWM2M Enabler:
· Manufacturer Pre-configuration
· SmartCard Provisioning
· Client Initiated Bootstrap
· Server Initiated Bootstrap
The LWM2M Client SHALL support at least one bootstrap mode specified in the Bootstrap Interface.
The LWM2M Server MUST support all the bootstrap modes specified in the Bootstrap Interface.

This chapter describes what information is conveyed across the Bootstrap Interface, where the LWM2M Client puts that information and how to provision the Bootstrap Information for each of these bootstrap modes.
[bookmark: _Ref339619648]
[bookmark: _Toc357006215]Bootstrap Information
This section specifies the information that needs to be configured prior to performing the Bootstrap Sequence in Section 5.1.3 as well as information that is configured as a result of the Bootstrap Sequence.
The LWM2M Server Object Instances provides the necessary information for a LWM2M Client to perform the logical operation “Register” with the specified LWM2M Server.
The LWM2M Bootstrap Server Object Instance provides the necessary information for the LWM2M Client to contact a LWM2M Bootstrap Server in order for the LWM2M Bootstrap Server to configure the LWM2M Client with the necessary LWM2M Server Object Instance(s).
In addition, the LWM2M Client may also require additional LWM2M Objects (e.g., Connectivity Object) that may be required in order for the LWM2M Client to perform the logical operation “Register” with a LWM2M Server. These additional objects may be pre-configured in the LWM2M Client or configured by the LWM2M Bootstrap Server. The identification of which objects, beyond the LWM2M Server Object Instance, that is necessary is implementation specific and beyond the scope of the LWM2M Enabler.
The LWM2M Client MAY be configured to use one or more LWM2M Servers with a set of Bootstrap Information for each LWM2M Server.
The LWM2M Client SHALL be pre-configured with either the LWM2M Bootstrap Server Object Instance(s) or the LWM2M Server Object Instance.
The LWM2M Client SHOULD be pre-configured with a LWM2M Bootstrap Server Object Instance.
The Client Initiated Bootstrap and Server Initiated Bootstrap MAY configure resources of the Bootstrap Information that are read-only resources in the LWM2M Client after initial bootstrap. In this instance, all the Bootstrap Information is OPTOINAL.

[bookmark: _Toc357006326]Table 2: Bootstrap Information List
	Entity
	Semantics
	Description
	Required

	LWM2M Bootstrap Server
	Object Instance
	Stores account of the LWM2M Bootstrap Server according to Section 5.1.5
	No

	LWM2M Server
	Object Instance
	Stores account of the LWM2M Server according to Appendix B.1
	No

	Additional Objects (e.g.: Connectivity Object)
	Object Instances
	Stores the specific Object information
	No

[bookmark: _Toc357006216]Bootstrap Modes
This section of the specification provides description and further information for each of the following Bootstrap Modes:
· Manufacturer Pre-configuration
· SmartCard Provisioning
· Client Initiated Bootstrap
· Server Initiated Bootstrap

Manufacturer Pre-configuration
In this mode, the LWM2M Client has been configured with the necessary Bootstrap Information prior to deployment of the device.

SmartCard Provisioning
When the Device supports a SmartCard, the LWM2M Client SHALL support retrieval, and processing of the bootstrap data contained in the SmartCard as described in Appendix D. When the bootstrap data retrieval is successful, the LWM2M Client SHALL process the bootstrap data from the SmartCard and SHALL apply it to the corresponding Bootstrap Information Object Instances.
In this mode, the LWM2M Client SHALL also ensure that the bootstrap data previously retrieved from the SmartCard is unchanged within the SmartCard. If bootstrap data is changed, the previous bootstrap data SHALL be disabled in the LWM2M Client and the LWM2M Client SHALL apply the new bootstrap data from SmartCard to the Device configuration.
Disabling the bootstrap data (e.g., removing the SmartCard) within the LWM2M Client requires the Bootstrap Information Object Instances that were created from the bootstrap data of the previous SmartCard are deleted and resources for Objects that were not created from bootstrap data but were written to are reverted to their values prior to the bootstrap.
Editors note: For Disabling the bootstrap we need to determine which events would require the disable of boostrap data and if the events are normative (SHALL, SHOULD).
Client Initiated Bootstrap
As defined in section 5.1.3 Bootstrap Sequence, scenarios exist when the LWM2M Server is not either configured within the LWM2M Client or attempts to perform the logical operation “Register” with LWM2M Servers have failed.
When these conditions occur, the Client Initiated Bootstrap mode provides a mechanism for the LWM2M Client to retrieve the Bootstrap Information from a LWM2M Bootstrap Server.
The Client Initiated Bootstrap mode requires the LWM2M Bootstrap Server Object Instance to be configured in the LWM2M Client.
The figure below depicts the Client Initiated Bootstrap flow.
[image:]
[bookmark: _Toc357007820]Figure 5: Procedure of Client Initiated Bootstrap
Step #1: Request bootstrap to bootstrap URI
The LWM2M Client sends a “Request Bootstrap” logical operation to LWM2M Bootstrap Server URI which has been pre-provisioned. When requesting the bootstrap, the LWM2M Client sends the LWM2M Client’s “Endpoint Client Name” as a parameter in order to allow the L2M2M Bootstrap Server to provision the proper Bootstrap Information for the LWM2M Client.
Step #2: Configure Bootstrap Information
The LWM2M Server configures the Bootstrap Information within the LWM2M Client using the “Write” logical operation.

Server Initiated Bootstrap
In this mode, the LWM2M Bootstrap Server configures the Bootstrap Information in the LWM2M Client without the LWM2M Client sending a bootstrap request to the LWM2M Bootstrap Server.
As the LWM2M Client does not initiate the “Request Bootstrap” logical operation to the LWM2M Bootstrap Server, the LWM2M Bootstrap Server needs to know if a LWM2M Device is ready for bootstrapping before the LWM2M Client can be configured by the LWM2M Bootstrap Server. The mechanism that a LWM2M Bootstrap Server gains this knowledge is implementation specific. A common scenario is that elements in the Network Provider’s network informs the LWM2M Bootstrap Server of the LWM2M Device when the LWM2M Device connects to the Network Provider’s network.
Once the LWM2M Bootstrap Server has been notified that the LWM2M Device is ready to receive the Bootstrap Information, the LWM2M Bootstrap Server configures the LWM2M Client with the Bootstrap Informationusing the “Write” logical operation.
The figure below depicts the Server Initiated Bootstrap flow.
[image:]
[bookmark: _Toc357007821]Figure 6: Procedure of Server Initiated Bootstrap
Step #1: Configure Bootstrap Information
The LWM2M Bootstrap Server configures the Bootstrap Information in the LWM2M Client using the “Write” logical operation.

[bookmark: _Toc357006217]Bootstrap Sequence
The LWM2M Client SHALL follow the procedure specified as below when attempting to bootstrap a LWM2M Device:
1. If the LWM2M Device has SmartCard, the LWM2M Client tries to obtain Bootstrap Information from the SmartCard using the SmartCard Provisioning bootstrap mode.
2. If the LWM2M Client is not configured using the SmartCard Provisioning bootstrap mode, the LWM2M Client tries to obtain the Bootstrap Information by using Manufacturer Pre-configuration bootstrap mode.
3. If the LWM2M Client has any LWM2M Server Object Instances from the previous steps, the LWM2M Client tries to register to the LWM2M Server(s) configured in the LWM2M Server Object Instance(s).
4. If LWM2M Client fails to register to all the LWM2M Servers or the Client doesn’t have any LWM2M Server Object Instance, the Client performs Client initiated bootstrap
[bookmark: _Toc355616250][bookmark: _Toc355616817][bookmark: _Toc355617116][bookmark: _Toc355617312][bookmark: _Toc355675043][bookmark: _Toc355687972][bookmark: _Toc355876289][bookmark: _Toc357001259][bookmark: _Toc355616251][bookmark: _Toc355616818][bookmark: _Toc355617117][bookmark: _Toc355617313][bookmark: _Toc355675044][bookmark: _Toc355687973][bookmark: _Toc355876290][bookmark: _Toc357001260]
[bookmark: _Toc357006218]Bootstrap Security
The information conveyed through the Bootstrap Interface is sensitive and requires that communication session, security mechanisms and/or keys MUST be different instances from the one that is used for the other LWM2M Interfaces.
If the LWM2M Client or the LWM2M Server needs to convey Bootstrap Information across the Bootstrap Interface, the LWM2M Client or the LWM2M Server MUST establish a new secure communication session.
If security materials (e.g. LWM2M Server URI, Security Mode, and Security Key), are changed in the LWM2M Client, the LWM2M Client MUST disconnect the existing communication session between the LWM2M Server and LWM2M Client and establish a new secure communication session between the LWM2M Server and LWM2M Client using the security mechanism and/or keys have been configured by Bootstrap Interface.

[bookmark: _Toc357006219]LWM2M Object: LWM2M Bootstrap Server

Description: This LWM2M object SHOULD be pre-configured and MUST NOT be accessed by LWM2M Server.

Object Info:

	Object
	Object ID
	Object URN
	Multiple Instances?

	LWM2M Bootstrap Server
	
	
	No

Resource Info:

	Resource Name
	Type
	Range or Enumeration
	Descriptions

	LWM2M Bootstrap Server URI
	String

	0 – 255 bytes
	Uniquely identifies the LWM2M Bootstrap Server and is in the form:
“coaps://host:port”, where host is an IP address or FQDN and port is the UDP port of the LWM2M Bootstrap Server.

	Security Mode
	Integer
	8-bit
	Determines which security mode of DTLS is used
0: Pre-Shared Key mode
1: Raw Public Key mode
2: Certificate mode

	Public Key or Identity
	Opaque
	Variable
	Stores the Certificate (Certificate mode), public key (RPK mode) or PSK Identity (PSK mode). The format is defined in Section D.1.1.

	Secret Key
	Opaque
	Variable
	Stores the secret key or private key of the security mode. The format of the keying material is defined by the security mode in Section D.1.1

[bookmark: _Toc357006220]Device Discovery & Registration Interface
The Discovery & Registration Interface is used by a LWM2M Client to register with one or more LWM2M Servers, maintain each registration and de-register from a LWM2M Server. The registration is based on the Resource Model and Identifiers defined in Section 6 Identifiers and Resources. When registering, the LWM2M Client performs the “Register” logical operation and provides the properties the LWM2M Server requires to contact the LWM2M Client (e.g., End Point Name); maintain the registration and session (e.g., Lifetime, Queue Mode) between the LWM2M Client and LWM2M Server as well as knowledge of the of Objects the LWM2M Client supports and existing Object Instances in the LWM2M Client. The registration is soft state, with a lifetime indicated by the Lifetime Resource of that LWM2M Server Object Instance. The LWM2M Client periodically performs an update of its registration information to the registered LWM2M Server(s) by performing the “Update” logical operation. If the lifetime of a registration expires without receiving an update from the LWM2M Client, the LWM2M Server removes the registration. Finally, when shutting down or discontinuing use of a LWM2M Server, the LWM2M Client performs a”De-register” logical operation.
The Binding Preference Resource of the LWM2M Server Object informs the LWM2M Client the transport protocol preferences of the LWM2M Server for the communication session between the LWM2M Client and LWM2M Server. The LWM2M Client SHOULD perform the logical operations for the Device Discovery & Registration Interface with the modes indicated by the Binding Preference Resource of the LWM2M Server Object Instance.

[image:]
[bookmark: _Toc357007822]Figure 7: Device Discovery & Registration Interface example flows.

[bookmark: _Toc357006221]Registration
Registration is performed when a LWM2M Client sends a “Register” logical operation to the LWM2M Server. After the LWM2M Device is turned on and the bootstrap procedure has been completed, the LWM2M Client MUST perform a “Register” logical operation to each LWM2M Server that the LWM2M Client has a Server Object Instance. Table 3 describes the parameters used for the “Register” logical operation.
The “Register” logical operation includes the Endpoint Client Name parameter along with other parameters listed in Table 3. The “Register” logical operation MUST include a value for the Endpoint Client Name parameter that is unique on that LWM2M Server.
Upon receiving a ”Register” logical operation from the LWM2M Client, the LWM2M Server records the IP address and port from the IP packet of the registration message and uses this information for all future interactions with that LWM2M Client.
If the LWM2M Client sends a “Register” logical operation to the LWM2M Server even though the LWM2M Server has registration information of the LWM2M Client, the LWM2M Server removes the existing registration information and performs the new ”Register” logical operation. This situation happens when the LWM2M Client forgets the state of the LWM2M Server (e.g., factory reset).

[bookmark: _Ref355590871][bookmark: _Toc357006327]Table 3: Registration parameters
	Parameter
	Required
	Default Value
	Notes

	Endpoint Client Name
	Yes
	
	See Section 6.2

	Lifetime
	No
	86400
	If Lifetime Resource does not exist in a LWM2M Server Object Instance (see section D.1), the Client MUST NOT send this parameter and the Server MUST regard lifetime of the Client as 86400 seconds The registration SHOULD be removed by the Server if a new registration or update is not received within this lifetime.

	SMS Binding Support
	No
	
	Inclusion of this parameter indicates the Client supports the SMS binding. The value of this parameter is the MSISDN where the Client can be reached.

	Objects and Object Instances
	Yes
	
	The list of Objects supported and Object Instances available on the Client.

	LWM2M Version
	No
	1.0
	Indicates the version of the LWM2M Enabler that the LWM2M Client supports. This parameter is required only for LWM2M versions > 1.0.

	Queue Mode
	No
	
	Indicates that the LWM2M Client requests the LWM2M Server to work in Queue Mode (see Section 8.4 Queue Mode Operation).

The list of Objects and Object Instances is included in the payload of the registration message. Each Object is described as a Link in the CoRE Link Format [RFC6690]. The Target component of the link is required, and consists of the Object path. Any other parameters included in the link MUST be silently ignored, unless specified for use by the LWM2M Enabler. The Media Type of this payload is application/link-format.
The payload for a LWM2M Client supporting LWM2M Server, Access Control, Device, Connectivity and Firmware Objects from Appendix C would simply be:
</1>,</2>,</3>,</4>,</5>
If Objects Instances are also available on the LWM2M Client, then the format would be (this example assumes existing Instances for everything except the Firmware Object):
</1/0>, </2/0>, </2/1>, </3/0>,</4/0>,</5>
By default, the RFC6690 links of Objects are located under the root path as in the examples above. However, devices might be hosting other resources on an endpoint, and there may be the need to place Objects under an alternative path. This is achieved by including an OMA LWM2M link in addition to the Object links as follows, e.g. to place Objects under the “/lwm2m” path:
</lwm2m>;rt="oma.lwm2m", </lwm2m/1/0>, </lwm2m/2/0>, </lwm2m/2/1>, </lwm2m/3/0>,</lwm2m/4/0>,</lwm2m/5>
The RFC6690 Resource Type value “oma.lwm2m” is registered with the appropriate IANA registry for this purpose.
If the LWM2M Client supports the JSON data format for all the Objects it SHOULD inform the LWM2M Server by including the content type in the root path link using the ct= link attribute. An example is as follows (note that the content type value 100 is an example, the actual value will be assigned by IANA for the LWM2M JSON format).
</>;rt="oma.lwm2m";ct=100, </1/0>, </2/0>, </2/1>, </3/0>,</4/0>,</5>

LWM2M Server – Queue Mode and Transport Bindings
LWM2M Devices may implement behaviour that requires the LWM2M Client to not be reachable by the LWM2M Server. This can happen when a LWM2M Device sleeps for an extended period of time or the LWM2M Device is deployed behind a firewall or NAT. In this instance the LWM2M Client has the capability to request the LWM2M Server queue the requests for the LWM2M Client as described Section 8.4 Queue Mode Operation. Table 4 describes the behaviour of the LWM2M Server for the various permutations of Queue Mode and Transport Bindings.

Table 4: Relationship of different Queue Modes and Transport Bindings
	Queue Mode Enabled
	SMS Enabled
	Behaviour

	No
	No
	The LWM2M Server expects that the LWM2M Client is reachable via the UDP binding at any time. This is the normal default mode of operation.

	No
	Yes
	The LWM2M Server MAYsend requests to a LWM2M Client using the SMS binding. The LWM2M Client MUST send the immediate response to such a request over the SMS binding. The LWM2M Client sends notifications using either the SMS (immediate) or UDP bindings depending on the Binding Preference Resource of the LWM2M Server Object.

	Yes
	No
	The LWM2M Server MUST queue all requests to the LWM2M Client, sending requests when the LWM2M Client is on-line using the UDP binding.

	Yes
	Yes
	The Server MUST queue all requests to the LWM2M Client, sending requests when the Client is on-line as described in Section 8.4 Queue Mode Operation. Requests MAY be sent to the LWM2M Client using the SMS binding. The LWM2M Client MUST send the immediate response to such a request over the SMS binding. The LWM2M Client sends notifications using either the SMS (immediate) or UDP bindings depending on the Binding Preference Resource of the LWM2M Server Object.

[bookmark: _Toc357006222]Update
Periodically or based on certain events within the LWM2M Client, the LWM2M Client updates its registration information with a LWM2M Server by sending an “Update” logical operation to the LWM2M Server. This ”Update” logical operation MUST contain only changed parameters to update the LWM2M Client status compared to the last registration parameters sent to the LWM2M Server.
The “Update” logical operation is different from ”Register” logical operation in that all the registration parameters specified in Table 3 are OPTIONAL for the “Update” logical operation.
If the LWM2M Client is using the UDP binding to communicate with a LWM2M Server and LWM2M Client’s IP address or the port changes, the LWM2M Client MUST send an “Update” logical operation to the LWM2M Server.

[bookmark: _Toc357006223]De-registration
When a LWM2M Client determines that it no longers requires to be available to a LWM2M Server (e.g., LWM2M Device shutdown), the Client SHOULD send a “De-register” logical operation to the LWM2M Server. Upon receiving this message, the LWM2M Server removes the registration information from the LWM2M Server.

[bookmark: _Toc339381132][bookmark: _Toc357006224]Device Management & Service Enablement Interface
The Device Management and Service Enable Interface is used by the LWM2M Server to access Object Instances and Resources available from the LWM2M Client. The interface provides this access though the use of “Create”, “Read”, “Write”, “Delete” or “Execute” logical operations. The logical operations that an Object or Resource supports is defined in the Object definition using the Object Template. The Object Template is described in Appendix B.1 Object Template. . The Normative Objects defined by the LWM2M Enabler are described in Appendix C.
[image:]
[image:][image:]
[bookmark: _Toc357007823]Figure 8: Example flows of Device Management & Service Enablement Interface

[bookmark: _Toc339381133][bookmark: _Toc357006225]Read
The “Read” logical operation is used to access the value of a Resource, an array of Resource Instances, an Object Instance or all the Object Instances of an Object. The “Read” logical operation has the following parameters:
[bookmark: _Toc357006328]Table 4: Read parameters
	Parameter
	Required
	Default Value
	Notes

	Object ID
	Yes
	-
	Indicates the Object.

	Object Instance ID
	No
	-
	Indicates the Object Instance to read.
If no Object Instance ID is indicated, then the Object Instances of Objects, which the Server is authorized to, are returned.

	Resource ID
	No
	-
	Indicates the Resource to read. If no Resource ID is indicated, then the whole Object Instance is returned.

[bookmark: _Toc339381134][bookmark: _Toc357006226]Write
The “Write” logical operation is used to change the value of a Resource, an array of Resources Instances or multiple Resources from an Object Instance. The logical operation permits multiple Resources to be modified within the same instance of the logical operation. The “Write” logical operation has the following parameters:
[bookmark: _Toc357006329]Table 5: Write parameters
	Parameter
	Required
	Default Value
	Notes

	Object ID
	Yes
	-
	Indicates the Object.

	Object Instance ID
	Yes
	-
	Indicates the Object Instance to write.

	Resource ID
	No
	-
	Indicates the Resource to write. The payload is the new value for the Resource.
If no Resource ID is indicated, then the included payload is an Object Instance containing the Resource values.

	New Value
	Yes
	-
	The new value included in the payload to update the Object Instance or Resource.

	Minimum Period
	No
	1
	When present, the minimum period indicates the minimum time in seconds the Client SHOULD wait from the time when sending the last notification to the time when sending a new notification. In the absence of this parameter, the Minimum Period is defined by the Default Minimum Period set in the LWM2M Server Object Instance related to that Server.

	Maximum Period
	No
	-
	When present, the maximum period indicated the maximum time in seconds the Client SHOULD wait from the time when sending the last notification to the time sending the next notification (regardless if the value has changed). In the absence of this parameter, the maximum period is up to the server. The maximum period MUST be greater than the minimum period parameter. In the absence of this parameter, the Maximum Period is defined by the Default Maximum Period set in the LWM2M Server Object Instance related to that Server.

	Greater Than
	No
	-
	When present, the Client SHOULD notify its value when the value is above the number specified in parameter

	Less Than
	No
	-
	When present, the Client SHOULD notify its value when the value is below the number specified in the parameter

	Step
	No
	-
	When present, the Client SHOULD notify its value when the value is changed more than the number specified in the parameter from the Resource value when the client receives the Observe operation.

Minimum Period, Maximum Period, Greater Than, Less Than, and Step are only to do with Observe operation.
Maximum and/or Minimum Period parameters are used to control how often the “Notify” logical operation is sent by the LWM2M Client for the observed Object Instance or Resource.
Greater Than, Less Than, and Step MUST be specified only when Resource ID is indicated.
Greater Than, Less Than, and Step parameters MUST be supported only when the Resource type is numeral (e.g., integer, decimal).

[bookmark: _Toc339381135][bookmark: _Toc357006227]Execute
The “Execute” logical operation is used to initiate some action, and can only be performed on individual Resources. A LWM2M Client MUST return an error when the “Execute” logical operation is received for anObject Instance(s) or Resource Instance(s).
[bookmark: _Toc357006330]Table 6: Execute parameters
	Parameter
	Required
	Default Value
	Notes

	Object ID
	Yes
	-
	Indicates the Object.

	Object Instance ID
	Yes
	-
	Indicates the Object Instance.

	Resource ID
	Yes
	-
	Indicates the Resource to execute.

[bookmark: _Toc357006228]Create
The “Create” logical operation is used for LWM2M Server to create an Object Instance within the LWM2M Client. The “Create” logical operation MUST target either an Object Instance which has not yet been instantiated or the Object.
The Object Instance that is created in the LWM2M Client by the LWM2M Server MUST be an Object type supported by the LWM2M Client and announced to the LWM2M Server using the “Register” and “Update” logical operations of the Device Discovery and Registration Interface.
The Create operation has the following parameters:
[bookmark: _Toc357006331]Table 7: Create parameters
	Parameter
	Required
	Default Value
	Notes

	Object ID
	Yes
	-
	Indicates the Object.

	Object Instance ID
	No
	-
	Indicates the Object Instance to create. If this Resource is not specified, the Client assigns the ID of the Object Instance.

	New Value
	Yes
	-
	The new value included in the payload to create the Object Instance.

[bookmark: _Toc357006229]Delete
The “Delete” logical operation is used for LWM2M Server to delete an Object Instance within the LWM2M Client.
The Object Instance that is deleted in the LWM2M Client by the LWM2M Server MUST be an Object Instance that is announced by the LWM2M Client to the LWM2M Server using the “Register” and “Update” logical operations of the Device Discovery and Registration Interface.
The Delete operation has the following parameters:
[bookmark: _Toc357006332]Table 8: Delete parameters
	Parameter
	Required
	Default Value
	Notes

	Object ID
	Yes
	-
	Indicates the Object.

	Object Instance ID
	Yes
	-
	Indicates the Object Instance to delete.

[bookmark: _Toc357006230]Information Reporting Interface
The Information Reporting Interface is used by a LWM2M Server to observe any changes in a Resource on a LWM2M Client, receiving notifications when new values are available. This observation relationship is initiated by sending an “Observe” logical operation to the L2M2M Client for an Object Instance or Resource. An observation ends when a “Cancel Observation” logical operation is performed or the LWM2M Server is no longer reachable.

[image:]
[bookmark: _Toc357007824]Figure 9: Example flow for Information Reporting Interface

[bookmark: _Toc357006231]Observe
The LWM2M Server initiates an observation request for changes of Resources within an Object Instance or for a specific Resource within the LWM2M Client.
Related parameters for “Observe” logical operation are described in 5.3.2 Write and those parameters are configured by “Write” logical operation. This separation enables cache mechanism at intermediate network node (e.g., proxy server), the LWM2M Server, and/or LWM2M Client.
The Observe operation includes the following parameters:
[bookmark: _Toc357006333]Table 9: Observe parameters
	Parameter
	Required
	Default Value
	Notes

	Object ID
	Yes
	-
	Indicates the Object.

	Object Instance ID
	Yes
	-
	Indicates the Object Instance to observe. If no Resource ID is indicated, then the whole Object Instance is observed.

	Resource ID
	No
	-
	Indicates the Resource to observe.

[bookmark: _Toc357006232]Notify
The “Notify” logical operation is sent from the LWM2M Client to the LWM2M Server during a valid observation on Object Instance or Resource. This operation includes the new value of the Object Instance or Resource. The “Notify” logical operation SHOULD be sent when conditions (i.e., Minimum Period, Maximum Period, Greater Than, Less Than, Step) for “Observe” logical operation are met.
The LWM2M Client SHOULD NOT send the “Notify” logical operation for the changed Resource or Object Instance before the Minimum Period expires.
The LWM2M Client SHOULD send the “Notify” logical operation for the changed Resource or Object Instance before the Maximum Period expires.

[bookmark: _Toc357006334]Table 10: Notify parameters
	Parameter
	Required
	Default Value
	Notes

	Updated Value
	Yes
	-
	The new value included in the payload about the Object Instance or Resource.

If the minimum period and maximum period value are the same, then the LWM2M Client sends notification in every that period.
The following example shows how the Minimum and Maximum period parameters work as shown in Error! Reference source not found.. A LWM2M Server makes an observation for a Temperature Resource that is updated inside the LWM2M Client at irregular periods (based on change). The LWM2M Server makes an observation when the Minimum Period = 10 Seconds and Maximum Period = 60 Seconds have been set for that Resource a priori. The LWM2M Client will wait at least 10 Seconds before sending a “Notify” logical operation to the LWM2M Server (even if the Resource has changed before that), and no longer than 60 Seconds before sending a “Notify” logical operation (even if the Resource has not changed yet). The “Notify” logical operation is sent anywhere between 10-60 seconds upon change.

[image: fig10-observe-with-minmax][image:]
[bookmark: _Toc357007825]Figure 10: Example of Minimum and Maximum periods in an Observation.
This example assumes the the Minimum Period has been set to 10 and the Maximum Period set to 60 for the Resource /21/4/3 before making the observation.

[bookmark: _Toc357006233]Cancel Observation
The “Cancel Observation” logical operation is sent from the LWM2M Server to the LWM2M Client to end an observation relationship for Object Instance or Resource. The operation includes the following parameters:

[bookmark: _Toc357006335]Table 11: Cancel Observation parameters
	Parameter
	Required
	Default Value
	Notes

	Object ID
	Yes
	-
	Indicates the Object.

	Object Instance ID
	Yes
	-
	Indicates the Object Instance to stop observing. If no Resource ID is indicated, then the whole Object Instance is indicated.

	Resource ID
	No
	-
	Indicates the Resource to stop observing.

[bookmark: _Ref211139396][bookmark: _Toc357006234]Identifiers and Resources
This section defines the identifiers and resource model for the LWM2M Enabler.
[bookmark: _Toc357006235]Resource Model
The LWM2M Enabler defines a simple resource model where each piece of information made available by the LWM2M Client is a Resource. Resources are logically organized into Objects. Figure 9 illustrates this structure, and the relationship between Resources, Objects and the LWM2M Client. The LWM2M Client may have any number of Resources, each of which belongs to an Object. Resources and Objects have the capability to have multiple instances of the Resource or Object.
[image: device-object-resource (2)]
[bookmark: _Ref209522151][bookmark: _Toc357007826]Figure 11: Relationship between LWM2M Client, Object and Resources
Resources are defined per Object, and each Resource is given a unique identifier within that Object. Each Object and Resource is defined to have one or more logical operations that it supports. A Resource MAY consist of multiple instances as defined in the Object specification.
An Object defines a grouping of Resources, for example the Firmware Object contains all the Resources used for firmware update purposes. Each Object is assigned a unique OMA Management Object identifier and corresponding index which identifies an Object defined for the LWM2M Enabler. The LWM2M Enabler defines standard Objects and Resources. Further Objects may be added by OMA or other organizations to enable additional M2M Services.
An Object MUST be instantiated either by the LWM2M Server or the LWM2M Client, which is called Object Instance before using the functionality of an Object. After an Object Instance is created, the LWM2M Server can access that Object Instance and Resources which belong to that Object Instance.
The LWM2M Client and/or LWM2M Server perform logical operations on Objects, Resources, Object Instance and Resources Instances as described in Section 5 Interfaces. These logical operations are conveyed as described in Section 8 Transport Layer Binding and Encoding and how to convey the Operation data is defined in 7.3.
The LWM2M Enabler defines an access control mechanism per Object Instance. Object Instances SHOULD have an associated Access Control Object Instance. An Access Control Object Instances contains Access Control Lists (ACLs) that define which logical operations on the contained Resource are allowed for which LWM2M Server(s). The access control mechanism is defined in Section 7.2 Access Control. Figure 12 shows and example of the logical operations the Resources support and how Object Instances and Resources are associated with ACLs. In the example, Object Instance 0 for Object 0 has 2 Resources. Resource 1 supports the ”Read”, “Write” and ”Execute” logical operations, while Resource 2 supports only the “Read” logical operation.
[image:]
[bookmark: _Ref210461253][bookmark: _Toc357007827]Figure 12: Supported operations and access control lists

[bookmark: _Toc357006236]Identifiers
The LWM2M Enabler defines specific identifiers for entities used within the LWM2M Protocol. These identifiers are defined in Table 12.
[bookmark: _Ref209524023][bookmark: _Toc357006336]Table 12: LWM2M Identifiers
	Identifier
	Semantics
	Description

	Endpoint Client Name
	String (max 63 bytes)
	Uniquely identifies the LWM2M Client on one LWM2M Server (including LMWM2M Bootstrap Server). Provided to the LWM2M Server during Registration, also provided to LMWM2M Bootstrap Server during when executing the Bootstrap procedure. Examples of an Endpoint Client Name include: IMEI, OUI-PC-Serial number or a logical name of the device.

	LWM2M Bootstrap Server URI
	URI
	Uniquely identifies the LWM2M Bootstrap Server. Provided to the LWM2M Client during the Bootstrap procedure

	LWM2M Server URI
	URI
	Uniquely identifies the LWM2M Server. Provided to the Client during Bootstrap procedure.

	Short Server ID
	16-bit unsigned integer
	Uniquely identifies each LWM2M Server configured for the LWM2M Client. The identifier is assigned by the LWM2M Client.
Default Short Server ID is 0 and default Short Server ID MUST not be used for identifying the LWM2M Server.

	Human Readable Object URN
	URN for the OMA Management Object
	Assigned by the Object specification.

	Object ID
	16-bit unsigned integer
	Uniquely identifies the Object in the LWM2M Client. This identifier is assigned by OMA.

	Object Instance ID
	8-bit unsigned integer
	Uniquely identifies the Object Instance of the Object within the LWM2M Client. This identifier is assigned by LWM2M Client or LWM2M Server.

	Resource ID
	16-bit unsigned integer
	Uniquely identifies the Resource within the Object. Short integer ID, with a range assigned by the Object specification and unique to that Object, and a Reusable Resource ID range assigned by OMNA and re-usable between Objects.

	Resource Instance ID
	8-bit unsigned integer
	Uniquely identifies the Resource Instance in the Resource. This identifier is assigned by LWM2M Client or LWM2M Server.

[bookmark: _Toc357006237]Reusable Resources
When Objects are designed for a similar purpose, for example Objects for use in network management, or Objects for use in embedded device automation, similar resources are useful in more than one Object. For example in embedded device automation, Objects for different purposes may contain common resource types such as digital input, digital output, analogue input, analogue output, dimmer value, unit, min measurement, max measurement, value range etc.
If a resource can feasibly be re-used with the same meaning in multiple Object definitions, it can be defined as a Reusable Resource ID and registered with OMNA. Other Objects may then make use of this Reusable Resource ID in another Object definition. The definition of the Resource MUST be the same with the exception of the Multiple Resource, Mandatory and Description fields.

[bookmark: _Toc357006238]Data Formats for Transferring Resource Information
Four data formats are defined by the LWM2M Enabler in this section. The LWM2M Server MUST support all data formats. The plain text and opaque formats MUST be supported by the LWM2M Client. The LWM2M Client MUST support the TLV data format for Object Instance or multiple-instance Resource requests.
The Object specification defines the data format that a Resource supports, either plain text or opaque for singular Resources or TLV for multiple instance Resources.
In addition to the data formats defined in the Object specification, a LWM2M Client MAY choose to support the JSON format for Object Instance or multiple instance Resource requests.

[bookmark: _Toc357006239]Plain Text
The plain text format is used for ”Read” and “Write” logical operations on singular Resources where the value of the Resource is simply represented as an UTF-8 encoded string. This string can contain a character sequence, integer number, decimal number or any other sequence of valid UTF-8 characters as per Appendix A.
For example a request to the example client’s Device Object, Manufacturer Resource would return the following plain text payload:

Req: GET /3//0

Res: 2.04 Content
Open Mobile Alliance

This data format has a Media Type of application/vnd.oma.lwm2m+text
[bookmark: _Toc357006240]Opaque
The opaque format is used for ”Read” and “Write” logical operations operations on singular Resources where the value of the Resource is an opaque sequence of binary octets. This data format is used for binary Resources such as firmware images or application specific binary formats.
This data format has a Media Type of application/vnd.oma.lwm2m+opaque
[bookmark: _Toc357006241]TLV
For requests to Object Instance or Resource with multiple instances (Resource Instance), the binary TLV (Type-Length-Value) format is used to represent an array of values or a singular value using a company binary representation, which is easy to process on simple embedded devices. The format has a minimum overhead per value of just 2 bytes and a maximum overhead of 5 bytes depending on the type of Identifier and length of the value. The maximum size of an Object Instance or Resource in this format is 65,536 bytes. The format is self-describing, thus a parser can skip TLVs for which the resource is not known.
This data format has a Media Type of application/vnd.oma.lwm2m+tlv
The format is an array of the following byte sequence, where each array entry represents an Object Instance, Resource or Resource Instance:

[bookmark: _Toc357006337]Table 13: TLV format and description

	Field
	Format and Length
	Description

	Type
	8-bit masked field
	Bits 1-3: Indicates the type of Identifier and the Identifier field length
000=8-bit Object Instance in which case the Value contains one or more Resource TLVs
001=8-bit Resource Instance with Value
010=16-bit Multiple Resource, in which case the Value contains one or more Resource Instance TLVs
011=16-bit Resource with Value
100-111= Reserved for future use

	
	
	Bit 3-4: Indicates the type of Length.
00=No length field, the value immediately follows the Identifier field in is of the length indicated by Bits 6-8 of this field
01 = The Length field is 8-bits and Bits 6-8 MUST be ignored
10 = The Length field is 16-bits and Bits 6-8 MUST be ignored
11 = Reserved for future use

	
	
	Bits 6-8: A 3-bit unsigned integer indicating the Length of the Value.

	Identifier
	8-bit or 16-bit unsigned integer as indicated by the Type field.
	The Object Instance, Resource or Resource Instance ID as indicted by the Type field.

	Length
	0-bit, 8-bit or 16-bit unsigned integer as indicated by the Type field.
	The Length of the following field in bytes

	Value
	Sequence of bytes of Length
	Value of the tag. The format of the value depends on the Resource’s data type (See Appendix A).

Each TLV entry starts with a Type byte that indicates if the TLV contains an Object Instance, a Resource, Multiple Resources, or a Resource Instance. Object Instance and Resource with Resource Instance TLVs contains other TLVs in their value. The hierarchy is as follows and may be up to 3 levels deep. The Object Instance TLV is only required if multiple Object Instances are returned in a request.

· Object Instance TLV, which contains
· Resource TLVs or
· Multiple Resource TLVs, which contains
· Resource Instance TLVs

Single Object Instance Request Example
In this example, a request for the Device Object of the LWM2M example client is made (GET /3//). The client responds with a TLV payload including all of the readable resources. This TLV payload would have the following format. Since the Device Object has no Instances, no Object Instance TLV entry is needed. The total payload size with the TLV encoding is 96 bytes.

	TLV
	Type Byte
	ID Byte(s)
	Length Byte(s)
	Value
	Total Bytes

	Manufacturer Resource
	0b011 01 000
	0x00, 0x00
	0x14 (20 bytes)
	Open Mobile Alliance [String]
	24

	Model Number
	0b011 01 000
	0x00, 0x01
	0x16 (22 bytes)
	“Lightweight M2M Client” [String]
	26

	Serial Number
	0b011 01 000
	0x00, 0x02
	0x09 (9 bytes)
	“345000123” [String]
	13

	Firmware Version
	0b011 00 011
	0x00, 0x07
	(3 bytes)
	“1.0” [String]
	6

	Power Source Status
	0b011 00 001
	0x00, 0x0A
	(1 byte)
	0x00 [8-bit Integer]
	4

	Battery Level
	0b011 00 001
	0x00, 0x0B
	(1 byte)
	0x64 [8-bit Integer]
	4

	Memory Free
	0b011 00 001
	0x00, 0x10
	(1 byte)
	0x0F [8-bit Integer]
	4

	Error Code
	0b011 00 001
	0x00, 0x12
	(1 byte)
	0x00 [8-bit Integer]
	4

	Current Time
	0b011 00 100
	0x00, 0x14
	(4 byte)
	0x5182428F [32-bit Integer]
	7

	Time Zone
	0b011 00 001
	0x00, 0x15
	(1 byte)
	0x02 [8-bit Integer]
	4

	Total
	96

Multiple Object Instance Request Example

In this example, a request for both the ACL Objects of the LWM2M example client is made (GET /2). The client responds with a TLV payload including both Object Instances (0 and 1) and their resources. This TLV payload would have the following format. The total payload size with the TLV encoding is 38 bytes.

	TLV
	Type Byte
	ID Byte(s)
	Length Byte(s)
	Value
	Total Bytes

	ACL Object Instance 0
	0b000 01 000
	0x00
	(17 bytes)
	The next 5 rows
	2

	Object ID
	0b011 00 001
	0x00 0x00
	(1 byte)
	0x03 [8-bit Integer]
	4

	ACL
	0b010 00 001
	0x00 0x02
	(6 bytes)
	The next 2 rows
	3

	 ACL [1]
	0b001 00 001
	0x01
	(1 byte)
	0b1110 0000
	3

	 ACL [2]
	0b001 00 001
	0x02
	(1 byte)
	0b1000 0000
	3

	Access Control Owner
	0b011 00 001
	0x00 0x03
	(1 byte)
	0x01 [8-bit Integer]
	4

	ACL Object Instance 1
	0b000 01 000
	0x01
	(17 bytes)
	The next 5 rows
	2

	Object ID
	0b011 00 001
	0x00 0x00
	(1 byte)
	0x04 [8-bit Integer]
	4

	ACL
	0b010 00 001
	0x00 0x02
	(6 bytes)
	The next 2 rows
	3

	 ACL [1]
	0b001 00 001
	0x01
	(1 byte)
	0b1000 0000
	3

	 ACL [2]
	0b001 00 001
	0x02
	(1 byte)
	0b1000 0000
	3

	Access Control Owner
	0b011 00 001
	0x00 0x03
	(1 byte)
	0x01 [8-bit Integer]
	4

	Total
	38

[bookmark: _Toc357006242]JSON
For requests to Object Instance or Resource with multiple instances (Resource Instance), a JSON format may be used where a set of values and metadata is represented. Each entry of the JSON format is a Resource, where the name is the URI path relative to the request URI.
The JSON is useful for returning multi-level Resources from the resource tree, for example requesting all Instances of an Object, Resources and Resource Instances within a LWM2M Client within the same response. The JSON format also includes optional time fields, which allows for multiple versions of representations to be sent in the same payload. The time fields are only used when sending notifications.
This data format has a Media Type of application/vnd.oma.lwm2m+json

The format when an Object or Object Instance is requested follows the following syntax:

{"e":[
 {"n": "URI Path", "t": "Time", "v": Float Value, "bv": Boolean Value, "sv":"String Value"},
 {"n": "URI Path", "t": "Time", "v": Float Value, "bv": Boolean Value, "sv":"String Value"}],
 "bt":"Base Time"
}

[bookmark: _Toc357006338]Table 14: JSON format and description
	Field
	JSON Variable
	Mandatory?
	Description

	Object Root
	e
	Yes
	The root of the value array.

	URI Path
	n
	Yes
	The path of the resource relative to the request URI (/Object/Object Instance/Resource/Resource Instance)

	Time
	t
	No
	The time of the representation relative to the Base Current Time in seconds (a negative integer) for a notification. Required only for historical representations.

	Base Time
	bt
	No
	The base current time which the Time values are relative to as a Time data type (See Appendix B)

	Float Value
	v
	One value field is mandatory
	Value as a JSON float if the resource data type is integer or decimal.

	Boolean Value
	bv
	
	Value as a JSON Boolean if the resource data type is boolean.

	String Value
	sv
	
	Value as a JSON string for all other resource data types.

For example a request to example client Device Object (Get /3//) in the example would return the following JSON payload. This example has a size a 256 bytes.

{“e”:[
 {"n":"0","sv":"Open Mobile Alliance"},
 {"n":"1","sv":"Lightweight M2M Client"},
 {"n":"2","sv":"345000123"},
 {"n":"7","sv":"1.0"},
 {"n":"10","v":"0"},
 {"n":"11","v":"100"},
 {"n":"16","v":"15"},
 {"n":"18","v":"0"},
 {"n":"20","v":"1367491215"},
 {"n":"21","v":"2"},]
}

For example a notification about a Resource containing multiple historical representations of a Temperature Resource in the example could result in the following JSON payload:

{“e”:[
 {"n":"1/2","v":"22.4","t":"-5"},
 {"n":"1/2","v":"22.9","t":"-30"},
 {"n":"1/2","v":"24.1","t":"-50"}],
 "bt":"25462634"
}

[bookmark: _Toc357006243]Security
[bookmark: _Toc357006244]Channel Security
The LWM2M protocol is based on [CoAP] principles. [CoAP] runs over UDP. The UDP channel security is defined by the Datagram Transport Layer Security (DTLS) [RFC6347], which is the equivalent of TLS v1.2 [RFC5246] for HTTP.
DTLS supports most of the Cipher Suites defined in TLS. (Refers to TLS Cipher Suite registry http://www.iana.org/assignments/tls-parameters/tls-parameters.xml)
Considering that any device with a LWM2M Client can be managed by any LWM2M Server the choice of Cipher Suites is not limited to the list defined in Section 9 of [CoAP].
The DTLS binding for CoAP is defined in Section 9 of [CoAP]. DTLS is a long-lived session based security solution for UDP. It provides a secure handshake with session key generation, mutual authentication, data integrity and confidentiality. DTLS is also used for authorization on individual resources.
Mutual Authentication means that a LWM2M client MUST authenticate a LWM2M server. And a LWM2M server MUST authenticate a LWM2M client. This important security rule must also be applied within the bootstrapping interface. The LWM2M Bootstrap server MUST authenticate the LWM2M client and the LWM2M client MUST authenticate the LWM2M Bootstrap server prior to exchange any information.
Note that the Client-Server relationship of DTLS (i.e., who initiated the handshake) is separate from the Client-Server relationship of LWM2M. The LWM2M Client and Server SHOULD keep a DTLS session in use as long as possible (even across sleep cycles).
The keying material for all of the modes below is obtained using one of the bootstrap modes defined in Section 5.1.2 Bootstrap Modes. The formats of the keying material carried in the LWM2M Server and LWM2M Bootstrap Objects are defined in Appendix D.1.1.

[bookmark: _Toc357006245]Pre-Shared Keys
A LWM2M server MUST support the Pre-Shared Key mode of DTLS with the Cipher Suites below:
· TLS_PSK_WITH_AES_128_CCM_8 [RFC6655] as defined in Section 9.1.3.1 of [CoAP]
· TLS_PSK_WITH_AES_128_CBC_SHA256 as defined in [RFC5487]
A LWM2M Client MUST support the Pre-Shared Key mode of DTLS with at least one of the Cipher Suites specified for the LWM2M Server. The LWM2M Client MUST use the value of the "Public Key or Identity" Resource for "PSK identity" in [RFC4279] and the value of "Secret Key" Resource for "PSK" in [RFC4279] as defined in Appendix D.1.1.
The LWM2M Client and LWM2M Server MAY support the use of other Cipher Suites.
For all Cipher Suites using AES in an LWM2M implementation, the hashing functions SHOULD be SHA256.
For all Cipher Suites using AES in an LWM2M implementation, the hashing functions SHALL NOT be SHA-1.
A LWM2M Client negotiates with the LWM2M Server the best method during the DTLS handshake for establishing the DTLS session.
This security mode is appropriate for LWM2M deployments where there is an existing trust relationship between the LWM2M Server and Client. The same PSKs and PDK IDs need to be generated, and installed on the Client and Server. When using a Bootstrap Server, this security mode requires a 3-way trust relationship between the Bootstrap Server, LWM2M Server(s) and LWM2M Client(s).

[bookmark: _Toc357006246]Raw Public Key Certificates
If a LWM2M Server supports Raw Public Key Certificates it MUST support the Cipher Suites below:
· TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 as defined in Section 9.1.3.2 of [CoAP]
· TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 as defined in [RFC5289]
If a LWM2M Client supports Raw Public Key Certificates it MUST support at least one of the Cipher Suites supported by the LWM2M Server.
The LWM2M Client MUST use the value of the "Public Key or Identity" Resource for its Raw Public Key certificate and the value of "Secret Key" Resource for its Private Key as defined in Appendix D.1.1.
If the LWM2M Client and LWM2M Server supports Raw Public Key Certificates, they MAY support the use of other Cipher Suites.
If the LWM2M Client or LWM2M Server supports ECDHE and ECDSA for Raw Public Key Certificates, SHA-1 SHALL NOT be used and the minimum key length SHALL be at least 256 bits.
This security mode is appropriate for LWM2M deployments where there is an existing trust relationship between the LWM2M Server and Client. The same Public Keys (or hashed IDs of these keys) need to be generated, and installed on the Client and Server. When using a Bootstrap Server, this security mode requires a 3-way trust relationship between the Bootstrap Server, LWM2M Server(s) and LWM2M Client(s).

[bookmark: _Toc357006247]X.509 Certificates
The X.509 Certificate mode requires the use of X.509v3 Certificates [RFC5280].
Certificates used in LWM2M SHOULD be signed by a root certificate, either by a public root CA or a private root.
If a LWM2M server supports X.509 Certificate mode it MUST support the Cipher Suites below:
· TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 as defined in Section 9.1.3.3 of [CoAP].
· TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 as defined in [RFC5289]
If a LWM2M Client supports X.509 Certificate mode it MUST support at least one of the Cipher Suites supported by the LWM2M Server. The LWM2M Client MUST use the value of the "Public Key or Identity" Resource for its X.509 certificate and the value of "Secret Key" Resource for its Private Key as defined in Appendix D.1.1.
If the LWM2M Client and LWM2M Server supports X.509 Certificate mode, they MAY support the use of other Cipher Suites.
If the LWM2M Client or LWM2M Server supports ECDHE and ECDSA for X.509 Certificate mode, SHA-1 SHALL NOT be used and the minimum key length SHALL be at least 256 bits.
A LWM2M Client Certificate MUST include the Endpoint Name parameter used to register the device in the Subject Common Name (CN) field of the Certificate. Upon registration, the LWM2M Server MUST check that this CN field matches the Endpoint Name parameter of the registration message during authentication and MUST reject the handshake if these fields do not match. The LWM2M Server SHOULD also verify that the Certificate is signed by the indicated Issuer.
A LWM2M Server Certificate SHOULD include Subject and/or SubjectAltName fields listing its known DNS names and IP addresses which are included in the LWM2M Server URI resource of the LWM2M Sever Object Instance. The LWM2M Client SHOULD check that these fields of the Certificate match the URI used to register with the LWM2M Server. The LWM2M Client SHOULD also verify that the Certificate is signed by the indicated Issuer.
This security mode does not require a pre-existing trust relationship between the LWM2M Client and LWM2M Server, nor between a LWM2M Bootstrap Server and a LWM2M Server. However, all entities need a trust relationship with the CA(s) that issued the certificates used in LWM2M Servers and Clients.

[bookmark: _Toc357006248]Access Control
[bookmark: _Toc357006249]Access Control Object
To authorize the logical operation sent from the LWM2M Server, the LWM2M Client checks Instances of Access Control Object. Each Access Control Object Instance is assigned per Object Instance of the Resources that require authorization. Within the Access Control Object Instance is an ACL Resource that determines which logical operations a LWM2M Server can perform on the Object Instance or Resources in the Object Instance within the LWM2M Client.
The ACL Resource can have multiple Resource Instances and each Resource Instance of the ACL Resource consists of a Short Server ID and access right for the corresponding LWM2M Server, which indicates that the LWM2M Server has the access right for the Object Instance specified in an Access Control Object Instance.
An ACL Resource Instance consisting of the default Short Server ID (i.e. 0) and its access right MAY be used to grant access rights to LWM2M Servers which are not specified in the ACL Resource Instances. This means that the LWM2M Server which owns the ACL Resource Instance has the access right of that Resource Instance and the other LWM2M Servers which do not own their ACL Resource Instances have the access right of the default Short Server ID.
Each ACL Object Instance MUST be managed by a LWM2M Server called Access Control Owner. The other LWM2M Servers except Access Control Owner MUST not manage the Access Control Object Instance.
The ACL Object Instance is further defined and described in Appendix C.2 and Examples of Access Control Object Instance is specified in Appendix B.

[bookmark: _Toc357006250]Access Type
The Access Type field defines the possible logical operation(s) for a Resource and assigned per Resource by the LWM2M Client. All Resource Instances inherit the Access Type of corresponding Resource. The Access Type field is 1 byte and each bit represents whether the respective logical operation is supported by the Resource. For example, if 1st most significant bit (msb) of Access Type field is 1, it means the Resource supports “Read” logical operation.

[bookmark: _Toc357006339]Table 15: Access Type operations
	Field
	Format and Length
	Description

	Access Type
	1 byte
	1st msb: Read
2nd msb: Write
3rd msb: Execute
Other bits are reserved for future use

[bookmark: _Toc357006251]Authorization
The LWM2M Client authorizes logical operations requested by a LWM2M Server by verifying the access to the requested based on the conjunction of the access right to the Resource for the LWM2M Server and the access type of the Resource. This chapter specifies how the LWM2M Client obtains the access rights of the LWM2M Server to the Resource and authorizes the logical operation on the Resource or Object Instance.
The LWM2M Server and the LWM2M Client MUST support the authorization procedure described in Section 7.2.3 Authorization.
Obtaining Access Right
For obtaining the access right of an Object Instance for a LWM2M Server, the LWM2M Client MUST perform the following procedure:
1. If the LWM2M Client has only one LWM2M Server Object Instance, the LWM2M Server has full access rights without checking Access Control Object Instance.
2. If the LWM2M Client has more than one LWM2M Server Object Instance, the LWM2M Client finds an Access Control Object Instance associated with the Object Instance that the LWM2M Server has requested to access with the following procedure.
A. If the Client has an ACL Resource Instance for the Server, the LWM2M Server has an access right of that Resource Instance.
B. If the Client doesn’t have ACL Resource Instance for the Server, the LWM2M Server has an access right of default Short Server ID in ACL Resource Instance if it exists.
C. If the Client doesn’t have ACL Resource Instance for the default Short Server ID, then, the LWM2M Server has no access right.

[bookmark: _Ref338172719]Operation on Resource
If the LWM2M Server accesses a Resource, the LWM2M Client obtains an access right of the LWM2M Server for the Object Instance that Resource belongs to according to Section 7.2.3.1 Obtaining Access Right and checks whether the access right is granted to perform the logical operation.
If the logical operation is not permitted, the LWM2M Client MUST send an “Access Right Permission Denied” error code to the LWM2M Server.
If the logical operation is permitted, the LWM2M Client verifies whether the Resource supports the logical operation.
If the logical operation is not supported by the Resource, the LWM2M Client MUST send an “Operation is not supported” error code to the LWM2M Server.
If the Resource supports the logical operation, the LWM2M Client performs the logical operation.
Operation on Object Instance
If the LWM2M Server accesses an Object Instance, the LWM2M Client obtains an access right of the LWM2M Server for Object Instance according to Section 7.2.3.1 Obtaining Access Right and checks whether the access right is granted to perform the logical operation.
If the logical operation is not permitted, the LWM2M Client MUST send an “Access Right Permission Denied” error code to the LWM2M Server.
If the logical operation is permitted, the LWM2M Client performs the following cases based on the logical operation.
· For the “Write” logical operation, the LWM2M Client MUST perform the logical operation on the Object Instance only if all the Resources conveyed in the logical operation are allowed to perform the “Write” logical operation. If any Resource does not support the “Write” logical operation, the LWM2M Client MUST inform the LWM2M Server of the Resources which don’t support the logical operation by sending “Operation is not supported” error code for the affected Resources.
· For the “Read” logical operation, the LWM2M Client MUST retrieve all the Resources except the Resource(s) which doesn’t support the “Read” logical operation and sends the retrieved Resource(s) information to the LWM2M Server.
· For the “Execute” logical operation, the LWM2M Client MUST not perform the logical operation.
· For the “Create” logical operation, the LWM2M Client MUST the LWM2M Client MUST perform the logical operation on the Object Instance only if all the Resources conveyed in the logical operation are allowed to perform the “Write” logical operation and all the mandatory Resources are specified. If any Resource does not support the “Write” logical operation, the LWM2M Client MUST inform the LWM2M Server of the Resources which don’t support the logical operation by sending “Operation is not supported” error code for the affected Resources. If all the mandatory Resources are not specified, the LWM2M Client MUST send an “Bad Request” error code to the LWM2M Server.
· For the “Delete” logical operation, the LWM2M Client MUST perform the logical operation.

Observe/Notify Operation Consideration
If the LWM2M Server sends an “Observe” logical operation on an Object Instance or a Resource, the LWM2M Client MUST check whether the LWM2M Server is authorized for the “Read” logical operation. If the LWM2M Server is not authorized to perform the “Read” logical operation, the LWM2M Client MUST reject the “Observe” logical operation and send error response as defined in the respective sections.
If the LWM2M Client needs to send a “Notify” logical operation containing an Object Instance or a Resource to the Server, the LWM2M Client MUST check whether the LWM2M Server is authorized for the “Read” logical operation. If the LWM2M Server is not authorized, the Client MUST NOT send the “Notify” logical operation and MUST perfom the “Cancel Observation” logical operation.

[bookmark: _Toc357006252]Transport Layer Binding and Encodings
[bookmark: _Toc51147387][bookmark: _Toc51149241]The LWM2M interfaces use the IETF Constrained Application Protocol [CoAP] as an underlying transfer protocol across IP and SMS bearers. This protocol defines the message header, request/response codes, message options and retransmission mechanisms. This section defines the subset of features from the IETF CoAP specification to be used by LWM2M interfaces.
[bookmark: _Toc357006253]Required Features
For realization of the LWM2M interfaces, only the basic binary CoAP message header, and a small subset of options are required. This section explicitly defines the features of the CoAP standard that are required for LWM2M.
· The 4-byte binary CoAP message header is defined in Section 3 of [CoAP]. This same base message is used for Request and Response interactions.
· Confirmable, Acknowledgement and Reset messages MUST be supported. The Reset message is used as a message layer error message in response to a malformed Confirmable message. Non-Confirmable messages MAY be used by a Client for sending Information Reporting notifications as per [Observe].
· GET, PUT, POST and DELETE methods MUST be supported. LWM2M Operations map to these methods.
· A subset of Response Codes MUST be supported for LWM2M response message mapping.
· The Uri-Path Option MUST be supported to indicate the identifier of the interface, Object Instance and Resource being requested.
· The Location-Path Option MUST be supported to indicate the handle of a registration for future update and delete operations.
· The Uri-Query Option MUST be supported.
· The Content-Type Option MAY be used to indicate the media type of the payload. A default value of plain/text is assumed, allowing this option to be elided for most payloads.
· The Token Option MAY be used to enable multiple requests in parallel with an endpoint, and MUST be supported for the Information Reporting interface.
[bookmark: _Toc357006254]URI Identifier & Operation Mapping
Although CoAP supports a URI in requests, it is not used in the same way as in HTTP. The URI in CoAP is broken down into binary parts, minimizing overhead and complexity. In LWM2M only path segment and query string URI components are needed. The URI path is used to simply identify the interface, Object Instance or Resource that the request is for, and is encoded in Uri-Path options. The LWM2M Registration interface also makes use of query string parameters to pass on meta-data with the request separately from the payload. Each query parameter is encoded in a Uri-Query Option. Likewise, the LWM2M Operations for each interface are mapped to CoAP Methods.
[bookmark: _Toc357006255]Firewall/NAT
For a firewall to support LWM2M, it should be configured to allow outgoing UDP packets to destination port 5683 (other ports can be configured), and allow incoming UDP packets back to the source address/port of the outgoing UDP packet for a period of at least 240 seconds. These UDP packets may contain DTLS or CoAP payloads. When a firewall is configured as such any Clients behind it should use Queue Mode.
For a firewall to support LWM2M it can be configured to allow both outgoing and incoming UDP packets to destination port 5683 (other ports can be configured). These UDP packets may contain DTLS or CoAP payloads. When a firewall is configured as such any Clients behind it are not required to use Queued Mode, but may use it for other reasons (e.g. a battery powered sleeping device).
Any Clients behind a NAT can use Queued Mode. There are other mechanisms to transverse a NAT, however they are out of scope for the LWM2M Enabler.

[bookmark: _Toc357006256]Registration Interface
The registration interface is used by a LWM2M Client to register with a LWM2M Server, identified by the LWM2M Server URI. Registration is performed by sending a CoAP POST to the LWM2M Server URI, with registration parameters passed as query string parameters as per Table 16 and Object and Object Instances included in the payload as per [RFC6690]. The Client MAY add “</>;ct=50” in the payload to inform the Server of the Client supporting JSON data format for all the Objects. The response includes Location-Path Options, which indicate the path to use for updating or deleting the registration. The server MUST return a location under the /rd path segment.
Registration update is performed by sending a CoAP PUT to the Location path returned to the LWM2M Client as a result of a successful registration.
De-registration is performed by sending a CoAP DELETE to the Location path returned to the LWM2M Client as a result of a successful registration.
[bookmark: _Toc357006340]Table 16: Operation to Method and URI Mapping
	Logical Operation
	CoAP Method
	URI
	Success
	Failure

	Write Uplink
	POST
	/rd?ep={Endpoint Client Name}<={Lifetime}&sms={MSISDN}
&lwm2m={version}&q
	2.01 Created
	4.00 Bad Request

	Update Uplink
	PUT
	/{location}?ep={Endpoint Client Name}<={Lifetime}&sms={MSISDN}
&lwm2m={version}
	2.04 Changed
	4.00 Bad Request

	Delete Uplink
	DELETE
	/{location}
	2.02 Deleted
	4.00 Bad Request

[image:]
[bookmark: _Toc357007828]Figure 13: Example registration, update and de-registration exchanges (shorthand in [CoAP] example style, actual messages using CoAP binary headers)

[bookmark: _Toc357006257]Bootstrap Interface
The bootstrap interface is used to optionally configure a LWM2M Client so that it can successfully register with a LWM2M Server. The client bootstrap operation is performed by sending a CoAP POST request to the LWM2M Boostrap Server at the /bs path including the Endpoint Client Name as a query string parameter.
In client initiated bootstrap, when the Bootstrap Server receives Request Bootstrap logical operation, the Bootstrap Server performs Write logical operation. In server initiated bootstrap, the Bootstrap Server performs Write logical operation. The Write logical operation targets to an Object Instance or a Resource. The Write logical operation can be sent multiple times. Different from Write operation in Device Management and Service Enablement interface, the Client MUST write the payload regardless of an existence of the targeting Object Instance or Resource.
[bookmark: _Toc357006341] Table 17: Operation to Method and URI Mapping

	Logical Operation
	CoAP Method
	URI
	Success
	Failure

	Request Bootstrap
	POST
	/bs?ep={Endpoint Client Name}
	2.04 Changed
	4.00 Bad Request

	Write
	PUT
	/{Object ID}/{Object Instance ID}/ {Resource ID}
	2.04 Changed
	4.00 Bad Request

[image:]
[bookmark: _Toc357007829]Figure 14: Example of Client initiated Bootstrap exchange.

[image:]

[bookmark: _Toc357007830]Figure 15: Example of Server initiated Bootstrap exchange.

[bookmark: _Toc357006258]Device Management & Service Enablement Interface
The Device Management & Service Enablement Interface is used to access an Object Instance or an individual Resource of an Object Instance. An Object Instance is identified by the path /{Object ID}/{Object Instance ID}. If Object doesn’t support multiple Object Instances, the Object Instance is identified by the path /{Object ID}/0. A Resource is identified by the path /{Object ID}/{Object Instance ID}/{Resource ID}.
An Object Instance or Resource is Read by sending a CoAP GET to the corresponding path. The response includes the value in the corresponding Plain Text, TLV or JSON format.
An Object Instance or Resource is Written to by sending a CoAP PUT to the corresponding path. The request includes the value to be written in the corresponding Plain Text, TLV or JSON format.
A Resource is Executed by sending a CoAP POST to the corresponding path.
An Object Instance is created by sending a CoAP POST to the corresponding path. The request includes the value to be written in the corresponding TLV or JSON format.
An Object Instance is deleted by sending a CoAP DELETE to the corresponding path.
[bookmark: _Toc357006342]Table 18: Operation to Method Mapping

	Logical Operation
	CoAP Method
	Path
	Success
	Failure

	Read
	GET
	/{Object ID}/{Object Instance ID}/{Resource ID}
	2.05 Content
	4.00 Bad Request, 4.04 Not Found, 4.05 Method Not Allowed

	Write
	PUT
	/{Object ID}/{Object Instance ID}/{Resource ID} ?pmin={minimum period}&pmax={maximum period}>={greater than}<={less than}&st={step}
	2.04 Changed
	4.00 Bad Request, 4.04 Not Found, 4.05 Method Not Allowed

	Execute
	POST
	/{Object ID}/{Object Instance ID}/{Resource ID}
	2.04 Changed
	4.00 Bad Request, 4.04 Not Found, 4.05 Method Not Allowed

	Create
	POST
	/{Object ID}/{Object Instance ID}
	2.01 Created
	4.00 Bad Request, 4.05 Method Not Allowed, XXX ID Not Allowed

	Delete
	DELETE
	/{Object ID}/{Object Instance ID}
	2.02 Deleted
	4.00 Bad Request, 4.05 Method Not Allowed, XXX instance ID Not Existing

pmin, pmax, gt, lt, and/or st MAY be specified for using them in observe operation.

[image:]
[image:]
[bookmark: _Toc357007831]Figure 15: Example of Device Management & Service Enablement interface exchanges.

[bookmark: _Toc357006259]Information Reporting Interface
Periodic and event-triggered reporting about Resource values from the LWM2M Client to the LWM2M Server is achieved through CoAP Observation [OBSERVE]. This simple mechanism allows the LWM2M Server to send an Observe GET request for an Object Instance, which results in asynchronous notifications whenever that Object Instance changes (periodically or as a result of an event). The minimum and maximum period of notifications can be controlled by including the minimum (pmin) and/or maximum (pmax) period for notifications to be sent in seconds. The LWM2M Server can cancel Observe operation by sending CoAP GET without Observe option. Cancel Observation works as the same as Read operation in CoAP transport layer binding.

[bookmark: _Toc357006343]Table 19: Operation to Method Mapping
	Logical Operation
	CoAP Method
	Path
	Success
	Failure

	Observe
	GET with Observe option
	/{Object ID}/{Object Instance ID}/{Resource ID}
	2.05 Content with Observe option
	4.00 Bad Request, 4.04 Not Found, 4.05 Method Not Allowed

	Cancel Observation
	GET
	/{Object ID}/{Object Instance ID}/{Resource ID}
	2.05 Content
	4.00 Bad Request, 4.04 Not Found
4.01 Unauthorized, 4.05 Method Not Allowed

	Notify
	Asynchronous Response
	
	2.04 Changed
	

[image:]
[bookmark: _Toc357007832]Figure 16: Example of an Information Reporting exchange.
[bookmark: _Toc357006260]Queue Mode Operation
When the Client has registered with low communication access availability Queue Mode (it has included the “q” query string parameter when registering), The Server does not immediately send downlink requests on this interface, but instead waits until the Client is online.
A Client lets the Server know it is awake by sending a registration update message as a Confirmable message. The Server then makes any queued requests to the Client in a serial fasion. The Client SHOULD wait at least ACK_TIMEOUT [COAP] seconds from the last CoAP message it sent to the Server before intentionally going offline. If the Server is not successful in sending a request, then it stops emptying the queue and keeps the request for the next time the Client is online.
A typical Queue Mode sequence follows the following steps:
1. The device (i.e. LWM2M Client) registers to the LWM2M Server and requests the LWM2M Server to run in Queue mode by including the “q” query string parameter.
2. The device uses the CoAP ACK_TIMEOUT parameter to set a timer for how long it shall stay awake since last sent message to the LWM2M Server.
3. When LWM2M Server receives a message from the Client (e.g. a notification or a registration update), it checks its request queue for the device and performs the needed CoAP operation(s) (e.g. GET, PUT, and POST). Note: There could be several requests in the queue). Each request is sent serially to the Client, waiting for request to be Acknowledged before sending the next request. If a request is unsuccessful then it is returned to the queue. The device may have pending Observer notifications.

Below is an example flow for Queue Mode in relation to Device Management & Service Enablement Interface

[bookmark: _Toc357007833]Figure 17: Example of Device Management & Service Enablement interface exchanges for Queue Mode.

Below is an example flow for Queue Mode in relation to Information Reporting Interface

[bookmark: _Toc357007834]Figure 18: Example of an Information Reporting exchange for Queue Mode.

Queue Mode may also be used to reach LWM2M Clients behind a NAT using an SMS based trigger mechanism. Typically, a LWM2M Client registers to the LWM2M Server with SMS and QueueMode enabled. The LWM2M Server sets Binding Preference set to 1 (UDP with Queue Mode) in the LWM2M Server Object. Below is an example flow for Queue Mode in relation to Information Reporting Interface using SMS Registration Update Trigger:

[bookmark: _Toc357007835]Figure 19: Example of Device Management & Service Enablement interface exchanges for Queue Mode with SMS Registration Update Trigger.

[bookmark: _Toc357006261]Response Codes
This Chapter lists available response codes of each logical operation. The codes are divided into each interface. These are the only valid response codes defined in for the LWM2M Enabler.
[bookmark: _Toc357006344]Table 20: Response Codes

	Logical Operations
	Available CoAP Response Codes
	Reason Phrase

	Device Discovery and Registration Interface

	Register
	2.01 Created
	Register operation is completed successfully

	
	4.00 Bad Request
	The mandatory parameter is not specified or unknown parameter is specified
Unknown Endpoint Client Name

	Update
	2.04 Changed
	Update operation is completed successfully

	
	4.00 Bad Request
	The mandatory parameter is not specified or unknown parameter is specified or URI is not found

	De-register
	2.02 Deleted
	De-register operation is completed successfully

	
	4.00 Bad Request
	URI is not found

	 Bootstrap Interface

	 Request Bootstrap
	2.04 Changed
	Request Bootstrap is completed successfully

	
	4.00 Bad Request
	Unknown Endpoint Client Name

	Write
	2.04 Changed
	Write operation is completed successfully

	
	4.00 Bad Request
	The format of data to be written is different
Target (i.e., Object) is not allowed for Write operation

	 Device Management and Service Enablement Interface

	Create
	2.01 Created
	Create operation is completed successfully

	
	4.00 Bad Request
	Target (i.e., Resource) is not allowed for Create operation
Target (i.e., Object) already exists

	
	4.01 Unauthorized
	Access Right Permission Denied

	Read
	2.05 Content
	Read operation is completed successfully

	
	4.00 Bad Request
	

	
	4.04 Not Found
	URI of Read operation is not found

	
	4.01 Unauthorized
	Access Right Permission Denied

	
	4.05 Method Not Allowed
	Operation is not supported

	Write
	2.04 Changed
	Write operation is completed successfully

	
	4.00 Bad Request
	The format of data to be written is different
Target (i.e., Object) is not allowed for Write operation

	
	4.04 Not Found
	URI of Write operation is not found

	
	4.01 Unauthorized
	Access Right Permission Denied

	
	4.05 Method Not Allowed
	Access Type Permission Denied

	Delete
	2.02 Deleted
	Delete operation is completed successfully

	
	4.00 Bad Request
	Target (i.e., Object) is not allowed for Delete operation

	
	4.01 Unauthorized
	Access Right Permission Denied

	Execute
	2.04 Changed
	Execute operation is completed successfully

	
	4.00 Bad Request
	Target (i.e., Object, Object Instance) is not allowed for Execute operation

	
	4.04 Not Found
	URI of Execute operation is not found

	
	4.01 Unauthorized
	Access Right Permission Denied

	
	4.05 Method Not Allowed
	Operation is not supported

	Information Reporting Interface

	Observe
	2.05 Content
	Observe operation is completed successfully

	
	4.00 Bad Request
	Target (i.e., Object) is not allowed for Observe operation

	
	4.04 Not Found
	URI of Observe operation is not found

	
	4.05 Method Not Allowed
	Operation is not supported

	Cancel Observation
	Response codes for Cancel Observation are the same as the codes for Read operation

	Notify
	2.04 Changed
	Notify operation is completed successfully

[bookmark: _Toc357006262]Transport Bindings
[bookmark: _Toc357006263]UDP Binding
The CoAP binding for UDP is defined in [CoAP]. The protocol has a IANA registered scheme of coap:// and a default port of 5683. The UDP binding is used in NoSec (no security) mode. Reliability over the UDP transport is provided by the built-in retransmission mechanism of CoAP.

[bookmark: _Toc357006264]SMS Binding
CoAP is used over SMS in this transport binding by placing a CoAP message in the SMS payload using 8-bit encoding. SMS concatenation MAY be used for messages larger than 140 characters. CoAP retransmission is disabled for this binding. An LWM2M Client indicates the use of this binding by including a parameter (sms) in its registration to the LWM2M Server including the node’s MSISDN number. The LWM2M Client MAY interact with the server using both UDP and SMS bindings.
Editor’s Note: Specification of security needed (DTLS over SMS?), and need to define concatenation, possibly limit the size of a COAP message.
Editor:s Note: RD requirement to configure the reporting channel: notifications preferred over UDP binding or SMS binding if enables (under LWM2M server object).

[bookmark: _Toc357006265]Change History	(Informative)
[bookmark: _Toc357006266]Approved Version History
	Reference
	Date
	Description

	
	
	

	
	
	

	
	
	

[bookmark: _Toc357006267]Draft/Candidate Version <current version> History
	Document Identifier
	Date
	Sections
	Description

	Draft Versions
OMA-TS-LightweightM2M-V1_0-20120904-D
	04 Sep 2012
	all
	TS baseline agreed as in
 OMA-DM-LightweightM2M-2012-0078-INP_TS_kick_off

	Draft Version
OMA-TS-LightweightM2M-V1_0-20120918-D
	18 Sep 2003
	6, 7
	Incorporates input to committee:
OMA-DM-LightweightM2M-2012-0083R01-CR_Skeleton_Base_Line
OMA-DM-LightweightM2M-2012-0090R02-CR_TS_Resource_Model
OMA-DM-LightweightM2M-2012-0061R04-CR_Interfaces

	Draft Version
OMA-TS-LightweightM2M-V1_0-20121024-D
	24 Oct 2012
	6, 7, Appendix A
	OMA-DM-LightweightM2M-2012-0095R01-CR_TS_Interface_and_Resource_Additions

	Draft Version
OMA-TS-LightweightM2M-V1_0-20121030-D
	30 Oct 2012
	7, 8
	OMA-DM-LightweightM2M-2012-0097R01-CR_Identifiers_and_Security_Considerations

	Draft Version
OMA-TS-LightweightM2M-V1_0-20121117-D
	17 Nov 2012
	2, 6, 7, 8, 9, 10
	OMA-DM-LightweightM2M-2012-0088R04-CR_Transfer_Protocol
OMA-DM-LightweightM2M-2012-0098R02-CR_Bootstrap_Information_and_Modes
OMA-DM-LightweightM2M-2012-0099R01-CR_Default_ACL_Entry
OMA-DM-LightweightM2M-2012-0100R02-CR_Authorization_Procedure_and_Error_Code
OMA-DM-LightweightM2M-2012-0104R01-CR_Registration_Interface

	Draft Version
OMA-TS-LightweightM2M-V1_0-20121130-D
	30 Nov 2012
	
	OMA-DM-LightweightM2M-2012-0107R01-CR_Appendix_for_LWM2M_Objects.
OMA-DM-LightweightM2M-2012-0106R02-CR_Information_Interfaces.
OMA-DM-LightweightM2M-2012-0108R01-CR_LWM2M_Server_Account_Object.
OMA-DM-LightweightM2M-2012-0109R01-CR_Authorization_Update

	Draft Version
OMA-TS-LightweightM2M-V1_0-20121206-D
	06 Dec 2012
	6
	OMA-DM-LightweightM2M-2012-0110R01-CR_Interfaces_Intro_Update

	Draft Version
OMA-TS-LightweightM2M-V1_0-20121219-D
	19 Dec 2012
	6,7,8,9,
Annex
	OMA-DM-LightweightM2M-2012-0111R01-CR_Object_Instance_Introduction
OMA-DM-LightweightM2M-2012-0112-CR_Object_Template_Update
OMA-DM-LightweightM2M-2012-0113R02-CR_Access_Control
OMA-DM-LightweightM2M-2012-0114-CR_Update_Operation_Modification
OMA-DM-LightweightM2M-2012-0115-CR_Connection_Control

	Draft Version
OMA-TS-LightweightM2M-V1_0-20130123-D
	22 Jan 2013
	2, 7, 8, 9, Annex
	OMA-DM-LightweightM2M-2012-0101R03-CR_change_of_the_TLV_data_format
OMA-DM-LightweightM2M-2012-0117-CR_remove_example_objects_and_resources
OMA-DM-LightweightM2M-2013-0001R04-CR_Firmware_Object
OMA-DM-LightweightM2M-2013-0003R01-CR_LwM2M_Client_and_Server_Security_Considerations
OMA-DM-LightweightM2M-2013-0006-CR_Security_Mode_in_RessourceInfo_Table

	Draft Version
OMA-TS-LightweightM2M-V1_0-20130206-D
	6 Feb 2013
	
	OMA-DM-LightweightM2M-2013-0004R03-CR_SmartCard_Bootstrap
OMA-DM-LightweightM2M-2013-0005R01-CR_device_object OMA-DM-LightweightM2M-2013-0007-CR_Object_Instance_Modification

	Draft Version
OMA-TS-LightweightM2M-V1_0-20130226-D
	26 Feb 2013
	
	OMA-DM-LightweightM2M-2013-0002R04-CR_Adding_Creatable_Object
OMA-DM-LightweightM2M-2013-0008R02-CR_Improvement_to_the_JSON_format_for_IETF_alignment
OMA-DM-LightweightM2M-2013-0013R01-CR_LWM2M_Version_CoAP_Option
OMA-DM-LightweightM2M-2013-0014R01-CR_Data_Format_Negotiation
OMA-DM-LightweightM2M-2013-0015R02-CR_Notification_Aggregation_and_Reporting
OMA-DM-LightweightM2M-2013-0016R03-CR_Connectivity
OMA-DM-LightweightM2M-2013-0019R01-CR_SmartCard_Bootstrap_Appendix
OMA-DM-LightweightM2M-2013-0020-CR_Response_Code

	Draft Version
OMA-TS-LightweightM2M-V1_0-20130301-D
	01 Mar 2013
	
	OMA-DM-LightweightM2M-2013-0011R03-CR_Failure_indication_for_firmware_object
OMA-DM-LightweightM2M-2013-0022R03-CR_TLV_Tags
OMA-DM-LightweightM2M-2013-0023R01-CR_location_object

	Draft Version
OMA-TS-LightweightM2M-V1_0-20130314-D
	14 Mar 2013
	
	OMA-DM-LightweightM2M-2012-0116R03-CR_Bootstrap_Interface_Chapter_Modification
OMA-DM-LightweightM2M-2013-0018R01-CR_Bootstrap_Interface_Transport_Binding
OMA-DM-LightweightM2M-2013-0024R04-CR_Time_Resource
OMA-DM-LightweightM2M-2013-0026R05-CR_Erro_Code
OMA-DM-LightweightM2M-2013-0027R01-CR_Delete_Object_Instance
OMA-DM-LightweightM2M-2013-0028R01-CR_Location_objet_speed_direction

	Draft Version
OMA-TS-LightweightM2M-V1_0-20130409-D
	09 Apr 2013
	
	OMA-DM-LightweightM2M-2013-0047R02-CR_major_TS_cleanup
OMA-DM-LightweightM2M-2013-0029R01-CR_Server_Object_Instance_Deletion
OMA-DM-LightweightM2M-2013-0030R01-CR_Registration_Update
OMA-DM-LightweightM2M-2013-0032-CR_Read_Operation_Update
OMA-DM-LightweightM2M-2013-0044R01-CR_Response_Code_Update
OMA-DM-LightweightM2M-2013-0034R01-CR_Device_Object_Update
OMA-DM-LightweightM2M-2013-0035R01-CR_Bootstrap_Interface_Update
OMA-DM-LightweightM2M-2013-0037R01-CR_Access_Control_Update
OMA-DM-LightweightM2M-2013-0038R02-CR_Firmware_Object_Update
OMA-DM-LightweightM2M-2013-0039-CR_Moving_Response_Code_Chapter

	Draft Version
OMA-TS-LightweightM2M-V1_0-20130412-D
	12 Apr 2013
	
	OMA-DM-LightweightM2M-2013-0054R02-CR_Bootstrap_Process_Update
OMA-DM-LightweightM2M-2013-0051-CR_certificate_definition
OMA-DM-LightweightM2M-2013-0052-CR_root_resource
OMA-DM-LightweightM2M-2013-0053R01-CR_connectivity_object_update
OMA-DM-LightweightM2M-2013-0050-CR_object_template_and_datatypes
OMA-DM-LightweightM2M-2013-0036R02-CR_Information_Reporting_Update
OMA-DM-LightweightM2M-2013-0049R01-CR_queue_mode

	Draft Version
OMA-TS-LightweightM2M-V1_0-20130522-D
	22 May 2013
	
	OMA-DM-LightweightM2M-2013-0062R01-CR_TS_Editorial_streamlining
OMA-DM-LightweightM2M-2013-0041R02-CR_Update_Error_Code
OMA-DM-LightweightM2M-2013-0048R03-CR_Statistician_Object
OMA-DM-LightweightM2M-2013-0055R01-CR_Cancel_Observation
OMA-DM-LightweightM2M-2013-0056R01-CR_TLV_update
OMA-DM-LightweightM2M-2013-0057-CR_SMS_trigger
OMA-DM-LightweightM2M-2013-0058R06-CR_Security_key_formats
OMA-DM-LightweightM2M-2013-0059-CR_Adding_Create_Operation_Example
OMA-DM-LightweightM2M-2013-0061R01-CR_Adding_Access_Control_Example
OMA-DM-LightweightM2M-2013-0063R01-CR_Reserved_Resource_ID_Space
OMA-DM-LightweightM2M-2013-0064-CR_Update_Server_Deletion

Plus editorial changes done by the editor

[bookmark: _Toc357006268]Data Types
This section defines the data types that a Resource can be defined to be.
Data Type
Description
Text Format
TLV Format
String
A UTF-8 string, the minimum and/or maximum length of the String MAY be defined.
Represented as a UTF-8 string.
Represented as a UTF-8 string of Length bytes.
Integer
An 8, 16, 32 or 64-bit signed integer. The valid range of the value for a resource SHOULD be defined. This data type is also used for the purpose of enumeration.
Represented as an ASCII signed integer.
Represented as a binary signed integer, where the first (most significant) bit is 0 for a positive integer and 1 for a negative integer. The value may be 1 (8-bit), 2 (16-bit), 4 (32-bit) or 8 (64-bit) bytes long as indicated by the Length field.
Float
A 32 or 64-bit floating point value. The valid range of the value for a resource SHOULD be defined.
Represented as an ASCII signed decimal.
Represented as an IEEE 754-2008 [REF] binary floating point value. The value may use the binary32 (4 byte Length) or binary64 (8 byte Length) format as indicated by the Length field.
Boolean
A boolean with the value 0 for False and the value 1 for True.
Represented as the ASCII value 0 or 1.
Represented as the binary value 0 for False, or the binary value 1 for True. The Length of a Boolean value MUST always be 1.
Opaque
A sequence of binary octets, the minimum and/or maximum length of the String MAY be defined.

Represented as a sequence of binary data of Length bytes.
Time
Unix Time. A 64-bit signed Integer representing the number of seconds since Jan 1st, 1970 in the UTC time zone.
Represented as an ASCII integer.
Same representation as Integer. If the time value fits into a 32-bit Integer, this Length MAY be used to represent the value.

REF = IEEE Computer Society (August 29, 2008). IEEE Standard for Floating-Point Arithmetic. IEEE. doi:10.1109/IEEESTD.2008.4610935. ISBN 978-0-7381-5753-5. IEEE Std 754-2008

[bookmark: _Toc357006269]LWM2M Object Template and Guidelines (Informative)

This Appendix provides the template to be used for the specification of LWM2M objects. Furthermore, guidelines for the creation of LWM2M objects are provided.
[bookmark: _Toc357006270]Object Template
Appendix D.x	 LWM2M Object: <LWM2M object name>
Decription:

Object info:

	Object
	Object ID
	Object URN
	Multiple Instances?

	Object Name
	16-bit Unsigned Integer
	urn:oma:lwm2m:{oma,ext,x}:{Object ID}
	Yes/No

Resource info:

	Resource Name
	Resource ID
	Operations
	Multiple
Instances?
	Mandatory?
	Type
	Range or Enumeration
	Units
	Description

	Resource Name
	0
	R (Read),
W (Write),
E (Execute)
	Yes/No
	Yes/No
	String,
Integer,
Decimal,
Boolean,
Binary,
Time
	If any
	If any
	Description

[bookmark: _Toc357006271]OMNA Guidelines
This section defines guidelines for OMNA regarding registries and protocol ID ranges to be maintained.
[bookmark: _Toc357006272]Object Registry
LWM2M objects must be registered with the OMNA Lightweight Object registry. There are three classes of Objects in which an Object can be registered:
· OMA Objects (oma label) – Objects defined by the Open Mobile Alliance.
· 3rd Party SDO Objects (ext label) – Objects defined by a 3rd party SDO.
· Vendor Specific Objects (x label) – Objects defined by a vendor or individual, such an object may be either private (no DDF or Specification made available) or public.
Each one of these classes is assigned a range of IDs by OMNA.
The URN format for an Object is automatically built from the class of Object and the Object ID as follows:
urn:oma:lwm2m:{oma,ext,x}:{Object ID}

[bookmark: _Toc357006273]Resource Registry
LWM2M Objects are specified as being composed of Resources, each identified by a Resource ID. Resources can either be specific to each Object with meaning only when used in that Object, or Reusable Resources can be registered, assigned an ID from the OMNA range and re-used in any Object. The following Resource ID ranges are defined:
· Object specific Resource ID range – Defined by the Object specification.
· Reusable Resource ID range – Registered by an Object Specification, with the Resource ID assigned by OMNA. Defined in any Object specification. Resources from this Resource ID range can be re-used in any Object.
· Reserved range – Range or Resource IDs reserved for future use.
A Reusable Resource ID registration entry MUST define the Resource Name, Resource ID (assigned by OMNA), Access Type, Data Type, Range or Enumeration, Units and Description of the Resource.

[bookmark: _Toc357006274]LWM2M Objects defined by OMA (Normative)
This Appendix provides LWM2M Objects defined by OMA. Other organizations and companies may define additional LWM2M according to the guidelines and template provided in Annex B
The following LWM2M objects have been defined by OMA
· LWM2M Server
· Access Control
· Device
· Connectivity
· Firmware
· Location
· Connectivity Statistics

[bookmark: _Toc357006275]LWM2M Object: LWM2M Server
Description: This LWM2M objects provides the data related to a LWM2M server, the initial access rights, and security related data.

Object Info:

	Object
	Object ID
	Object URN
	Multiple Instances?

	LWM2M Server
	1
	
	Yes

Resource Info:

	Resource Name
	Resource ID
	Access Type
	Multiple
Instances?
	Mandatory?
	Type
	Range or Enumeration
	Units
	Descriptions

	LWM2M Server URI
	0
	R, W
	No
	
	String

	0 – 255 bytes
	-
	Uniquely identifies the LWM2M Server, and is in the form:
“coaps://host:port”, where host is an IP address or FQDN, and port is the UDP port of the Server.

	Lifetime
	1
	R, W
	No
	
	Integer
	32-bit
	s
	Specify the lifetime of the registration in seconds.

	Security Mode
	2
	R
	No
	
	Integer
	8-bit
	-
	Determines which security mode of DTLS is used
0: Pre-Shared Key mode
1: Raw Public Key mode
2: Certificate mode

	Public Key or Identity
	3
	R
	No
	
	Opaque
	Variable
	-
	Stores the Certificate (Certificate mode), public key (RPK mode) or PSK Identity (PSK mode). The format is defined in Section D.1.1.

	Secret Key
	4
	
	No
	
	Opaque
	Variable
	-
	Stores the secret key or private key of the security mode. The format of the keying material is defined by the security mode in Section D.1.1. This resource MUST only be changed by a bootstrap server and MUST NOT be readable by any server.

	Short Server ID
	5
	R
	No
	
	Integer
	Unsigned 8-bit
	-
	Short integer ID, assigned by the LWM2M Client. This identifier uniquely identifies each LWM2M Server configured for the LWM2M Client.
default Short Server ID (i.e. 0) MUST not be used for identifying the LWM2M Server

	Default Minimum Period
	6
	R, W
	No
	
	Integer
	Unsigned 16-bit
	s
	The default value the Client should use for the Minimum Period of an Observation in the absence of this parameter being included in an Observation.
If this Resource doesn’t exist, the default value is 1.

	Default Maximum Period
	7
	R, W
	No
	
	Integer
	Unsigned 16-bit
	s
	The default value the Client should use for the Maximum Period of an Observation in the absence of this parameter being included in an Observation.

	Disable
	8
	E
	No
	
	
	
	
	If this Resource is executed, this LWM2M Server Object is disabled for a certain period defined in the Disabled Timeout Resource. In this period, the LWM2M Client MUST NOT send any message to the Server and ignore all the messages from the Server. When disabled, Client MUST perform de-registration process and underlying network connection between the Client and Server MUST be disconnected.

	DisableTimeout
	9
	R, W
	No
	
	Integer
	Unsigned 32-bit
	s
	A period to disable the Server. After this period, the LWM2M Client MUST perform registration process to the Server. If this Resource is not set, a default timeout value is 86400 (1 day).

	Notification Storing When Disabled or Offline
	10
	R, W
	NO
	
	Boolean
	1-bit
	
	If true, the LWM2M Client stores Observe Notifications to the LWM2M Server while the LWM2M Server account is disabled or the Client is offline. After the LWM2M Server account is enabled or the Client is online, the LWM2M Client reports the stored Notifications to the Server.
If false, the LWM2M Client discards all the Observe Notifications or temporally disables the Observe function while the LWM2M Server is disabled or the Client is offline.
The default value is true.
The maximum number of storing Notification per the Server is up to the implementation.

	Binding Preference
	11
	R, W
	No
	
	Integer
	0-3
	
	This Resource defines the transport binding and mode preferred by the Client for this Server.
0: UDP
1: UDP with Queue Mode
2: SMS
3: SMS with Queue Mode

	Registration Update Trigger
	12
	E
	No
	
	
	
	
	If this resource is executed the LWM2M Client SHALL perform a registration update with this LWM2M Server using the transport binding and mode set in Binding Preference.

[bookmark: _Ref229549801][bookmark: _Toc357006276]Security Key Resource Format
This section defines the format of the Secret Key and Public Key and Identity resources of the LWM2M Server and LWM2M Bootstrap Objects. These resources are used to configure the security mode and keying material that a Client uses with a particular Server. The Objects are configured on the Client using one of the Bootstrap mechanisms described in Section 5.1. The use of this keying material for each security mode is defined in Section 7.1.

Pre-Shared Key (PSK) Mode
The PSK is a binary shared secret key between the Client and Server of the appropriate length for the Cipher Suite used [RFC4279]. This key is composed of a suqeuence of binary bytes in the Secret Key resource. The default PSK Cipher Suites defined in this specification use a 128-bit AES key. Thus this key would be represented in 16 bytes in the Secret Key Resource.
The corresponding PSK Identity for this PSK is stored in the Public Key or Identity resource. The PSK Identity is simply stored as a UTF-8 String as per [RFC4279]. Clients and Servers MUST support a PSK Identity of at least 128 bytes in length as required by [RFC4279].

Raw-Public Key (RPK) Mode
The raw-public key mode requires a public key and a private key of the appropriate type and length for the Cipher Suite used. These keys are carried as a sequence of binary bytes with the public key stored in the Public Key or Identity Resource, and the private key stored in the Secret Key Resource. The default RPK Cipher Suites defines in this specification use a 256-bit ECC key. Thus the Certificate Resource would contain a 32 byte public key and the Secret Key Resource a 32 byte private key.

Certificate Mode
The Certificate mode requires an X.509v3 Certificate along with a matching private key. The private key is stored in the Secret Key Resource as in RPK mode. The Certificate is simply represented as binary X.509v3 in the value of the Public Key or Identity Resource.

[bookmark: _Toc357006277]Unbootstrapping
If a Server Object Instance is to be deleted, some related resources and configurations need to be deleted or modified. Therefore when Delete operation is sent to a Server Object Instance and Delete operation is authorized, the Client MUST proceed following procedure.
1. If there is an Object Instance that can be accessed only by a Server of the Server Object Instance (i.e., the Server is Access Control Owner and there is only one ACL Resource Instance for the Server in an Access Control Object Instance), the Object Instance and the corresponding the Access Control Object Instance MUST be deleted
2. If an Object Instance can be accessed by multiple Servers including the Server, then
· An ACL Resource Instance for the Server in Access Control Object Instance for the Object Instance MUST be deleted
· If the Server is Access Control Owner of the Access Control Object Instance, then the Access Control Owner MUST be changed to another Server according to below rules:
The Client MUST choose the Server who has highest sum of each number assigned to an access right (Write: 1, Delete: 1) for the Access Control Owner. If some Servers get the same with the highest, the Client MUST choose one of them for the Access Control Owner
3. Observation from the Server MUST be deleted
4. the Server Object Instance MUST be deleted
5. Client MUST send de-registration message to the Server
Note: To monitor the change of Access Control Owner, the Server MAY observe Access Control Owner Resource.

[bookmark: _GoBack]

[bookmark: _Toc357006278]LWM2M Object: Access Control
Description: Access Control Object is used to check whether the LWM2M Server has access right for performing an operation. Each Access Control Object Instance contains ACL for a certain Object Instance.

Object Info:

	Object
	Object ID
	Object URN
	Multiple Instances?

	Access Control
	2
	
	Yes

Resource Info:

	Resource Name
	Resource ID
	Access Type
	Multiple
Instances?
	Mandatory?
	Type
	Range or Enumeration
	Units
	Descriptions

	Object ID
	0
	R, W
	NO
	
	Unsigned Integer
	16-bit
	-
	See Table 3. The Object ID and The Object Instance ID are applied for

	Object Instance ID
	1
	R, W
	NO
	
	Unsigned Integer
	8-bit
	-
	See Table 3.

	ACL
	2
	R, W
	YES
	
	Binary
	8-bit
	-
	Resource Instance ID MUST be the same with Short Server ID of a certain LWM2M Server which has an access right.
Resource Instance ID 0 is for default Short Server ID.
Value corresponding to the Resource Instance ID is 1 byte access right value specified as below.
1st lsb: Read
2nd lsb: Write
3rd lsb: Execute
4th lsb: Create
5th lsb: Delete
Other bits are reserved for future use

	Access Control Owner
	3
	R, W
	NO
	
	Unsigned Integer
	8-bit
	-
	Short Server ID of a certain LWM2M Server. This LWM2M Server only can manage these Resources of the Object Instance.

[bookmark: _Toc357006279]Object Instance Consideration
This Object MUST be instantiated in two cases:

	Case 1: Object Instance for authorizing
Read, Write, Execute and Delete operation
	Case 2: Object Instance for authorizing
Create operation

	The Object Instance MUST be used for authorizing Read, Write, Execute and Delete operation.
In this case, Object ID, Object Instance ID, ACL, and Access Control Owner Resource MUST be specified.
Access right for Create operation in the Object Instance MUST be ignored.
This Object Instance MUST be managed by Access Control Owner.
	The Object Instance MUST be used for authorizing Create operation.
In this case, Only Object ID and ACL MUST be specified and the other Resources MUST NOT be specified.
Access right except for Create operation MUST be ignored.
This Object Instance MUST be managed by Bootstrap interface.

[bookmark: _Toc357006280]LWM2M Object: Device
Description: This LWM2M Object provides a range of device related information which can be queried by the LWM2M Server, and a device reboot and factory reset function.

Object info:

	Object
	Object ID
	Object URN
	Multiple Instances?

	Device
	3
	
	No

Resource Info:

	Resource Name
	Resource ID
	Access Type
	Multiple
Instances?
	Mandatory?
	Type
	Range or Enumeration
	Units
	Descriptions

	Manufacturer
	0
	R
	No
	
	String

	
	-
	Human readable manufacturer name

	Model Number
	1
	R
	No
	
	String
	
	-
	A model identifier (manufacturer specified string)

	Serial Number
	2
	R
	No
	
	String
	
	-
	Serial Number

	Firmware version
	3
	R
	No
	
	String
	
	-
	Current firmware version

	Reboot
	4
	E
	No
	
	-
	
	-
	Reboot the device to restore the Device from unexpected firmware failure.

	Factory reset
	5
	E
	No
	
	-
	
	-
	Perform factory reset of the device to make the Device have the same configuration as at the initial deployment.
When this Resource is executed, De-registration message MAY be sent to the Servers before factory reset of the LWM2M Device

	Power source status
	6
	R
	No
	
	Integer
	0-1
	
	0=power connected
1=running on battery

	Battery level
	7
	R
	Yes
	
	Integer
	0-100
	-
	Contains the current battery level as a percentage (with a range from 0 to 100). This value is only valid when the value of Power source status is 1.

	Memory free
	8
	R
	No
	
	Integer
	
	-
	Estimated current available amount of storage space which can store data and software in the device (expressed in kilobytes).

	Error code
	9
	R
	Yes
	
	Integer
	
	
	0=No error
1=Low battery power
2=External power supply off
3=GPS module failure
4=Low received signal strength
5=Out of memory
6=SMS failure
7=IP connectivity failure
8=Peripheral malfunction

When the single device object instance is initiated, there is only one error code Resource instance whose value equal to 0 that means no error. When the first error happens, LWM2M Client changes error code Resource instance to any non-zero value to indicate the error type. When any other error happens, a new error code Resource instance is created.
This error code Resource MAY be observed by a LWM2M server. If any new error code instance is created, a Notify message should be send to LWM2M Server. How to deal with client’s error report depends on the policy of server.

	Reset Error Code
	10
	E
	No
	
	-
	-
	-
	Delete all error code Resource instances and create only one zero-value error code that implies no error.

	Current Time
	11
	R,W
	No
	
	Integer
	64bits
unsigned integer
	
	Current UNIX time of the client.
The LWM2M Client should be responsible to increase this time value as every second elapses.
LWM2M server is able to write this Resource to make the client synchronized with a server.

	Time Zone
	12
	R, W
	No
	
	Decimal
	
	
	Indicates which time zone the LWM2M Device located. GMT+X, where X is the value this Resource in hours.

[bookmark: _Toc357006281]LWM2M Object: Connectivity Monitoring
Description: This LWM2M objects enables monitoring of parameters related to network connectivity.
In this general Connectivity Object, the Resources are limited to the most general cases common to most network bearers. It is recommended to read the description, which refers to relevant standard development organizations (e.g. 3GPP, IEEE).
The goal of the connectivity object is to carry information reflecting the more up to date values of the current connection for monitoring purposes. Resources such as signal quality, signal level; cell id are retrieved during connected mode at least for cellular networks.
Object info:

	Object
	Object ID
	Object URN
	Multiple Instances?

	Connectivity
Monitoring
	4
	
	No

Resource Info:

	Resource Name
	Resource ID
	Access Type
	Multiple
Instances?
	Mandatory?
	Type
	Range or Enumeration
	Units
	Descriptions

	Network Bearer
	0
	R
	No
	
	Integer
	8-bit
	-
	Indicates the current underlying network bearer among the below network bearer list.
0~20 are Cellular Bearers
0: GSM cellular network
1: TD-SCDMA cellular network
2: WCDMA cellular network
3: CDMA2000 cellular network
4: WiMAX cellular network
5: LTE-TDD cellular network
6: LTE-FDD cellular network
7~20: Reserved for other type cellular network
21~40 are Wireless Bearers
21: WLAN network
22: Bluetooth network
23: IEEE 802.15.4 network
24~40: Reserved for other type local wireless network
41~50 are Wireline Bearers
41: Ethernet
42: DSL
43: PLC
44~50: reserved for others type wireline networks.

	Available Network Bearer
	1
	R
	Yes
	
	Integer
	8-bit
	-
	Indicates list of current available network bearer. Each Resource Instance has the value among the network bearer list.

	Radio signal strength
	2
	R
	No
	
	Integer
	
	dBm
	This node contains the average value of the received signal strength indication used in current network bearer in case Network Bearer Resource has Cellular Networks (RXLEV range 0…64) 0 is < 110dBm, 64 is >-48 dBm)
Refers to [3GPP.44018] for more details on Network Measurement Report encoding and [3GPP 45.008] or Wireless Network refers to the appropriate wireless standard.

	
	
	
	
	
	
	
	
	

	Link Quality
	3
	R
	No
	
	Integer
	
	
	This contains received link quality (e.g., LQI for IEEE 802.15.4, (Range (0..255)),
RxQual Downlink (for GSM range is 0…7)
Refers to [3GPP.44018] for more details on Network Measurement Report encoding.

	IP Addresses
	4
	R
	Yes
	
	String
	
	-
	The IP addresses assigned to the connectivity interface. (e.g., IPv4, IPv6, etc.)

	Parent IP Addresses
	5
	R
	Yes
	
	String
	
	-
	The IP address of the next-hop IP router in case Network Bearer Resource has 1(Wireless). (e.g., IPv4, IPv6, etc.)
Note: these IP Addresses doesn’t indicate the Server IP address

	Link Utilization
	6
	R
	No
	
	Integer
	0-100
	%
	The average utilization of the link to the next-hop IP router in % in case Network Bearer Resource has 1(Wireless).

	APN
	7
	R
	Yes
	
	String
	
	-
	Access Point Name in case Network Bearer Resource is a Cellular Network.

	Cell ID
	8
	R
	No
	
	Integer
	
	-
	Serving Cell ID in case Network Bearer Resource is a Cellular Network.
As specified in TS [3GPP 23.003] and in [3GPP. 24.008]. Range (0…65535) in GSM/EDGE
UTRAN Cell ID is 28 bits length
Cell Identity in WCDMA/TD-SCDMA. Range: (0..268435455).
LTE Cell ID. Length is 28 bits
Parameter definitions in [3GPP 25.331].

	SMNC
	9
	R
	No
	
	Integer
	
	-
	Serving Mobile Network Code. In case Network Bearer Resource has 0(cellular network). Range (0…999)
As specified in TS [3GPP 23.003]

	SMCC
	10
	R
	No
	
	Integer
	
	-
	Serving Mobile Country Code. . In case Network Bearer Resource has 0(cellular network). Range (0…999)
As specified in TS [3GPP 23.003]

[bookmark: _Toc357006282]LWM2M Object: Firmware
Description: This LWM2M Object enables FW management of firmware which is to be updated. This Object includes installing firmware package, updating firmware, and performing actions after updating firmware

Object Info:

	Object
	Object ID
	Object URN
	Multiple Instances?

	Firmware
	5
	
	No

Resource Info:

	Resource Name
	Resource ID
	Access Type
	Multiple
Instances?
	Mandatory?
	Type
	Range or Enumeration
	Units
	Descriptions

	Package
	1
	W
	No
	
	Binary
	-
	-
	Firmware package

	Update
	2
	E
	No
	
	-
	-
	-
	Updates firmware by using the firmware package stored in Package
This Resource is only executable when the value of the State Resource is Downloaded.

	State
	3
	R
	No
	
	Unsigned Integer
	
	
	Indicates current state with respect to this firmware update. This value is set by the LWM2M Client.
1: Idle (before downloading or after updating)
2: Downloading (The data sequence is on the way)
3: Downloaded
If writing the firmware package to Package Resource is done, the state changes to Downloaded.
If writing an empty string to Package Resource is done, the state changes to Idle.
If performing the Update Resource failed, the state remains at Downloaded.
If performing the Update Resource was successful, the state changes from Downloaded to Idle.

	UpdateSupportedObjects
	4
	R, W
	No
	
	Boolean
	1-bit
	
	If this value is true, the LWM2M Client MUST inform the registered LWM2M Servers of Objects and Object Instances parameter by sending an Update or Registration message after the firmware update operation at the next practical opportunity if supported Objects in the Client have changed, in order for the Servers to promptly manage newly installed Objects.
If false, Objects and Object Instances parameter MUST be reported at the next periodic Update message.
The default value is false.

	Update
Result
	5
	R
	No
	
	Unsigned Integer
	
	-
	0: Default value. Once the updating process is initiated, this Resource SHOULD be reset to default value.
1: Firmware updated successfully,
2: Not enough storage for the new firmware package.
3. Out of memory during downloading process.
4: Connection lost during downloading process.
5: CRC check failure for new downloaded package.
6: Unsupported package type.

This resource MAY be reported by sending Observe operation.

[bookmark: _Toc357006283]Firmware Update Consideration
If some Objects are not supported after firmware update, the Client MUST delete all the Object Instances of the Objects that are not supported.

[bookmark: _Toc347941175][bookmark: _Toc357006284]LWM2M Object: Location
Description: This LWM2M objects provide a range of device related information which can be queried by the LWM2M server, and a device reboot and factory reset function.

Object info:

	Object
	Object ID
	Object URN
	Multiple Instances?

	Location
	5
	
	No

Resource Info:

	Resource Name
	Resource ID
	Access Type
	Multiple
Instances?
	Mandatory?
	Type
	Range or Enumeration
	Units
	Descriptions

	Latitude
	0
	R
	No
	
	Decimal
	
	Deg
	The decimal notation of latitude, e.g. -43.5723 [World Geodetic System 1984]

	Longitude
	1
	R
	No
	
	Decimal
	
	Deg
	The decimal notation of longitude, e.g. 153.21760 [World Geodetic System 1984]

	Altitude
	2
	R
	No
	
	Decimal
	
	m
	The decimal notation of altitude in meters above sea level.

	Uncertainty
	3
	R
	No
	
	Decimal
	
	m
	The accuracy of the position in meters.

	Velocity
	4
	R
	No
	
	Refers to 3GPP GAD specs
	
	Refers to 3GPP GAD specs
	The velocity of the device as defined in 3GPP 23.032 GAD specification. This set of values may not be available if the device is static.

	Timestamp
	5
	R
	No
	
	Time
	
	
	The timestamp of when the location measurement was performed.

[bookmark: _Toc351033860][bookmark: _Toc357006285]LWM2M Object: Connectivity Statistics
Description: This LWM2M objects enables client to collect statistical information and enables the server to retrieve these information, set the collection duration and reset the statistical parameters.
Object info:

	Object
	Object ID
	Object URN
	Multiple Instances?

	Connectivity Statistics
	6
	
	No

Resource Info:

	Resource Name
	Resource ID
	Access Type
	Multiple
Instances?
	Mandatory?
	Type
	Range or Enumeration
	Units
	Descriptions

	SMS Tx Counter
	0
	R
	No
	
	Integer
	
	
	Indicate the total number of SMS successfully transmitted during the collection period.

	SMS Rx Counter
	1
	R
	No
	
	Integer
	
	
	Indicate the total number of SMS successfully received during the collection period.

	Tx Data
	2
	R
	No
	
	Integer
	
	Kilo-Bytes
	Indicate the total amount of data transmitted during the collection period.

	Rx Data
	3
	R
	No
	
	Integer
	
	Kilo-Bytes
	Indicate the total amount of data received during the collection period.

	Max Message Size
	4
	R
	No
	
	Integer
	
	Byte
	The maximum message size that is used during the collection period.

	Average Message Size
	5
	R
	No
	
	Integer
	
	Byte
	The average message size that is used during the collection period.

	StartOrReset
	6
	E
	No
	
	
	
	
	Start to collect information or reset all other resources to zeros in this object. For example, the first time this resource is executed, the client starts to collect information. The second time this resource is executed, the values of resource 0~5 are reset to 0.

[bookmark: _Toc357006286]Example LWM2M Client (Informative)
This section defines an example LWM2M Client for a simple imaginary device with a Cellular interface including instantiated Objects and their values, which is used throughout this specification in examples. The example device has two Server Objects (it is configured to register with two different LWM2M Servers), two accompanying ACL Objects for those servers, a Device Object and a Connectivity Monitoring Object for a Cellular interface. The first Server controls the access control rights for both servers.

[bookmark: _Toc357006345]Table 21: Object instances of the example
Object
Object ID
Object Instance ID
LWM2M Server Object [1]
1
1
LWM2M Server Object [2]
1
2
Access Control Object [0]
2
0
Access Control Object [1]
2
1
Access Control Object [2]
2
2
Device Object
3
-
Connectivity Monitoring Object
4
-

[bookmark: _Toc357006346]Table 22: LWM2M Server Object [1]
	Resource Name
	Resource ID
	Resource Instance ID
	Value
	Notes

	LWM2M Server URI
	0
	
	coap://server1.example.com
	Example LWM2M server

	Lifetime
	1
	
	86400
	

	Security Mode
	2
	
	0
	PSK mode

	Security Key
	3
	
	-
	

	Short Server ID
	4
	
	1
	

	Default Minimum Period
	5
	
	300
	

	Default Maximum Period
	6
	
	6000
	

	DisableTimeout
	8
	
	86400
	

	Notification Storing When Disabled or Offline
	9
	
	True
	

	Binding Preference
	10
	
	0
	UDP binding preference

[bookmark: _Toc357006347]Table 23: LWM2M Server Object [2]
	Resource Name
	Resource ID
	Resource Instance ID
	Value
	Notes

	LWM2M Server URI
	0
	
	coap://server2.example.com
	Example LWM2M server

	Lifetime
	1
	
	86400
	

	Security Mode
	2
	
	0
	PSK mode

	Security Key
	3
	
	-
	

	Short Server ID
	4
	
	2
	

	Default Minimum Period
	5
	
	60
	

	Default Maximum Period
	6
	
	6000
	

	DisableTimeout
	8
	
	86400
	

	Notification Storing When Disabled or Offline
	9
	
	False
	

	Binding Preference
	10
	
	1
	UDP with Queuing binding preference

[bookmark: _Toc357006348]Table 24: Access Control Object [0] (for the Device Object)
	Resource Name
	Resource ID
	Resource Instance ID
	Value
	Notes

	Object ID
	0
	
	3
	Device Object

	Object Instance ID
	1
	
	-
	

	ACL
	2
	1
	R. W, E
	Server 1 has all access rights. Note that the Resource Instance ID indicates the Server ID.

	ACL
	2
	2
	R
	Server 2 has read-only access rights. Note that the Resource Instance ID indicates the Server ID.

	Access Control Owner
	3
	
	1
	Server 1 controls this Object’s access rights.

[bookmark: _Toc357006349]Table 25: Access Control Object [1] (for the Connectivity Monitoring Object)
	Resource Name
	Resource ID
	Resource Instance ID
	Value
	Notes

	Object ID
	0
	
	4
	Connectivity Monitoring Object

	Object Instance ID
	1
	
	-
	

	ACL
	2
	1
	R
	Server 1 has read-only access rights. Note that the Resource Instance ID indicates the Server ID.

	ACL
	2
	0
	R
	The other Servers except Server 1 have read-only access rights. Note that this Resource Instance ID indicates the default Server ID.

	Access Control Owner
	3
	
	1
	Server 1 controls this Object’s access rights.

[bookmark: _Toc357006350]Table 26: Access Control Object [2] (for the Firmware Object)
	Resource Name
	Resource ID
	Resource Instance ID
	Value
	Notes

	Object ID
	0
	
	5
	Firmware Object

	Object Instance ID
	1
	
	-
	

	ACL
	2
	1
	C
	Server 1 can create Firmware Object Instance

	Access Control Owner
	3
	
	-
	This Object Instance must be managed by Bootstrap Interface

[bookmark: _Toc357006351]Table 27: Device Object
	Resource Name
	Resource ID
	Resource Instance ID
	Value
	Notes

	Manufacturer
	0
	
	Open Mobile Alliance
	

	Model Number
	1
	
	Lightweight M2M Client
	

	Serial Number
	2
	
	345000123
	

	Firmware version
	7
	
	1.0
	

	Power source status
	10
	
	0
	Line power

	Battery level
	11
	
	100
	

	Memory free
	16
	
	15
	15 kB of free memory

	Error code
	18
	
	0
	No errors

	Current Time
	20
	
	1367491215
	May 2nd, 2013 at 11:42 AM GMT

	Time Zone
	21
	
	2
	GMT+2 (CET)

[bookmark: _Toc357006352]Table 28: Connectivity Monitoring Object
	Resource Name
	Resource ID
	Resource Instance ID
	Value
	Notes

	Network Bearer
	0
	
	0
	GSM Bearer

	Available Network Bearer
	1
	
	0
	GSM Bearer

	Radio signal strength
	2
	
	92
	RSSI in dBm

	
	
	
	
	

	Link Quality
	3
	
	2
	RxQual Downlink

	IP Addresses
	4
	
	192.168.0.100
	

	Parent IP Addresses
	5
	
	192.168.1.1
	

	Link Utilization
	6
	
	5
	%

	APN
	7
	
	internet
	

[bookmark: _Ref303177048][bookmark: _Toc314837644][bookmark: _Toc336982053][bookmark: _Toc357006287]Storage of LWM2M Bootstrap Message on the Smartcard (Normative)

This section aims at specifying the storage mechanism of Bootstrap Message on UICC SmartCard platform type [ETSI TS 102.221] activated in 3G mode.
Editor Note : There is no rational to equip LWM2M device with 2G-only Smart Card.

[bookmark: _Toc314837645][bookmark: _Toc336982054][bookmark: _Toc357006288]File structure
The information format is based on [PKCS#15] specification. The Bootstrap Message is located under the PKCS#15 directory allowing the card issuer to decide the identifiers and the file locations. The smartcard operations that are relevant include:
· Application selection
· Cardholder verification
File access (select file, read, write)The [PKCS#15] specification defines a set of files. Within the PKCS#15 application, the starting point to access these files is the Object Directory File (ODF). The EF(ODF) contains pointers to other directory files. These directory files contain information on different types of objects (authentication objects, data objects, etc). For the purpose of Bootstrap Message, EF (ODF) SHALL contain the EF Record describing the DODF-bootstrap. The EF(ODF) is described in section C.3.1 and [PKCS#15].
EF(ODF) contains pointers to one or more Data Object Directory Files (DODF) in priority order (i.e. the first DODF has the highest priority). Each DODF is regarded as the directory of data objects known to the PKCS#15 application. For the purposes of LWM2M bootstrapping, EF(DODF-bootstrap) contains pointer to the Bootstrap Message, namely LWM2M_Bootstrap File. The EF(DODF-bootstrap) is described in section C.3.2 and [PKCS#15].
[bookmark: _Object_Directory_File,]The provisioning files are stored as PKCS#15 opaque data objects.
The support of smartcard Bootstrap Message will be indicated by the presence in the EF DIR (see [ETSI TS 102.221]) of an application template as defined here after.
The RECOMMENDED format of EF(DIR) is a linear fixed record in order to be in line with [ETSI TS 102.221].
EF (DIR) SHALL contain the application template used for a PKCS#15 application as defined in [PKCS#15]. Application template SHALL consist of Application identifier (tag 0x4F) and Path (tag 0x51) information.
The EF(ODF) and EF(DODF-bootstrap) SHALL be used by the Device to determine the path of the LWM2M_Bootstrap file.
UICC SmartCard platforms can support two modes of activation: 2G and 3G. In the context of LWM2M, for Device simplification, UICC SHALL be activated in 3G Mode
UICC smartcard platform activated in a 3G mode has the physical and logical characteristics according to [ETSI TS 102.221]. In that case, smartcard operations for accessing the Bootstrap Message are specified in section C2.

[bookmark: _Access_Method_1][bookmark: _Toc314837652][bookmark: _Toc336982061][bookmark: _Toc357006289]Bootstrap Message on UICC (Activated in 3G Mode)

[bookmark: _WAP_provisioning_data_2][bookmark: _Toc314837653][bookmark: _Ref315802566][bookmark: _Toc336982062][bookmark: _Toc357006290]Access to the file structure
To select the PKCS#15 application, the Device:
· SHALL evaluate the PKCS#15 application template – i.e. PKCS#15 AID - present in the EF (DIR),
· SHALL open a logical channel using UICC Command MANAGE CHANNEL as specified in [ETSI TS 102.221],
· SHALL select the PKCS#15 ADF using the PKCS#15 AID as parameter of the UICC Command SELECT, using direct application selection as defined in [ETSI TS 102.221].
LWM2M_Bootstrap file will be located under the PKCS#15 ADF.
[bookmark: _Toc314837654][bookmark: _Toc336982063][bookmark: _Toc357006291]Files Overview

[bookmark: _Toc316564344][bookmark: _Toc316564353][bookmark: _Toc336982079][bookmark: _Toc357007836]Figure 20: File structure for Bootstrap Message on 3G UICC
[bookmark: _Access_Method_2][bookmark: _Toc314837655][bookmark: _Toc336982064][bookmark: _Toc357006292]Access Method
UICC Commands Read Binary and Update Binary, as defined in [ETSI TS 102.221], are used to access bootstrap data.

[bookmark: _Toc314837656][bookmark: _Toc336982065][bookmark: _Toc357006293][bookmark: _Ref14062026][bookmark: _Toc14064519][bookmark: _Ref18840974][bookmark: _Toc20227479][bookmark: _Toc314837657][bookmark: _Toc336982066]Access Conditions
The Device is informed of the access conditions of provisioning files by evaluating the “private” and “modifiable” flags in the corresponding DODF-bootstrap files structure.
In the case where one of the above mentioned flag is set, cardholder verification is required. The Device must evaluate the PIN references that must be verified as defined in [ETSI TS 102.221] (ie evaluate FCP)

[bookmark: _Toc357006294]Requirements on the 3G UICC
To retrieve the Bootstrap Message from the 3G UICC, the Device SHALL perform the following steps:
· Select PKCS#15 file structure as specified in F.2.1.
· Read ODF to locate the DODF-bootstrap,
· Read DODF-bootstrap to locate the LWM2M_Bootstrap file,
· Read the LWM2M_Bootstrap file

[bookmark: _Toc470597947][bookmark: _Toc14064508][bookmark: _Ref18816318][bookmark: _Ref18826404][bookmark: _Ref18838600][bookmark: _Toc20227468][bookmark: _Toc314837658][bookmark: _Toc336982067][bookmark: _Toc357006295]Files Description
All files defined are binary files as defined in [ETSI TS 102.221]. These files are read and updated using 3G UICC Commands related to the application they belong to.
[bookmark: _EF_ODF][bookmark: _Ref10622547][bookmark: _Ref10622835][bookmark: _Ref10623302][bookmark: _Ref10624530][bookmark: _Ref14003395][bookmark: _Ref14057598][bookmark: _Toc14064509][bookmark: _Toc20227469][bookmark: _Toc314837659][bookmark: _Toc336982068][bookmark: _Toc357006296]Object Directory File, EF ODF
The mandatory Object Directory File (ODF) ([PKCS#15], section 5.5.1) contains pointers to other EFs, each one containing a directory of PKCS#15 objects of a particular class (e.g. DODF-bootstrap). The File ID is specified in [PKCS#15]. The card issuer decides the file size. The EF (ODF) can be read but it SHALL NOT be modifiable by the user.
The EF (ODF) is described below:

	Identifier: default 0x5031, see [PKCS#15]
	Structure: Binary
	Mandatory

	File size: decided by the card issuer
	Update activity: low

	Access Conditions:
READ	 ALW
	UPDATE	 ADM
	INVALIDATE	 ADM
	REHABILITATE	ADM

	Description

	See [PKCS#15]

[bookmark: _EF_CDF][bookmark: _EF_DODF-prov][bookmark: _Ref10622536][bookmark: _Ref10622827][bookmark: _Ref10623388][bookmark: _Ref14003639][bookmark: _Ref14057660][bookmark: _Toc14064489][bookmark: _Toc20227449][bookmark: _Ref10622526][bookmark: _Ref10622813][bookmark: _Ref10623369][bookmark: _Ref14003650][bookmark: _Ref14057671][bookmark: _Toc14064511][bookmark: _Toc20227471][bookmark: _Toc314837660]
[bookmark: _Toc336982069][bookmark: _Toc357006297]Bootstrap Data Object Directory File, EF DODF-bootstrap
This Data Object Directory File provisioning contains directories of provisioning data objects ([PKCS#15], section 6.7) known to the PKCS#15 application.
The File ID is described in the EF (ODF). The file size depends on the number of provisioning objects stored in the smartcard. Thus, the card issuer decides the file size.

	Identifier: 0x6430, See ODF
	Structure: Binary
	Mandatory

	File size: decided by the card issuer
	Update activity: low

	Access Conditions: READ	 ALW
 or Universal / application / Local PIN (UICC, See section C.2)
	UPDATE	 ADM
	INVALIDATE	 ADM
	REHABILITATE ADM

	Description

	See hereafter and [PKCS#15]

The EF (DODF-bootstrap) SHALL contain information on provisioning objects:
· Readable label describing the provisioning document (CommonObjectAttributes.label). The ME could display this label to the user.
· Flags indicating whether the provisioning document is private (i.e., is protected with a PIN) and/or modifiable (CommonObjectAttributes.flags). The card issuer decides whether or not a file is private (it does not need to be if it does not contain any sensitive information)
· Object identifier indicating a LWM2M boostrap object and the type of the provisioning object (CommonDataObjectAttributes.applicationOID)
· Pointer to the contents of the provisioning document (Path.path)

[bookmark: _EF_Bootstrap][bookmark: _Toc470597948][bookmark: _Ref10622506][bookmark: _Ref10622772][bookmark: _Ref10623422][bookmark: _Ref14056801][bookmark: _Ref14057709][bookmark: _Toc14064512][bookmark: _Toc20227472][bookmark: _Toc314837661][bookmark: _Toc336982070][bookmark: _Toc357006298]EF LWM2M_Bootstrap
Only the card issuer can modify EF LWM2M_Bootstrap
.
	Identifier: See DODF
	Structure: Binary
	Optional

	File size: decided by the card issuer
	Update activity: low

	Access Conditions:
READ ALW
or Universal / application / Local PIN (UICC, See section C.2)
	UPDATE	 ADM
	INVALIDATE	 ADM
	REHABILITATE	 ADM

	Description

	Contains a Bootstrap Message

[bookmark: _Toc84123007][bookmark: _Toc51147390][bookmark: _Toc51149244][bookmark: _Toc357006299]Static Conformance Requirements	(Normative)
The notation used in this appendix is specified in [IOPPROC].
The following is a model of a set of SCR tables. DELETE THIS COMMENT
[bookmark: _Toc84123008][bookmark: _Toc357006300]SCR for XYZ Client
	Item
	Function
	Reference
	Status
	Requirement

	XYZ-C-001
	Something mandatory
	Section x.y
	M
	(XYZ-C-001 OR XYZ-C-003) AND
 XYZ-C-002

	XYZ-C-002
	Something optional
	Section x.y
	O
	

	XYZ-C-003
	Dependencies on ZYX
	Section x.y
	M
	ZYX:MCF

	XYZ-C-004
	Dependencies on ZYX
	Section x.y
	O
	ZYX:OCF

[bookmark: _Toc84123009][bookmark: _Toc357006301]SCR for XYZ Server
	Item
	Function
	Reference
	Status
	Requirement

	XYZ-S-001
	Something mandatory
	Section x.y
	M
	XYZ-S-001 OR XYZ-S-002 OR XYZ-S-003

	XYZ-S-002
	Something optional
	Section x.y
	O
	

	XYZ-S-003
	Dependencies on ZYX
	Section x.y
	M
	ZYX:MSF

	XYZ-S-004
	Dependencies on ZYX
	Section x.y
	O
	ZYX:OSF

[bookmark: _Toc357006302]<Additional Information>
[bookmark: _Toc61141535]If needed, add annex to provide additional information to support the document. In general, this information should be informative, as normative material should be contained in the primary body of the document.
Note that the styles for the headers in the appendix (App1, App2, App3) are different than the main body. The use below is intended to validate the styles to be used. Remove if not needed.
DELETE THIS COMMENT
[bookmark: _Toc357006303]App Headers
<More text>
[bookmark: _Toc61141536][bookmark: _Toc357006304]More Headers
<More text>
Even More Headers
<More text>

[bookmark: FootText1][bookmark: FootText2][bookmark: TemplateName] 2012 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.	[OMA-Template-Spec-20060101-I]
 2012 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.	[OMA-Template-Spec-20060101-I]
image2.png
Client Initiated Bootstrap

<

Server Initiated Bootstrap

-

LWM2M
Bootstrap
Server

image3.png
| Regser Updae Dereger | vz
Clon i

image4.png
Read, Write, Execute,

LWM2M Create, Delete LWM2M
Client Server

image5.png
Lwzm
Client

Observe, Cancel Observation

Notify
P Ny)

Lwizm
Server

image6.png
LwmMm2m

Bootstrap
Server

LwmMm2Mm
Client

Client Initiated Request bootstrap for endpoint name

Bootstrap

Provision Bootstrap Information

image7.png
Lwm2m

Bootstrap
Server

LWM2M
Client

Provision Bootstrap Information Server Initiated
Bootstrap

image8.png
LWM2M LWM2M
Client Server

Register ep=n 4141
Registration egister ep=node3 >

</MN>, </2/1>, </3/11>, </3/2>

Success

Update lifetime=600000
Update >

Success

De-registration
De-register >

Success

image9.png
LWM2M
Client

Read /3/0/0

LWM2M
Server

Success

Open Mobile Alliance

Write /3/0/1

Model X341

Success

Execute /3/0/8

Success

image10.png
LWM2M
Server

Create /2
«+
Success - Location: /2/3
>
Create /2/4
<
Success - Location: /2/4
>
Delete /2/3
«+
Success
>

image11.png
LWM2M LWM2M
Client Server

Create /2
<
Success - Location: /2/3 .
Delete /2/3
<
Success
>

image12.png
LWM2M LWM2M
Client Server

Observe /21/4/3

Success

223

Notify

22.7

Notify

31.0

image13.png
LWM2M
Client

Os

New Value ———»

10s

New Value 50 s (40 s)

110 s (60 s)

Observe /21/4/3

LWM2M
Server

A

Success

\

223

Notify

22.7

Notify

\

31.0

Notify

\/

31.0

\/

Observe Temperature

image14.png
LWM2M LWM2M
Client Server

Observe /21/4/3 Min=10, Max=60
Observe Temperature
Success
O0s >
22.3
New Value ———»
Notif
10s y >
22.7
Notify
New Value 50 s (40 s) >
31.0
Notify
110 s (60 s) >
31.0

image15.png
LWM2M Client

Object 0
Resource 1
Resource 2

Resource 3

Resource 4 II

Object 1
Resource 1
Resource 2

Resource 3

Resource 4

image16.png
LWM2M Client

Object 0, Instance 0

Resource 1

R,W,E

Resource 2

R

ACL

image17.png
LWM2M
Client

POST/rd?ep=node34141

LWM2M
Server

Registration

</MN>, </2/1>, </3/11>, </3/2>
2.01 Created Location: /rd/5a3f

Update

PUT /rd/5a3f?1t=600000

2.04 Changed

DELETE /rd/5a3f

De-register

2.02 Deleted

image18.png
LWM2M
Client

Client Initiated

POST /bs?ep=node34141

LWM2M

Bootstrap
Server

Bootstrap 2.03 Valid g
- .
PUT /1/0
-
{Server Object Instance}
PUT /2/0
-

{ACL Object Instance}

image19.png
LWM2M
Client

PUT /1/0

LWM2M

Bootstrap
Server

Server Initiated

{Server Object Instance}

PUT /2/0

Bootstrap

{ACL Object Instance}

image20.png
LWM2M
Client

GET /3/1/0

LWM2M
Server

2.05 Content

Read

Open Mobile Alliance

PUT /3/1/1

Write

Model X341
2.04 Changed

POST /2/1/5

Execute

2.04 Changed

image21.png
LWM2M LwWM2M
Client Server

GET /21/4/3 Observe
< Observe

2.05 Content Observe: 0

223

. 2.04 Changed Observe: 1
Notify >
227

2.04 Changed Observe: 1
Notify >
31.0

GET /21/4/3 Cancel
Observation

2.05 Content
321

image22.emf
LWM2M

Server

PUT / 5a3f

2.04 Changed

Body: Success,

GET / 2/0

2.05 Content

Re-registration

POST/ rd?ep=node34141&q

</1>, </2>, </3>,

2.04 Changed /5a3f

Registration with

Queue Mode

indication

LWM2M Server waits for

LWM2M Client to

go on-line. During waiting

time LWM2M Server

creates a queuing

Write request

LWM2M Server fetches

1st queued request

and sends it to LWM2M

Client

Device turns into

sleeping mode

Device turns

into sleeping

mode

Device wakes up

and informs

LWM2M Server

LWM2M Server has an

empty request queue

LWM2M

Client

2.04 Changed

LWM2M Server fetches

Next queued request

and sends it to LWM2M

Client

Body: Enabled

PUT / 2/0

Body: Disabled

oleObject1.bin

LWM2M

Server

PUT / 5a3f

2.04 Changed

Body: Success,

GET / 2/0

2.05 Content

Re-registration

POST/ rd?ep=node34141&q

</1>, </2>, </3>,

2.04 Changed /5a3f

Registration with

Queue Mode

indication

LWM2M Server waits for LWM2M Client to

go on-line. During waiting

time LWM2M Server

creates a queuing

Write request

LWM2M Server fetches

1st queued request

and sends it to LWM2M

Client

Device turns into sleeping mode

Device turns into sleeping mode

Device wakes up and informs LWM2M Server

LWM2M Server has an

empty request queue

LWM2M

Client

2.04 Changed

LWM2M Server fetches

Next queued request

and sends it to LWM2M

Client

Body: Enabled

PUT / 2/0

Body: Disabled

image23.emf
LWM2M

Client

LWM2M

Server

PUT / 5a3f

2.04 Changed

GET /3/1 Observe

2.05 Content Observe: 0

Body: 22.5

Re-registration

POST/ rd?ep=node34141&q

</1>, </2>, </3>,

2.04 Changed /5a3f

Registration with

Queue Mode

indication

LWM2M Server waits for LWM2M

Client to go on-line. During waiting

time LWM2M Server creates a

queuing Write request

LWM2M Server fetches

queued request reporting

and sends to LWM2M

Client

Device turns

into sleeping

mode

Device turns

into sleeping

mode

Device wakes

up and informs

LWM2M Server

LWM2M Server has an

empty request queue

PUT / 5a3f

2.04 Changed

Re-registration

Device wakes

up and informs

LWM2M Server

2.05 Content Observe: 1

Body: 22.9

LWM2M Server receives

notification.

Device turns

into sleeping

mode

An Observe

request triggers

device to send

notification

oleObject2.bin

LWM2M

Client

LWM2M

Server

PUT / 5a3f

2.04 Changed

GET /3/1 Observe

2.05 Content Observe: 0

Body: 22.5

Re-registration

POST/ rd?ep=node34141&q

</1>, </2>, </3>,

2.04 Changed /5a3f

Registration with

Queue Mode

indication

LWM2M Server waits for LWM2M

Client to go on-line. During waiting

time LWM2M Server creates a

queuing Write request

LWM2M Server fetches

queued request reporting

and sends to LWM2M

Client

Device turns into sleeping mode

Device turns into sleeping mode

Device wakes up and informs LWM2M Server

LWM2M Server has an

empty request queue

PUT / 5a3f

2.04 Changed

Re-registration

Device wakes up and informs LWM2M Server

2.05 Content Observe: 1

Body: 22.9

LWM2M Server receives

notification.

Device turns into sleeping mode

An Observe request triggers device to send notification

image24.emf
LWM2M

Server

PUT / 5a3f

2.04 Changed

Body: Success,

GET / 2/0

2.05 Content

Re-registration

(UDP transport)

POST/ rd?ep=node34141&qSMS=%2B12345678

</1>, </2>, </3>,

2.04 Changed /5a3f

Registration with

Queue Mode

Indication (UDP transport)

LWM2M Server requests a

registration update beforre end of

the lifetime (SMS transport)

LWM2M Server fetches

1st queued request

and sends it to LWM2M

Client (UDP transport)

Device is idle and

reachable by

SMS

Device sends a

Registration

Update to the

LWM2M Server

LWM2M Server has an

empty request queue

LWM2M

Client

2.04 Changed

LWM2M Server fetches

Next queued request

and sends it to LWM2M

Client (UDP transport)

Body: Enabled

PUT / 2/0

Body: Disabled

2.04 Changed

POST / 0/10

Device is idle and

reachable by

SMS

oleObject3.bin

LWM2M

Server

PUT / 5a3f

2.04 Changed

Body: Success,

GET / 2/0

2.05 Content

Re-registration

 (UDP transport)

POST/ rd?ep=node34141&qSMS=%2B12345678

</1>, </2>, </3>,

2.04 Changed /5a3f

Registration with

Queue Mode

Indication (UDP transport)

LWM2M Server requests a registration update beforre end of the lifetime (SMS transport)

LWM2M Server fetches

1st queued request

and sends it to LWM2M

Client (UDP transport)

Device is idle and reachable by SMS

Device sends a Registration Update to the LWM2M Server

LWM2M Server has an

empty request queue

LWM2M

Client

2.04 Changed

LWM2M Server fetches

Next queued request

and sends it to LWM2M

Client (UDP transport)

Body: Enabled

PUT / 2/0

Body: Disabled

2.04 Changed

POST / 0/10

Device is idle and reachable by SMS

image25.wmf

MF

‘3F00’

DF

-

Telecom

‘7F10’

EFDIR

‘2F00’

ADF

USIM

ADF

PKCS#15

EF ODF

EF DODF

-

bootstrap

EF

LWM2M

_Bootstrap

oleObject4.bin

MF

‘3F00’

DF-

Telecom

‘7F10’

EFDIR

‘2F00’

ADF

USIM

ADF

PKCS#15

EF ODF

EF DODF-

bootstrap

EF

 LWM2M_Bootstrap

image1.jpeg
«“+OMa

Open Mobile Alliance

