OMA-TS-LightweightM2M-V1_0-20130980428-D	Page 90 V(100)
	[image: oma]
	

	Lightweight Machine to Machine
Technical Specification

	Draft Version 1.0 – 0428 August September 2013

	Open Mobile Alliance

	OMA-TS-LightweightM2M-V1_0-20130980428-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.
Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.
You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.
Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.
NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.
THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.
© 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents
1.	Scope	7
2.	References	8
2.1	Normative References	8
2.2	Informative References	8
3.	Terminology and Conventions	10
3.1	Conventions	10
3.2	Definitions	10
3.3	Abbreviations	10
4.	Introduction	11
4.1	Version 1.0	11
5.	Interfaces	13
5.1	Bootstrap Interface	14
5.1.1	Bootstrap Information	15
5.1.2	Bootstrap Modes	15
5.1.3	Bootstrap Sequence	18
5.1.4	Bootstrap Security	18
5.2	Device Registration Interface	19
5.2.1	Register	19
5.2.2	Update	22
5.2.3	De-register	22
5.3	Device Management & Service Enablement Interface	23
5.3.1	Read	25
5.3.2	Discover	25
5.3.3	Write	26
5.3.4	Write Attributes	26
5.3.5	Execute	27
5.3.6	Create	27
5.3.7	Delete	28
5.4	Information Reporting Interface	28
5.4.1	Observe	29
5.4.2	Notify	30
5.4.3	Cancel Observation	31
6.	Identifiers and Resources	33
6.1	Resource Model	33
6.2	Identifiers	34
6.2.1	Endpoint Client Name	35
6.2.2	Reusable Resources	36
6.3	Data Formats for Transferring Resource Information	36
6.3.1	Plain Text	36
6.3.2	Opaque	36
6.3.3	TLV	37
6.3.4	JSON	40
7.	Security	42
7.1	UDP Channel Security	42
7.1.1	Pre-Shared Keys	43
7.1.2	Raw Public Key Certificates	44
7.1.3	X.509 Certificates	44
7.1.4	“NoSec” mode	46
7.2	Access Control	46
7.2.1	Access Control Object	46
7.2.2	Authorization	48
8.	Transport Layer Binding and Encodings	52
8.1	Required Features	52
8.2	URI Identifier & Operation Mapping	52
8.2.1	Firewall/NAT	52
8.2.2	Registration Interface	53
8.2.3	Bootstrap Interface	54
8.2.4	Device Management & Service Enablement Interface	55
8.2.5	Information Reporting Interface	57
8.3	Queue Mode Operation	58
8.4	Response Codes	61
8.5	Transport Bindings	63
8.5.1	UDP Binding	63
8.5.2	SMS Binding	63
Appendix A.	Change History (Informative)	64
A.1	Approved Version History	64
A.2	Draft/Candidate Version <current version> History	64
Appendix B.	Data Types	67
Appendix C.	LWM2M Object Template and Guidelines (Informative)	68
C.1	Object Template	68
C.2	OMNA Guidelines	69
C.2.1	Object Registry	69
C.2.2	Resource Registry	69
Appendix D.	LWM2M Objects defined by OMA (Normative)	71
D.1	LWM2M Object: LWM2M Server Access Security	72
D.1.1	Security Key Resource Format	73
D.1.2	Unbootstrapping	74
D.2	LWM2M Object: LWM2M Server	75
D.3	LWM2M Object: Access Control	77
D.4	LWM2M Object: Device	78
D.5	LWM2M Object: Connectivity Monitoring	81
D.6	LWM2M Object: Firmware	83
D.6.1	Firmware Update Consideration	84
D.7	LWM2M Object: Location	85
D.8	LWM2M Object: Connectivity Statistics	86
Appendix E.	Example LWM2M Client (Informative)	87
Appendix F.	Storage of LWM2M Bootstrap Information on the Smartcard (Normative)	92
F.1	File structure	92
F.2	Bootstrap Information on UICC (Activated in 3G Mode)	92
F.2.1	Access to the file structure	92
F.2.2	Files Overview	93
F.2.3	Access Method	93
F.2.4	Access Conditions	93
F.2.5	Requirements on the 3G UICC	93
F.3	Files Description	94
F.3.1	Object Directory File, EF ODF	94
F.3.2	Bootstrap Data Object Directory File, EF DODF-bootstrap	94
F.3.3	EF LWM2M_Bootstrap	95
Appendix G.	Secure channel between Smartcard and LWM2M Device Storage for secure Bootstrap Data provisioning (Normative)	97
Appendix H.	Static Conformance Requirements (Normative)	99
H.1	SCR for LWM2M Client	99
H.2	SCR for LWM2M Server	99

Figures
Figure 1 The overall architecture of the LWM2M Enabler.	11
Figure 2 The protocol stack of the LWM2M Enabler.	12
Figure 3: Bootstrap	13
Figure 4: Device Discovery and Registration	13
Figure 5: Device Management and Service Enablement	13
Figure 6: Information Reporting	14
Figure 7: Procedure of Client Initiated Bootstrap	17
Figure 8: Procedure of Server Initiated Bootstrap	18
Figure 9: Device Registration Interface example flows.	19
Figure 10: Example flows of Device Management & Service Enablement Interface	24
Figure 11: Example flow for Information Reporting Interface for the RSSI resource of the Connectivity Monitoring Object of the example client (Appendix E).	29
Figure 12: Example of Minimum and Maximum periods in an Observation.	31
Figure 13: Relationship between LWM2M Client, Object, and Resources	33
Figure 14: Example of Supported operations and Associated Access Control Object Instance	34
Figure 15 : Illustration of the relations between the LWM2M Access Control Object and the other LWM2M objects	47
Figure 16: Example register, update and de-register logical operation exchanges (shorthand in [CoAP] example style, actual messages using CoAP binary headers)	53
Figure 17: Example of Client initiated Bootstrap exchange.	54
Figure 18: Example of Server initiated Bootstrap exchange.	55
Figure 19: Example of Device Management & Service Enablement interface exchanges.	56
Figure 20: Example of Object Creation and Deletion.	57
Figure 21: Example of an Information Reporting exchange.	58
Figure 22: Example of Device Management & Service Enablement interface exchanges for Queue Mode.	59
Figure 23: Example of an Information Reporting exchange for Queue Mode.	60
Figure 24: Example of Device Management & Service Enablement interface exchanges for Queue Mode with SMS Registration Update Trigger.	61
Figure 25: File structure for Bootstrap Message on 3G UICC	93
Figure 26: Bootstrap Infromation transfer from Smartcard to LWM2M Device using Secure channel according to [GLOBALPLATFORM] [GP SCP03] [GP AMD_A]	98

Tables
Table 1: Relationship of logical operations and interfaces	14
Table 2: Bootstrap Information List	15
Table 3: Registration parameters	20
Table 4: Behaviour with Current Transport Binding and Mode	21
Table 5: Update parameters	22
Table 6: Read parameters	25
Table 7: Discover parameters	25
Table 8: Write parameters	26
Table 9: Write parameters	26
Table 10: Execute parameters	27
Table 11: Create parameters	28
Table 12: Delete parameters	28
Table 13: Observe parameters	29
Table 14: Notify parameters	30
Table 15: Cancel Observation parameters	31
Table 16: LWM2M Identifiers	34
Table 17: TLV format and description	37
Table 18: JSON format and description	40
Table 19: Operation to Method and URI Mapping	53
Table 20: Operation to Method and URI Mapping	54
Table 21: Operation to Method Mapping	55
Table 22: Operation to Method Mapping	57
Table 23: Response Codes	61
Table 24: Object instances of the example	87
Table 25: LWM2M Server Access Security Object [0]	87
Table 26: LWM2M Server Access Security Object [1]	87
Table 27: LWM2M Server Access Security Object [2]	88
Table 28: LWM2M Server Object [1]	88
Table 29: LWM2M Server Object [2]	88
Table 30: Access Control Object [0] (for the Device Object)	89
Table 31: Access Control Object [1] (for the Connectivity Monitoring Object)	89
Table 32: Access Control Object [2] (for the Firmware Object)	89
Table 33: Device Object	90
Table 34: Connectivity Monitoring Object	90

[bookmark: _Ref511812747][bookmark: _Toc51149231][bookmark: _Toc365465882]Scope
[bookmark: _Toc51149232]The present document defines the LWM2M protocol and the initial set of LWM2M objects.
[bookmark: _Toc365465883]References
[bookmark: _Toc51147377][bookmark: _Toc365465884][bookmark: _Toc51149235]Normative References
	[bookmark: TS23003_3GPP][3GPP-TS_23.003]
	3GPP TS 23.003 “Numbering, addressing and identification”

	[IOPPROC]
	“OMA Interoperability Policy and Process”, Version 1.1, Open Mobile Alliance™, OMA-IOP-Process-V1_1, URL:http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. November 1997, URL:http://www.ietf.org/rfc/rfc2234.txt

	[LWM2M-AD]
	“Lightweight Machine to Machine Architecture”, Open Mobile Alliance™, OMA-AD-LightweightM2M-V1_0, URL:http://www.openmobilealliance.org/

	[CoAP]
	Shelby, Z., Hartke, K., Bormann, C., and B. Frank, "Constrained Application Protocol (CoAP)", draft-ietf-core-coap-14 (work in progress), Mar 2013.

	[OBSERVE]
	[bookmark: _Toc342064474]Hartke, K. “Observing Resources in CoAP”, draft-ietf-core-observe-08 (work in progress), Mar 2013.

	[bookmark: RFC4122][RFC4122]
	“A Universally Unique Identifier (UUID) URN Namespace”, P. Leach, et al. July 2005, URL:http://www.ietf.org/rfc/rfc4122.txt

	[RFC6690]
	Shelby, Z. “Constrained RESTful Environments (CoRE) Link Format”, RFC6690, Aug 2012.

	[RFC6347]
	Rescorla, E. and N. Modadugu, "Datagram Transport Layer Security Version 1.2", RFC 6347, January 2012.

	[RFC6655]
	McGrew, D. and D. Bailey, "AES-CCM Cipher Suites for TLS", RFC6655, July 2012.

	[RFC5487]
	Pre-Shared Key Cipher Suites for TLS with SHA-256/384 and AES Galois Counter Mode

	[RFC5246]
	The Transport Layer Security (TLS) Protocol Version 1.2

	[RFC5289]
	TLS Elliptic Curve Cipher Suites with SHA-256/384 and AES Galois Counter Mode (GCM)

	[bookmark: reference_PKCS_15][PKCS#15]
	PKCS #15 v1.1: Cryptographic Token Information Syntax Standard”, RSA Laboratories, June 6, 2000. URL: ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-15/pkcs-15v1_1.pdf

	[bookmark: reference_TS102_221][ETSI TS 102.221]
	“Smart Cards; UICC-Terminal interface; Physical and logical characteristics”, (ETSI TS 102 221 release 11), URL:http://www.etsi.org/

	[GLOBALPLATFORM]
	GlobalPlatform v2.2.1 - January 2011 -

	[GP SCP03]
	GlobalPlatform Secure Channel Protocol 03 (SCP 03) Amendment D v1.1 Sept 2009

	
	

[bookmark: _Toc51147378][bookmark: _Toc365465885]Informative References
	[OMADICT]
	“Dictionary for OMA Specifications”, Open Mobile Alliance™,
OMA-ORG-Dictionary-Vx_y, URL:http://www.openmobilealliance.org/

	[bookmark: DMREPPRO][DMREPPRO]
	“OMA Device Management Representation Protocol, Version 1.3”.
Open Mobile Alliance. OMA-TS-DM_RepPro-V1_3. URL:http://www.openmobilealliance.org

	[ETSI TS 102.225]
	ETSI TS 102 225 (V11.0.0): "Smart Cards; Secured packet structure for UICC based applications (Release 11)"

	[ETSI TS 102 226]
	ETSI TS 102 226 (V11.0.0): "Smart cards; Remote APDU structure for UICC based applications (Release 11)"

	[3GPP TS 31.115]
	3GPP TS 31.115 (V10.1.0): "Remote APDU Structure for (U)SIM Toolkit applications (Release 10)"

	[3GPP TS 31.116]
	3GPP TS 31.116 (V10.2.0): "Remote APDU Structure for (Universal) Subscriber Identity Module (U)SIM Toolkit applications (Release 10)"

	[3GPP2 C.S0078-0]
	3GPP2 C.S0078-0 (V1.0):: "Secured packet structure for CDMA Card Application Toolkit (CCAT) applications"

	[3GPP2 C.S0079-0]
	3GPP2 C.S0079-0 (V1.0)"Remote APDU Structure for CDMA Card Application Toolkit (CCAT) applications "

	
	

	
	

	
	

[bookmark: _Toc365465886]Terminology and Conventions
[bookmark: _Toc51147380][bookmark: _Toc365465887][bookmark: _Ref511812783][bookmark: _Toc51149239]Conventions
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].
All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.
.
[bookmark: _Toc51147381][bookmark: _Toc365465888]Definitions
	Queue Mode
	The interaction model between an LWM2M Client and LWM2M Server is based on that LWM2M Server queues the requests.

	LWM2M Server Account
	LWM2M Server Access Security Object Instance with Bootstrap Server Resource false and associated LWM2M Server Object Instance

	LWM2M Bootstrap Server Account
	LWM2M Server Access Security Object Instance with Bootstrap Server Resource true

	Kindly consult [OMADICT] for more definitions used in this document.

[bookmark: _Toc51147382][bookmark: _Toc365465889]Abbreviations
	LWM2M
	Lightweight Machine to Machine (refers to this OMA enabler)

	
	

 Kindly consult (OMADICT] for more abbreviations used in this document.

[bookmark: _Toc365465890]Introduction
[bookmark: _Toc160850338][bookmark: _Ref161456245][bookmark: _Toc341770967][bookmark: _Toc365465891]Version 1.0
This enabler defines the application layer communication protocol between a LWM2M Server and a LWM2M Client, which is located in a LWM2M Device. The OMA Lightweight M2M enabler includes device management and service enablement for LWM2M Devices. The target LWM2M Devices for this enabler are mainly resource constrained devices. Therefore, this enabler makes use of a light and compact protocol as well as an efficient resource data model.
A Client-Server architecture is introduced for the LWM2M Enabler, where the LWM2M Device acts as a LWNM2M Client and the M2M service, platform or application acts as the LWM2M Server. The LWM2M Enabler has two components, LWM2M Server and LWM2M Client. Four interfaces are designed between these two components as shown below:
· Device Discovery and Registration
· Bootstrap
· Device management and service enablement
· Information Reporting
[bookmark: _Toc51149240]This architecture is shown in Figure 1. The LWM2M Enabler uses the Constained Application Protocol (CoAP) with UDP and SMS bindings. Datagram Transport Layer Security (DTLS) provides security for the enabler. The LWM2M Enabler protocol stack is shown in Figure 2.
[image:]
[bookmark: _Ref231281271][bookmark: _Toc365468488]Figure 1 The overall architecture of the LWM2M Enabler.

[image:]
[bookmark: _Ref231281283][bookmark: _Toc365468489]Figure 2 The protocol stack of the LWM2M Enabler.

[bookmark: _Toc365465892]Interfaces
According to the architecture diagram [LWM2M-AD], there are four interfaces: 1) Bootstrap 2) Device Discovery and Registration 3) Device Management and Service Enablement 4) Information Reporting. The operations for the four interfaces can be classified as uplink operations and downlink operations. The operations of each interface are defined in this section, and then mapped to protocol mechanisms in Section 8 Transport Layer Bindings and Encodings.

Figure 3 shows the operation model for interface “Bootstrap”. For this interface, the operations are uplink operation named “Request Bootstrap” and a downlink operation named “Write” and “Delete””. These operations are used to initialize the needed object(s) for the LWM2M Client to register with one or more LWM2M Servers. Bootstrapping is also defined using Factory Bootstrap (e.g. storage in Flash) or Bootstrap from Smartcard (storage in a Smartcard).

[bookmark: _Toc365468490]Figure 3: Bootstrap

Figure 4 shows the logical operation model for the interface “Device Discovery and Registration”. For this interface, the operations are uplink operations named “Registration”, “Update” and “De-register”.
[image:]
[bookmark: _Toc365468491]Figure 4: Device Discovery and Registration
Figure 5 shows the logical operation model for interface “Device Management and Service Enablement”. For this interface, the operations are downlink operations named “Read”, “Create”, “Delete”, “Write” and “Execute”. These operations are used to interact with the Resources, Resource Instances, Objects and Object Instances of the LWM2M Client. The “Read” operation is used to read the current value of one or more Resources; the “Write” operation is used to update the value of one or more Resources and the “Execute” operation is used to initiate an action defined by a Resource. The “Create” and “Delete” operations are use to create or delete Object Instances.
[bookmark: _Toc245116548][image:]
[bookmark: _Toc365468492]Figure 5: Device Management and Service Enablement
Figure 6 shows the logical operation model for interface “Information Reporting”. For this interface, the operations are downlink operations “Observe” or “Cancel Observation” and an uplink operation “Notify”. This interface is used to send the LWM2M Server a new value related to a Resource on the LWM2M Client.
[image:]
[bookmark: _Toc365468493]Figure 6: Information Reporting

The relationship between logical operations and interfaces is listed in the following table 1.
[bookmark: _Toc365466011]Table 1: Relationship of logical operations and interfaces
	Interface
	Direction
	Logical Operation

	Device Discovery and Registration
	Uplink
	Register, Update, De-register

	Bootstrap
	Uplink
	Request Bootstrap

	Bootstrap
	Downlink
	Write, Delete

	Device Management and Service Enablement
	Downlink
	Read, Create, Delete, Write, Execute, Write Attribute, Discover

	Information Reporting
	Downlink
	Observe, Cancel Observation

	Information Reporting
	Uplink
	Notify

[bookmark: _Toc365465893]Bootstrap Interface
The Bootstrap Interface is used to provision essential information into the LWM2M Client to enable the LWM2M Client to perform the operation “Register” with one or more LWM2M Servers.
There are four bootstrap modes supported by the LWM2M Enabler:
· Factory Bootstrap
· Bootstrap from Smartcard
· Client Initiated Bootstrap
· Server Initiated Bootstrap
The LWM2M Client SHALL support at least one bootstrap mode specified in the Bootstrap Interface.
The LWM2M Server MUST support all the bootstrap modes specified in the Bootstrap Interface.
This chapter describes what information is conveyed across the Bootstrap Interface, where the LWM2M Client puts that information and how to provision the Bootstrap Information for each of these bootstrap modes.
[bookmark: _Ref339619648]
[bookmark: _Toc365465894]Bootstrap Information
This section specifies the information that needs to be configured in LWM2M Client for connecting to the LWM2M Server(s) or the LWM2M Bootstrap Server. This Bootstrap Information can be available before performing the Bootstrap Sequence described in Section 5.1.3 or obtained as a result of the Bootstrap Sequence.
Bootstrap Information can be categorized into two types:
· LWM2M Server Bootstrap Information
· LWM2M Bootstrap Server Bootstrap Information

The LWM2M Client MUST have the LWM2M Server Bootstrap Information after the Bootstrap Sequence specified in Section 5.1.3.
The LWM2M Client SHOULD have the LWM2M Bootstrap Server Bootstrap Information.
The LWM2M Server Bootstrap Information is used by the LWM2M Client to register and connect to the LWM2M Server
The LWM2M Server Bootstrap Information MUST contain at least a LWM2M Server Account. The LWM2M Server Bootstrap Information MAY additionally contain further Object Instances (e.g., Access Control, Connectivity Object).
The LWM2M Client MAY be configured to use one or more LWM2M Server Account(s).
The LWM2M Bootstrap Server Bootstrap Information is used by the LWM2M Client to contact the LWM2M Bootstrap Server in order to get the LWM2M Server Bootstrap Information.
The LWM2M Bootstrap Server Bootstrap Information MUST be a LWM2M Bootstrap Server Account.

[bookmark: _Toc365466012]Table 2: Bootstrap Information List
	Bootstrap Information Type
	Entity
	Required

	The LWM2M Server Bootstrap Information
	LWM2M Server Account
	Yes*

	
	Additional Object Instances (e.g., Access Control, Connectivity Object)
	No

	The LWM2M Bootstrap Server Bootstrap Information
	LWM2M Bootstrap Server Account
	No

*the LWM2M Client MUST have at least one LWM2M Server Account after Bootstrap Sequence specified in 5.1.3
Please note that the LWM2M Client MUST accept Bootstrap Information sent via Bootstrap Interface without processing authorization process specified in Section 7.2.2 Authorization.

[bookmark: _Toc365465895]Bootstrap Modes
This section of the specification provides description and further information for each of the following Bootstrap Modes:
· Factory Bootstrap
· Bootstrap from Smartcard
· Client Initiated Bootstrap
· Server Initiated Bootstrap

Factory Bootstrap
In this mode, the LWM2M Client has been configured with the necessary Bootstrap Information prior to deployment of the device.

Bootstrap from Smartcard
When the Device supports a Smartcard, the LWM2M Client SHALL retrieve and process the bootstrap data contained in the Smartcard as described in Appendix F. When the bootstrap data retrieval is successful, the LWM2M Client SHALL process the bootstrap data from the Smartcard and SHALL apply the Bootstrap Information to its configuration.
Due to the sensible nature of the Bootstrap Information, a secure channel SHOULD be established between the Smartcard and the LWM2M Device.
When such a secure channel is established between the Smartcard and the LWM2M Device, this secure channel SHALL be based on [GLOBALPLATFORM] procedure, mainly described in Appendix G.
In this mode, the LWM2M Client SHALL also ensure that the Bootstrap Information previously retrieved from the Smartcard is unchanged within the Smartcard. If Bootstrap Information is changed, the previous Bootstrap Information SHALL be disabled in the LWM2M Client and the LWM2M Client SHALL apply the new Bootstrap Information from Smartcard to its configuration.
Disabling the bootstrap data (e.g. removing the Smartcard) within the LWM2M Client requires the Bootstrap Information created from the bootstrap data of the previous Smartcard SHALL be deleted.
Checking for Smartcard change and disabling SHALL be performed by LWM2M Client, each time a “Register” or “Update” operation take place, with a LWM2M Server provisioned from Smartcard. As usual, the Bootstrap security rules (5.1.4) then apply.
NOTE: Bootstrap Information in Smartcard can be updated by using Smartcard OTA protocol as specified in ETSI TS 102 225 [ETSI TS 102.225] / TS 102 226 [ETSI TS 102 226] and extensions such as 3GPP TS 31.115 [3GPP TS 31.115] / TS 31.116 [3GPP TS 31.116] and 3GPP2 C.S0078-0 [3GPP2 C.S0078-0] / C.S0079-0 [3GPP2 C.S0079-0].

Client Initiated Bootstrap
As defined in Section 5.1.3 Bootstrap Sequence, scenarios exist when the LWM2M Server is not configured within the LWM2M Client or attempts to perform the “Register operation” with LWM2M Servers have failed.
When these conditions occur, the Client Initiated Bootstrap mode provides a mechanism for the LWM2M Client to retrieve the Bootstrap Information from a LWM2M Bootstrap Server.
The Client Initiated Bootstrap mode requires having a LWM2M Boostrap Server Account.
The figure below depicts the Client Initiated Bootstrap flow.
[image:]
[bookmark: _Toc365468494]Figure 7: Procedure of Client Initiated Bootstrap
Step #1: Request bootstrap to bootstrap URI
The LWM2M Client sends a “Request Bootstrap” operation to LWM2M Bootstrap Server URI which has been pre-provisioned. When requesting the bootstrap, the LWM2M Client sends the LWM2M Client’s “Endpoint Client Name” as a parameter in order to allow the LWM2M Bootstrap Server to provision the proper Bootstrap Information for the LWM2M Client.
Step #2: Configure Bootstrap Information
The LWM2M Bootstrap Server configures the LWM2M Client with the Bootstrap Information using the “Write” and/or “Delete” operation.
The Client Initiated Bootstrap MAY be used to configure some resources of the Bootstrap Information in the LWM2M Client after initial bootstrap to update Bootstrap Information. In this case, all the Bootstrap Information are OPTIONAL.

Server Initiated Bootstrap
In this mode, the LWM2M Bootstrap Server configures the Bootstrap Information in the LWM2M Client without the LWM2M Client sending a bootstrap request to the LWM2M Bootstrap Server.
As the LWM2M Client does not initiate the “Request Bootstrap” operation to the LWM2M Bootstrap Server, the LWM2M Bootstrap Server needs to know if a LWM2M Device is ready for bootstrapping before the LWM2M Client can be configured by the LWM2M Bootstrap Server. The mechanism that a LWM2M Bootstrap Server gains this knowledge is implementation specific. A common scenario is that elements in the Network Provider’s network informs the LWM2M Bootstrap Server of the LWM2M Device when the LWM2M Device connects to the Network Provider’s network.
Once the LWM2M Bootstrap Server has been notified that the LWM2M Device is ready to receive the Bootstrap Information, the LWM2M Bootstrap Server configures the LWM2M Client with the Bootstrap Information using the “Write” and/or “Delete” operation.
The Server Initiated Bootstrap mode requires having the Bootstrap Information for the LWM2M Bootstrap Server.
The figure below depicts the Server Initiated Bootstrap flow.
[image:]
[bookmark: _Toc365468495]Figure 8: Procedure of Server Initiated Bootstrap
Step #1: Configure Bootstrap Information
The LWM2M Bootstrap Server configures the Bootstrap Information in the LWM2M Client using the “Write” and/or “Delete” operation.
The Server Initiated Bootstrap MAY be used to configure some resources of the Bootstrap Information in the LWM2M Client after initial bootstrap to update Bootstrap Information. In this instance, all the Bootstrap Information are OPTIONAL.

[bookmark: _Toc365465896]Bootstrap Sequence
The LWM2M Client SHALL follow the procedure specified as below when attempting to bootstrap a LWM2M Device:
1. If the LWM2M Device has Smartcard, the LWM2M Client tries to obtain Bootstrap Information from the Smartcard using the Bootstrap from Smartcard mode.
2. If the LWM2M Client is not configured using the Bootstrap from Smartcard mode, the LWM2M Client tries to obtain the Bootstrap Information by using Factory Bootstrap mode.
3. If the LWM2M Client has any LWM2M Server Object Instances from the previous steps, the LWM2M Client tries to register to the LWM2M Server(s) configured in the LWM2M Server Object Instance(s).
4. If LWM2M Client fails to register to all the LWM2M Servers or the Client doesn’t have any LWM2M Server Object Instances, and the LWM2M Client hasn’t received a Server Initiated Bootstrap within the ClientHoldOffTime, the LWM2M Client performs the Client Initiated Bootstrap.
[bookmark: _Toc355616250][bookmark: _Toc355616817][bookmark: _Toc355617116][bookmark: _Toc355617312][bookmark: _Toc355675043][bookmark: _Toc355687972][bookmark: _Toc355876289][bookmark: _Toc357001259][bookmark: _Toc355616251][bookmark: _Toc355616818][bookmark: _Toc355617117][bookmark: _Toc355617313][bookmark: _Toc355675044][bookmark: _Toc355687973][bookmark: _Toc355876290][bookmark: _Toc357001260]
[bookmark: _Toc365465897]Bootstrap Security
The information conveyed through the Bootstrap Interface is sensitive and requires that communication session, security mechanisms and/or keys MUST be different instances from the one that is used for the other LWM2M Interfaces.
If the LWM2M Client or the LWM2M Bootstrap Server needs to convey Bootstrap Information across the Bootstrap Interface, the LWM2M Client or the LWM2M Bootstrap Server MUST establish a new secure communication session.
If security materials (e.g. LWM2M Server URI, Security Mode, and Security Key), are changed in the LWM2M Client, the LWM2M Client MUST disconnect the existing communication session between the LWM2M Server and LWM2M Client and establish a new secure communication session between the LWM2M Server and LWM2M Client using the security mechanism and/or keys have been configured by Bootstrap Interface.

[bookmark: _Toc365465898]Device Registration Interface
The Device Registration Interface is used by a LWM2M Client to register with one or more LWM2M Servers, maintain each registration and de-register from a LWM2M Server. The registration is based on the Resource Model and Identifiers defined in Section 6 Identifiers and Resources. When registering, the LWM2M Client performs the “Register” logical operation and provides the properties the LWM2M Server requires to contact the LWM2M Client (e.g., End Point Name); maintain the registration and session (e.g., Lifetime, Queue Mode) between the LWM2M Client and LWM2M Server as well as knowledge of the Objects the LWM2M Client supports and existing Object Instances in the LWM2M Client. The registration is soft state, with a lifetime indicated by the Lifetime Resource of that LWM2M Server Object Instance. The LWM2M Client periodically performs an update of its registration information to the registered LWM2M Server(s) by performing the “Update” logical operation. If the lifetime of a registration expires without receiving an update from the LWM2M Client, the LWM2M Server removes the registration. Finally, when shutting down or discontinuing use of a LWM2M Server, the LWM2M Client performs a “De-register” logical operation.
The Binding Resource of the LWM2M Server Object informs the LWM2M Client of the transport protocol preferences of the LWM2M Server for the communication session between the LWM2M Client and LWM2M Server. The LWM2M Client SHOULD perform the logical operations with the modes indicated by the Binding Resource of the LWM2M Server Object Instance.

[image:]
[bookmark: _Toc365468496]Figure 9: Device Registration Interface example flows.

[bookmark: _Toc365465899]Register
Registration is performed when a LWM2M Client sends a “Register” logical operation to the LWM2M Server. After the LWM2M Device is turned on and the bootstrap procedure has been completed, the LWM2M Client MUST perform a “Register” logical operation to each LWM2M Server that the LWM2M Client has a Server Object Instance. Table 3 describes the parameters used for the “Register” logical operation.
The “Register” logical operation includes the Endpoint Client Name parameter along with other parameters listed in Table 3. The “Register” logical operation MUST include a value for the Endpoint Client Name parameter that is unique on that LWM2M Server.
Upon receiving a ”Register” logical operation from the LWM2M Client, the LWM2M Server records the IP address and port from the IP packet of the registration message and uses this information for all future interactions with that LWM2M Client.
If the LWM2M Client sends a “Register” logical operation to the LWM2M Server even though the LWM2M Server has registration information of the LWM2M Client, the LWM2M Server removes the existing registration information and performs the new ”Register” logical operation. This situation happens when the LWM2M Client forgets the state of the LWM2M Server (e.g., factory reset).

[bookmark: _Ref355590871][bookmark: _Toc365466013]Table 3: Registration parameters
	Parameter
	Required
	Default Value
	Notes

	Endpoint Client Name
	Yes
	
	See Section 6.2

	Lifetime
	No
	86400
	If Lifetime Resource does not exist in a LWM2M Server Object Instance (see Appendix D.1), the Client MUST NOT send this parameter and the Server MUST regard lifetime of the Client as 86400 seconds The registration SHOULD be removed by the Server if a new registration or update is not received within this lifetime.

	LWM2M Version
	No
	1.0
	Indicates the version of the LWM2M Enabler that the LWM2M Client supports. This parameter is required only for LWM2M versions > 1.0.

	Binding Mode
	No
	U
	Indicates current binding and Queue mode of the LWM2M Client. “U” means UDP binding, and "S" means SMS binding. The "Q" can be appended to represent the binding works in the Queue mode.
For example, "UQS" means the Client uses both the UDP binding with Queue Mode enabled and the SMS binding with Queue Mode disabled.
The valid values of the parameter are listed in the Appendix 5.2.1.1.

	SMS Number
	No
	
	The value of this parameter is the MSISDN where the Client can be reached for use with the SMS binding.

	Objects and Object Instances
	Yes
	
	The list of Objects supported and Object Instances available on the Client.

The list of Objects and Object Instances is included in the payload of the registration message. Each Object is described as a Link in the CoRE Link Format [RFC6690]. The Target component of the link is required, and consists of the Object path. Any other parameters included in the link MUST be silently ignored, unless specified for use by the LWM2M Enabler. The Media Type of this payload is application/link-format.
The payload for a LWM2M Client supporting LWM2M Server, Access Control, Device, Connectivity Monitoring and Firmware Objects from Appendix D would simply be:
</1>, </2>, </3>, </4>, </5>
If Objects Instances are already available on the LWM2M Client at the time of registration, then the format would be (for the example client of Appendix E):
</1/101>, </1/102>, </2/0>, </2/1>, </2/2>, </3/0>, </4/0>, </5>
By default, the RFC6690 links of Objects are located under the root path as in the examples above. However, devices might be hosting other resources on an endpoint, and there may be the need to place Objects under an alternative path. This is achieved by including an OMA LWM2M link in addition to the Object links as follows, e.g. to place Objects under the “/lwm2m” path:
</lwm2m>;rt="oma.lwm2m", </lwm2m/1/101>, </lwm2m/1/102>, </lwm2m/2/0>, </lwm2m/2/1>, </lwm2m/2/2>, </lwm2m/3/0>,</lwm2m/4/0>,</lwm2m/5>
The RFC6690 Resource Type parameter (i.e., rt="oma.lwm2m") MAY be used to provide the information that the path in front of the Resource Type parameter is used for the LWM2M enabler.
The Resource Type value “oma.lwm2m” is registered with the appropriate IANA registry for this purpose.
If the LWM2M Client supports the JSON data format for all the Objects it SHOULD inform the LWM2M Server by including the content type in the root path link using the ct= link attribute. An example is as follows (note that the content type value 100 is an example, the actual value will be assigned by IANA for the LWM2M JSON format).
</>;rt="oma.lwm2m";ct=100, </1/101>, </1/102>, </2/0>, </2/1>, </2/2>, </3/0>, </4/0>, </5>

Behavior with Current Transport Binding and Mode
Behavior of the LWM2M Server and the LWM2M Client is differentiated by Current Transport Binding and Mode. Current Transport Binding and Mode is decided by “Binding” Resource set by the LWM2M Server and whether SMS and/or Queue Mode are supported by the LWM2M Client. Queue Mode is useful when the LWM2M Device is not reachable by the LWM2M Server at all the times and it could help the LWM2M Client sleep longer. Table 4 describes the behaviour of the LWM2M Server and the LWM2M Client for each Current Transport Binding and Mode.

[bookmark: _Toc365466014]Table 4: Behaviour with Current Transport Binding and Mode
	Current Transport Binding and Mode
	Behaviour

	U (UDP)
	The LWM2M Server expects that the LWM2M Client is reachable via the UDP binding at any time.
The LWM2M Server MUST send requests to a LWM2M Client using the UDP binding. The LWM2M Client MUST send the response to such a request over the UDP binding.
This is the normal default mode of operation.

	UQ (UDP with Queue Mode)
	The Server MUST queue all requests to the LWM2M Client, sending requests via UDP when the Client is on-line as described in Section 8.4 Queue Mode Operation.
The LWM2M Server MUST send requests to a LWM2M Client using the UDP binding. The LWM2M Client MUST send the response to such a request over the UDP binding.

	S (SMS)
	The LWM2M Server expects that the LWM2M Client is reachable via the SMS binding at any time.
The LWM2M Server MUST send requests to a LWM2M Client using the SMS binding. The LWM2M Client MUST send the response to such a request over the SMS binding.

	SQ (SMS with Queue Mode)
	The Server MUST queue all requests to the LWM2M Client, sending requests via SMS when the Client is on-line as described in Section 8.4 Queue Mode Operation.
Requests MUST be sent to the LWM2M Client using the SMS binding. The LWM2M Client MUST send the response to such a request over the SMS binding.

	US (UDP and SMS)
	The LWM2M Server expects that the LWM2M Client is reachable via the UDP binding at any time.
The LWM2M Server expects that the LWM2M Client is reachable via the SMS binding at any time.
If the LWM2M Server sends requests to a LWM2M Client using the UDP binding, The LWM2M Client MUST send the response to such a request over the UDP binding.
If the LWM2M Server sends requests to a LWM2M Client using the SMS binding, The LWM2M Client MUST send the immediate response to such a request over the SMS binding.

	UQS (UDP with Queue Mode and SMS)
	The Server MUST queue all requests to the LWM2M Client, sending requests via UDP when the Client is on-line as described in Section 8.4 Queue Mode Operation.
The LWM2M Server expects that the LWM2M Client is reachable via the SMS binding at any time.
If the LWM2M Server sends requests to a LWM2M Client using the UDP binding, The LWM2M Client MUST send the response to such a request over the UDP binding.
If the LWM2M Server sends requests to a LWM2M Client using the SMS binding, The LWM2M Client MUST send the immediate response to such a request over the SMS binding.
The LWM2M Server MAY request the LWM2M Client to perform “Update” operation via UDP by sending “execute” logical operation on “Registration Update Trigger” Resource via SMS.

UQSQ and USQ are not supported.

[bookmark: _Toc365465900]Update
Periodically or based on certain events within the LWM2M Client, the LWM2M Client updates its registration information with a LWM2M Server by sending an “Update” logical operation to the LWM2M Server. This ”Update” logical operation MUST contain only the parameters listed in Table 5 which have changed compared to the last registration parameters sent to the LWM2M Server.
If the LWM2M Client is using the UDP binding to communicate with a LWM2M Server and LWM2M Client’s IP address or the port changes, the LWM2M Client MUST send an “Update” logical operation to the LWM2M Server.
[bookmark: _Toc365466015]Table 5: Update parameters
	Parameter
	Required

	Lifetime
	No

	Binding Mode
	No

	SMS Number
	No

	Objects and Object Instances
	No

[bookmark: _Toc365465901]De-register
When a LWM2M Client determines that it no longer requires to be available to a LWM2M Server (e.g., LWM2M Device shutdown), the Client SHOULD send a “De-register” logical operation to the LWM2M Server. Upon receiving this message, the LWM2M Server removes the registration information from the LWM2M Server.

[bookmark: _Toc339381132][bookmark: _Toc365465902]Device Management & Service Enablement Interface
The Device Management and Service Enable Interface is used by the LWM2M Server to access Object Instances and Resources available from the LWM2M Client. The interface provides this access through the use of “Create”, “Read”, “Write”, “Delete”, “Execute”, “Write Attributes”, or “Discover” logical operations. The logical operations that an Object or Resource supports are defined in the Object definition using the Object Template. The Object Template is described in Appendix C.1 Object Template. The Normative Objects defined by the LWM2M Enabler are described in Appendix D.

[image:]
[bookmark: _Toc365468497]Figure 10: Example flows of Device Management & Service Enablement Interface

[bookmark: _Toc339381133][bookmark: _Toc365465903]Read
The “Read” logical operation is used to access the value of a Resource, an array of Resource Instances, an Object Instance or all the Object Instances of an Object. The “Read” logical operation has the following parameters:
[bookmark: _Toc365466016]Table 6: Read parameters
	Parameter
	Required
	Default Value
	Notes

	Object ID
	Yes
	-
	Indicates the Object.

	Object Instance ID
	No
	-
	Indicates the Object Instance to read.
If no Object Instance ID is indicated, then the Object Instances of Objects, which the Server is authorized to, are returned.

	Resource ID
	No
	-
	Indicates the Resource to read. If no Resource ID is indicated, then the whole Object Instance is returned.

[bookmark: _Toc365465904]Discover
The “Discover” logical operation is used to discover attributes of an individual Resource, all the Resources of an Object Instance or all the Object Instances of an Object. This logical operation can be used to discover which Resources are implemented in an Object. The returned payload is a list of application/link-format CoRE Links [RFC6690] for each resource including attributes of the resource. The “Discover” logical operation has the following parameters:
[bookmark: _Toc365466017]Table 7: Discover parameters
	Parameter
	Required
	Default Value
	Notes

	Object ID
	Yes
	-
	Indicates the Object.

	Object Instance ID
	No
	-
	Indicates the Object Instance.

	Resource ID
	No
	-
	Indicates the Resource.

The response to this request includes the list of resources described using RFC6690 links, along with any attributes configured for targeting Object, Object Instance, or Resource.
If Object ID is only specified, the LWM2M Client MUST respond to the operation with the Resources implemented by the LWM2M Client for the Object as specified in Object specification. In addition, the LWM2M Client MUST respond to the operation with the attributes that have been configured at the LWM2M Client for the Object.
For example: if the “Discover” logical operation targets an Object with Object ID of 6, the response to the logical operation would be:
</6>;pmin=10;pmax=60, </6//1>, </6//2>, </6//3>, </6//4>
which means that the LWM2M Client implements Resources with Resource IDs of 1,2,3, and 4 among the Resources of Connectivity Statistics Object with the attributes specified for that Object.
If the Object ID and Object Instance ID are only specified, all the attributes of that Object Instance MUST be returned in the response. For example: if Object ID is 3 and Object Instance ID is 2, then
</3/2>;pmin=10;pmax=60

If Object ID, Object Instance ID and Resource ID are specified, the attributes of that Resource MUST be returned. For example: if Object ID is 3, Object Instance ID is 2, and Resource ID is 1, then
 </3/2/1>;pmin=10;pmax=60;lt=42.2

If a Resource, an Object Instance, or an Object has attributes for multiple LWM2M Servers, then one link is returned for each and the ep= attribute is used to indicate the Short Server ID of the LWM2M Server. For example: if Object ID is 3 and Object Instance ID is 2, and Resource ID is 1 with two Observe operations from two Servers, then
</3/2/1>;ep=1;pmin=10;pmax=60;lt=42.2,
</3/2/1>;ep=2;pmax=300

[bookmark: _Toc339381134][bookmark: _Toc365465905]Write
The “Write” logical operation is used to change the value of a Resource, an array of Resources Instances or multiple Resources from an Object Instance. The logical operation permits multiple Resources to be modified within the same instance of the logical operation. The “Write” logical operation has the following parameters:
[bookmark: _Toc365466018]Table 8: Write parameters
	Parameter
	Required
	Default Value
	Notes

	Object ID
	Yes
	-
	Indicates the Object.

	Object Instance ID
	Yes
	-
	Indicates the Object Instance to write.

	Resource ID
	No
	-
	Indicates the Resource to write. The payload is the new value for the Resource.
If no Resource ID is indicated, then the included payload is an Object Instance containing the Resource values.

	New Value
	Yes
	-
	The new value included in the payload to update the Object Instance or Resource.

[bookmark: _Toc365465906]Write Attributes
The “Write Attributes” logical operation is used to change the attributes of a Resource or multiple Resources from an Object Instance. The logical operation permits multiple Resources to be modified within the same instance of the logical operation. The “Write Attributes” logical operation has the following parameters:
[bookmark: _Toc365466019]Table 9: Write parameters
	Parameter
	Required
	Default Value
	Notes

	Object ID
	Yes
	-
	Indicates the Object.

	Object Instance ID
	Yes
	-
	Indicates the Object Instance to write.

	Resource ID
	No
	-
	Indicates the Resource to write. The payload is the new value for the Resource.
If no Resource ID is indicated, then the included payload is an Object Instance containing the Resource values.

	Minimum Period
	No
	1
	When present, the minimum period indicates the minimum time in seconds the Client SHOULD wait from the time when sending the last notification to the time when sending a new notification. In the absence of this parameter, the Minimum Period is defined by the Default Minimum Period set in the LWM2M Server Object Instance related to that Server.

	Maximum Period
	No
	-
	When present, the maximum period indicated the maximum time in seconds the Client SHOULD wait from the time when sending the last notification to the time sending the next notification (regardless if the value has changed). In the absence of this parameter, the maximum period is up to the server. The maximum period MUST be greater than the minimum period parameter. In the absence of this parameter, the Maximum Period is defined by the Default Maximum Period set in the LWM2M Server Object Instance related to that Server.

	Greater Than
	No
	-
	When present, the Client SHOULD notify its value when the value is above the number specified in parameter

	Less Than
	No
	-
	When present, the Client SHOULD notify its value when the value is below the number specified in the parameter

	Step
	No
	-
	When present, the Client SHOULD notify its value when the value is changed more than the number specified in the parameter from the Resource value when the client receives the Observe operation.

Minimum Period, Maximum Period, Greater Than, Less Than, and Step are only to do with Observe operation.
Maximum and/or Minimum Period parameters are used to control how often the “Notify” logical operation is sent by the LWM2M Client for the observed Object Instance or Resource.
Greater Than, Less Than, and Step MUST be specified only when Resource ID is indicated.
Greater Than, Less Than, and Step parameters MUST be supported only when the Resource type is numeral (e.g., integer, decimal).

[bookmark: _Toc339381135][bookmark: _Toc365465907]Execute
The “Execute” logical operation is used by the LWM2M Server to initiate some action, and can only be performed on individual Resources. A LWM2M Client MUST return an error when the “Execute” logical operation is received for anObject Instance(s) or Resource Instance(s).
[bookmark: _Toc365466020]Table 10: Execute parameters
	Parameter
	Required
	Default Value
	Notes

	Object ID
	Yes
	-
	Indicates the Object.

	Object Instance ID
	Yes
	-
	Indicates the Object Instance.

	Resource ID
	Yes
	-
	Indicates the Resource to execute.

[bookmark: _Toc365465908]Create
The “Create” logical operation is used by the LWM2M Server to create an Object Instance within the LWM2M Client. The “Create” logical operation MUST target either an Object Instance which has not yet been instantiated or the Object.
The Object Instance that is created in the LWM2M Client by the LWM2M Server MUST be an Object type supported by the LWM2M Client and announced to the LWM2M Server using the “Register” and “Update” logical operations of the Device Registration Interface.
Object Instance whose Object supports at most one Object Instance MUST be assigned an Object Instance ID of 0 when the Object Instance is Created.
The Create operation has the following parameters:
[bookmark: _Toc365466021]Table 11: Create parameters
	Parameter
	Required
	Default Value
	Notes

	Object ID
	Yes
	-
	Indicates the Object.

	Object Instance ID
	No
	-
	Indicates the Object Instance to create. If this Resource is not specified, the Client assigns the ID of the Object Instance.

	New Value
	Yes
	-
	The new value included in the payload to create the Object Instance.

If the LWM2M Server sends a “Create” logical operation on an Object Instance and the LWM2M Client has more than two LWM2M Server Accounts, then the LWM2M Client creates an Access Control Object Instance for the created Object Instance.
· Access Control Owner MUST be the LWM2M Server
· The LWM2M Server MUST have full access rights

[bookmark: _Toc365465909]Delete
The “Delete” logical operation is used for LWM2M Server to delete an Object Instance within the LWM2M Client.
The Object Instance that is deleted in the LWM2M Client by the LWM2M Server MUST be an Object Instance that is announced by the LWM2M Client to the LWM2M Server using the “Register” and “Update” logical operations of the Device Registration Interface.
The Delete operation has the following parameters:
[bookmark: _Toc365466022]Table 12: Delete parameters
	Parameter
	Required
	Default Value
	Notes

	Object ID
	Yes
	-
	Indicates the Object.

	Object Instance ID
	Yes
	-
	Indicates the Object Instance to delete.

[bookmark: _Toc365465910]Information Reporting Interface
The Information Reporting Interface is used by a LWM2M Server to observe any changes in a Resource on a LWM2M Client, receiving notifications when new values are available. This observation relationship is initiated by sending an “Observe” logical operation to the L2M2M Client for an Object, an Object Instance or a Resource. An observation ends when a “Cancel Observation” logical operation is performed.

[image:]
[bookmark: _Toc365468498]Figure 11: Example flow for Information Reporting Interface for the RSSI resource of the Connectivity Monitoring Object of the example client (Appendix E).

[bookmark: _Toc365465911]Observe
The LWM2M Server initiates an observation request for changes of a specific Resource, Resources within an Object Instance or for all the Object Instances of an Object within the LWM2M Client.
Related parameters for “Observe” logical operation are described in 5.3.2 Write and those parameters are configured by “Write Attribute” logical operation.
The Observe operation includes the following parameters:
[bookmark: _Toc365466023]Table 13: Observe parameters
	Parameter
	Required
	Default Value
	Notes

	Object ID
	Yes
	-
	Indicates the Object.

	Object Instance ID
	No
	-
	Indicates the Object Instance to observe. If no Object Instance ID is indicated, then all the Object Instances of Objects are observed and Resource ID MUST NOT be specified.

	Resource ID
	No
	-
	Indicates the Resource to observe. If no Resource ID is indicated, then the whole Object Instance is observed.

When “Observe” logical operation contains only Object ID, the “Notify” logical operation MUST be done per Object Instance.

[bookmark: _Toc365465912]Notify
The “Notify” logical operation is sent from the LWM2M Client to the LWM2M Server during a valid observation on an Object Instance or Resource. This operation includes the new value of the Object Instance or Resource. The “Notify” logical operation SHOULD be sent when conditions (i.e., Minimum Period, Maximum Period, Greater Than, Less Than, Step) for “Observe” logical operation are met.
The LWM2M Client SHOULD NOT send the “Notify” logical operation for the changed Resource or Object Instance before the Minimum Period expires.
The LWM2M Client SHOULD send the “Notify” logical operation for the changed Resource or Object Instance before the Maximum Period expires.

[bookmark: _Toc365466024]Table 14: Notify parameters
	Parameter
	Required
	Default Value
	Notes

	Updated Value
	Yes
	-
	The new value included in the payload about the Object Instance or Resource.

If the minimum period and maximum period value are the same, then the LWM2M Client sends notification that time period.
The following example shows how the Minimum and Maximum period parameters work as shown in Section 5.3.4. A LWM2M Server makes an observation for a Temperature Resource that is updated inside the LWM2M Client at irregular periods (based on change). The LWM2M Server makes an observation when the Minimum Period = 10 Seconds and Maximum Period = 60 Seconds have been set for that Resource. The LWM2M Client will wait at least 10 Seconds before sending a “Notify” logical operation to the LWM2M Server (even if the Resource has changed before that), and no longer than 60 Seconds before sending a “Notify” logical operation (even if the Resource has not changed yet). The “Notify” logical operation is sent anywhere between 10-60 seconds upon change.

[image:]
[bookmark: _Toc365468499]Figure 12: Example of Minimum and Maximum periods in an Observation.
This example assumes the Minimum Period has been set to 10 and the Maximum Period set to 60 for the Resource /4/0/2 before making the observation.

[bookmark: _Toc365465913]Cancel Observation
The “Cancel Observation” logical operation is sent from the LWM2M Server to the LWM2M Client to end an observation relationship for Object Instance or Resource. The operation includes the following parameters:

[bookmark: _Toc365466025]Table 15: Cancel Observation parameters
	Parameter
	Required
	Default Value
	Notes

	Object ID
	Yes
	-
	Indicates the Object.

	Object Instance ID
	No
	-
	Indicates the Object Instance to stop observing. If no Object Instance ID is indicated, then Object ID is indicated and Resource ID MUST NOT be specified.

	Resource ID
	No
	-
	Indicates the Resource to stop observing. If no Resource ID is indicated, then the whole Object Instance is indicated.

[bookmark: _Ref211139396][bookmark: _Toc365465914]Identifiers and Resources
This section defines the identifiers and resource model for the LWM2M Enabler.
[bookmark: _Toc365465915]Resource Model
The LWM2M Enabler defines a simple resource model where each piece of information made available by the LWM2M Client is a Resource. Resources are logically organized into Objects. Figure 9 illustrates this structure, and the relationship between Resources, Objects, and the LWM2M Client. The LWM2M Client may have any number of Resources, each of which belongs to an Object. Resources and Objects have the capability to have multiple instances of the Resource or Object.
[image: device-object-resource (2)]
[bookmark: _Ref209522151][bookmark: _Toc365468500]Figure 13: Relationship between LWM2M Client, Object, and Resources
Resources are defined per Object, and each Resource is given a unique identifier within that Object. Each Object and Resource is defined to have one or more logical operations that it supports. A Resource MAY consist of multiple instances called a Resource Instance as defined in the Object specification. The LWM2M Server can send “Write” logical operation with JSON or TLV format to Resource to instantiate a Resource Instance. The LWM2M Client also has the capability to instantiate a Resource Instance.

An Object defines a grouping of Resources, for example the Firmware Object contains all the Resources used for firmware update purposes. Each Object is assigned a unique OMA Management Object identifier and corresponding index which identifies an Object defined for the LWM2M Enabler. The LWM2M Enabler defines standard Objects and Resources. Further Objects may be added by OMA or other organizations to enable additional M2M Services.
An Object MUST be instantiated either by the LWM2M Server or the LWM2M Client, which is called Object Instance before using the functionality of an Object. After an Object Instance is created, the LWM2M Server can access that Object Instance and Resources which belong to that Object Instance.
The LWM2M Server performs logical operations on an Object, Object Instance and Resources as described in Section 5 Interfaces. These logical operations are conveyed as described in Section 8 Transport Layer Binding and Encoding and how to convey the Operation data is defined in 7.3.
The LWM2M Enabler defines an access control mechanism per Object Instance. Object Instances SHOULD have an associated Access Control Object Instance. An Access Control Object Instances contains Access Control Lists (ACLs) that define which logical operations on a given Oject Instance are allowed for which LWM2M Server(s).
Figure 14 shows an example of the logical operations the Resources support and how Object Instances and Resources are associated with Access Control Object Instance. In the example, Object Instance 0 for Object 0 has 2 Resources. Resource 1 supports the ”Read”, “Write” and ”Execute” logical operations, while Resource 2 supports only the “Read” logical operation. The associated Access Control Object Instance has ACL of Object Instance 0 for Object 0. Server1 is authorized to perform “Read” and “Write” logical operations to the Object Instance 0 for Object 0 and Resources of the Object Instance. However, due to the supported operations of each Resource, Server1 can perform the “Read” logical operation on Resource 1 and 2, and also can perform the “Write” and “Execute” logical operations on Resource 1, but Server1 cannot perform the “Write” logical operation on Resource 2 and cannot perform the “Execute” logical operation on both Resources. The detail access control mechanism is defined in Section 7.2 Access Control.

[image:]
[bookmark: _Ref210461253][bookmark: _Toc365468501]Figure 14: Example of Supported operations and Associated Access Control Object Instance

[bookmark: _Toc365465916]Identifiers
The LWM2M Enabler defines specific identifiers for entities used within the LWM2M Protocol. These identifiers are defined in Table 12.
[bookmark: _Ref209524023][bookmark: _Toc365466026]Table 16: LWM2M Identifiers
	Identifier
	Semantics
	Description

	Endpoint Client Name
	URN
	Identifies the LWM2M Client on one LWM2M Server (including LWM2M Bootstrap Server).
Provided to the LWM2M Server during Registration, also provided to LWM2M Bootstrap Server when executing the Bootstrap procedure.
Recommended URN formats are documented in Section 6.2.1 Endpoint Client Name.

	LWM2M Bootstrap Server URI
	URI
	Uniquely identifies the LWM2M Bootstrap Server. Provided to the LWM2M Client during the Bootstrap procedure

	LWM2M Server URI
	URI
	Uniquely identifies the LWM2M Server. Provided to the Client during Bootstrap procedure.

	Short Server ID
	16-bit unsigned integer
	Uniquely identifies each LWM2M Server configured for the LWM2M Client. The identifier is assigned during the Bootstrap procedure.
Default Short Server ID is 0 and default Short Server ID MUST NOT be used for identifying the LWM2M Server.

	Human Readable Object URN
	URN for the OMA Management Object
	Assigned by the Object specification.

	Object ID
	16-bit unsigned integer
	Uniquely identifies the Object in the LWM2M Client. This identifier is assigned by OMA.

	Object Instance ID
	16-bit unsigned integer
	Uniquely identifies the Object Instance of the Object within the LWM2M Client. This identifier is assigned by LWM2M Client or LWM2M Server.

	Resource ID
	16-bit unsigned integer
	Uniquely identifies the Resource within the Object. Short integer ID, with a range assigned by the Object specification and unique to that Object, and a Reusable Resource ID range assigned by OMA and re-usable between Objects.

	Resource Instance ID
	16-bit unsigned integer
	Uniquely identifies the Resource Instance in the Resource. This identifier is assigned by LWM2M Client or LWM2M Server.

[bookmark: _Toc365465917]Endpoint Client Name
Following formats are RECOMMENDED for this identifier to guarantee uniqueness:

	Format

	UUID URN: Identify a device using a Universally Unique IDentifier (UUID). The UUID specifies a valid, hex digit character string as defined in [RFC4122]. The format of the URN is
urn:uuid:########-####-####-############
OPS URN: Identify a device using the format <OUI> "-" <ProductClass> "-" <SerialNumber> as defined in Section 3.4.4 of [TR-069]. The format of the URN is urn:dev:ops:<OUI> "-" <ProductClass> "-" <SerialNumber>.
OS URN: Identify a device using the format <OUI> "-"<SerialNumber> as defined in Section 3.4.4 of [TR-069]. The format of the URN is urn:dev:os:<OUI> "-"<SerialNumber>.
IMEI URN: Identify a device using an International Mobile Equipment Identifiers [3GPP-TS_23.003]. The IMEI URN specifies a valid, 15 digit IMEI. The format of the URN is urn:imei:###############
ESN URN: Identify a device using an Electronic Serial Number. The ESN specifies a valid, 8 digit ESN. The format of the URN is urn:esn:########
MEID URN: Identify a device using a Mobile Equipment Identifier. The MEID URN specifies a valid, 14 digit MEID. The format of the URN is urn:meid:##############

Other URN formats MAY be used. In particular, URN formats defined in [DMREPPRO] chapter 5.5 can be used.

[bookmark: _Toc365465918]Reusable Resources
When Objects are designed for a similar purpose, for example Objects for use in network management, or Objects for use in embedded device automation, similar resources are useful in more than one Object. For example in embedded device automation, Objects for different purposes may contain common resource types such as digital input, digital output, analogue input, analogue output, dimmer value, unit, min measurement, max measurement, value range etc.
If a resource can feasibly be re-used with the same meaning in multiple Object definitions, it can be defined as a Reusable Resource ID and registered with OMNA. Other Objects may then make use of this Reusable Resource ID in another Object definition. The definition of the Resource MUST be the same with the exception of the Multiple Resource, Mandatory and Description fields.

[bookmark: _Toc365465919]Data Formats for Transferring Resource Information
Four data formats are defined by the LWM2M Enabler in this section. The LWM2M Server MUST support all data formats. The plain text and opaque formats MUST be supported by the LWM2M Client. The LWM2M Client MUST support the TLV data format for Object Instance or multiple-instance Resource requests.
The Object specification defines the data format that a Resource supports, either plain text or opaque for singular Resources or TLV for multiple instance Resources.
In addition to the data formats defined in the Object specification, a LWM2M Client MAY choose to support the JSON format for Object Instance or multiple instance Resource requests.

[bookmark: _Toc365465920]Plain Text
The plain text format is used for ”Read” and “Write” logical operations on singular Resources where the value of the Resource is simply represented as an UTF-8 encoded string. This string can contain a character sequence, integer number, decimal number or any other sequence of valid UTF-8 characters as per Appendix A.
For example a request to the example client’s Device Object, Manufacturer Resource would return the following plain text payload:

Req: GET /3//0

Res: 2.04 Content
Open Mobile Alliance

This data format has a Media Type of application/vnd.oma.lwm2m+text

[bookmark: _Toc365465921]Opaque
The opaque format is used for ”Read” and “Write” logical operations on singular Resources where the value of the Resource is an opaque sequence of binary octets. This data format is used for binary Resources such as firmware images or application specific binary formats.
This data format has a Media Type of application/vnd.oma.lwm2m+opaque
[bookmark: _Toc365465922]TLV
For requests to Object Instance or Resource which supports multiple instances (Resource Instance), the binary TLV (Type-Length-Value) format is used to represent an array of values or a singular value using a compact binary representation, which is easy to process on simple embedded devices. The format has a minimum overhead per value of just 2 bytes and a maximum overhead of 5 bytes depending on the type of Identifier and length of the value. The maximum size of an Object Instance or Resource in this format is 16.7 MB. The format is self-describing, thus a parser can skip TLVs for which the resource is not known.
This data format has a Media Type of application/vnd.oma.lwm2m+tlv
The format is an array of the following byte sequence, where each array entry represents an Object Instance, Resource, or Resource Instance:

[bookmark: _Toc365466027]Table 17: TLV format and description
	Field
	Format and Length
	Description

	Type
	8-bits masked field:
0bxxxxxxxx (MSB is the bit following 0b)
Bit numbering is 0 for the LSB to 7 for the MSB
	Bits 7-6: Indicates the type of Identifier
00= Object Instance in which case the Value contains one or more Resource TLVs
01= Resource Instance with Value for use within a multiple Resource TLV
10= multiple Resource, in which case the Value contains one or more Resource Instance TLVs
11= Resource with Value

	
	
	Bit 5: Indicates the Length of the Identifier
0=The Identifier field of this TLV is 8 bits long
1=The Identifier field of this TLV is 16 bits long

	
	
	Bit 4-3: Indicates the type of Length.
00=No length field, the value immediately follows the Identifier field in is of the length indicated by Bits 6-8 of this field
01 = The Length field is 8-bits and Bits 6-8 MUST be ignored
10 = The Length field is 16-bits and Bits 6-8 MUST be ignored
11 = The Length field is 24-bits and Bits 6-8 MUST be ignored

	
	
	Bits 2-0: A 3-bit unsigned integer indicating the Length of the Value.

	Identifier
	8-bit or 16-bit unsigned integer as indicated by the Type field.
	The Object Instance, Resource, or Resource Instance ID as indicted by the Type field.

	Length
	0-24-bit unsigned integer as indicated by the Type field.
	The Length of the following field in bytes

	Value
	Sequence of bytes of Length
	Value of the tag. The format of the value depends on the Resource’s data type (See Appendix A).

Each TLV entry starts with a Type byte that indicates if the TLV contains an Object Instance, a Resource, multiple Resources, or a Resource Instance. Object Instance and Resource with Resource Instance TLVs contains other TLVs in their value. The hierarchy is as follows and may be up to 3 levels deep. The Object Instance TLV is only required if multiple Object Instances are returned in a request.

· Object Instance TLV, which contains
· Resource TLVs or
· multiple Resource TLVs, which contains
· Resource Instance TLVs

Single Object Instance Request Example
In this example, a request for the Device Object of the LWM2M example client is made (GET /3//). The client responds with a TLV payload including all of the readable resources. This TLV payload would have the following format. Since the Device Object has no Instances, no Object Instance TLV entry is needed. The total payload size with the TLV encoding is 121 bytes.

	TLV
	Type Byte
	ID Byte(s)
	Length Byte(s)
	Value
	Total Bytes

	Manufacturer Resource
	0b11 0 01 000
	0x00
	0x14 (20 bytes)
	Open Mobile Alliance [String]
	23

	Model Number
	0b11 0 01 000
	0x01
	0x16 (22 bytes)
	“Lightweight M2M Client” [String]
	25

	Serial Number
	0b11 0 01 000
	0x02
	0x09 (9 bytes)
	“345000123” [String]
	12

	Firmware Version
	0b11 0 00 011
	0x03
	(3 bytes)
	“1.0” [String]
	5

	Available Power Sources
	0b10 0 00 110
	0x06
	(6 byte)
	The next two rows
	2

	Available Power Sources[0]
	0b01 0 00 001
	0x00
	(1 byte)
	0X01 [8-bit Integer]
	3

	Available Power Sources[1]
	0b01 0 00 001
	0x01
	(1 byte)
	0X05 [8-bit Integer]
	3

	Power Source Voltage
	0b10 0 01 000
	0x07
	0x08 (8 bytes)
	The next two rows
	3

	Power Source Voltage[0]
	0b01 0 00 010
	0x00
	(2 bytes)
	0X0ED8 [16-bit Integer]
	4

	Power Source Voltage[1]
	0b01 0 00 010
	0x01
	(2 bytes)
	0X1388 [16-bit Integer]
	4

	Power Source Current
	0b10 0 00 111
	0x08
	(7 bytes)
	The next two rows
	2

	Power Source Current[0]
	0b01 0 00 001
	0x00
	(1 byte)
	0X7D [8-bit Integer]
	3

	Power Source Current[1]
	0b01 0 00 010
	0x01
	(2 bytes)
	0X0384 [16-bit Integer]
	4

	Battery Level
	0b11 0 00 001
	0x09
	(1 byte)
	0x64 [8-bit Integer]
	3

	Memory Free
	0b11 0 00 001
	0x0A
	(1 byte)
	0x0F [8-bit Integer]
	3

	Error Code
	0b10 0 00 011
	0x0B
	(3 byte)
	The next row
	2

	Error Code[0]
	0b01 0 00 001
	0x00
	(1 byte)
	0x00 [8-bit Integer]
	3

	Current Time
	0b11 0 00 100
	0x0D
	(4 byte)
	0x5182428F [32-bit Integer]
	6

	Time Zone
	0b11 0 00 110
	0x0E
	(6 byte)
	“+02:00” [String]
	8

	Supported Binding and Modes
	0b11 0 00 001
	0x0F
	(1byte)
	“U” [String]
	3

	Total
	121

Multiple Object Instance Request Example
In this example, a request for both the ACL Objects of the LWM2M example client is made (GET /2). The client responds with a TLV payload including both Object Instances (0 and 1) and their resources. This TLV payload would have the following format. The total payload size with the TLV encoding is 32 bytes.

	TLV
	Type Byte
	ID Byte(s)
	Length Byte(s)
	Value
	Total Bytes

	ACL Object Instance 0
	0b00 0 01 000
	0x00
	(17 bytes)
	The next 5 rows
	2

	Object ID
	0b11 0 00 001
	0x00
	(1 byte)
	0x03 [8-bit Integer]
	3

	ACL
	0b10 0 00 110
	0x02
	(6 bytes)
	The next 2 rows
	2

	 ACL [1]
	0b01 0 00 001
	0x01
	(1 byte)
	0b11 10 0000
	3

	 ACL [2]
	0b01 0 00 001
	0x02
	(1 byte)
	0b10 00 0000
	3

	Access Control Owner
	0b11 0 00 001
	0x03
	(1 byte)
	0x01 [8-bit Integer]
	3

	ACL Object Instance 1
	0b00 0 01 000
	0x01
	(17 bytes)
	The next 5 rows
	2

	Object ID
	0b11 0 00 001
	0x00
	(1 byte)
	0x04 [8-bit Integer]
	3

	ACL
	0b10 0 00 001
	0x02
	(6 bytes)
	The next 2 rows
	2

	 ACL [1]
	0b01 0 00 001
	0x01
	(1 byte)
	0b10 00 0000
	3

	 ACL [2]
	0b01 0 00 001
	0x02
	(1 byte)
	0b10 00 0000
	3

	Access Control Owner
	0b11 0 00 001
	0x03
	(1 byte)
	0x01 [8-bit Integer]
	3

	Total
	32

[bookmark: _Toc365465923]JSON
For requests to Object Instance or Resource which supports multiple instances (Resource Instance), a JSON format may be used where a set of values and metadata is represented. Each entry of the JSON format is a Resource, where the name is the URI path relative to the request URI.
The JSON is useful for returning multi-level Resources from the resource tree, for example requesting all Instances of an Object, Resources, and Resource Instances within a LWM2M Client within the same response. The JSON format also includes optional time fields, which allows for multiple versions of representations to be sent in the same payload. The time fields are only used when sending notifications.
This data format has a Media Type of application/vnd.oma.lwm2m+json

The format when an Object or Object Instance is requested follows the following syntax:
{"e":[
 {"n": "URI Path", "t": "Time", "v": Float Value, "bv": Boolean Value, "sv":"String Value"},
 {"n": "URI Path", "t": "Time", "v": Float Value, "bv": Boolean Value, "sv":"String Value"}],
 "bt":"Base Time"
}

[bookmark: _Toc365466028]Table 18: JSON format and description
	Field
	JSON Variable
	Mandatory?
	Description

	Object Root
	e
	Yes
	The root of the value array.

	URI Path
	n
	Yes
	The path of the resource relative to the request URI (/Object/Object Instance/Resource/Resource Instance)

	Time
	t
	No
	The time of the representation relative to the Base Current Time in seconds (a negative integer) for a notification. Required only for historical representations.

	Base Time
	bt
	No
	The base current time which the Time values are relative to as a Time data type (See Appendix B)

	Float Value
	v
	One value field is mandatory
	Value as a JSON float if the resource data type is integer or decimal.

	Boolean Value
	bv
	
	Value as a JSON Boolean if the resource data type is boolean.

	String Value
	sv
	
	Value as a JSON string for all other resource data types. Opaque data types must be Base64 encoded in the String Value field.

For example a request to Device Object of the LWM2M example client (Get /3//) would return the following JSON payload. This example has a size of 397 bytes.

{“e”:[
 {"n":"0","sv":"Open Mobile Alliance"},
 {"n":"1","sv":"Lightweight M2M Client"},
 {"n":"2","sv":"345000123"},
{"n":"3","sv":"1.0"},
{"n":"6/0","v":"1"},
 {"n":"6/1","v":"5"},
 {"n":"7/0","v":"3800"},
 {"n":"7/1","v":"5000"},
 {"n":"8/0","v":"125"},
 {"n":"8/1","v":"900"},
 {"n":"9","v":"100"},
 {"n":"10","v":"15"},
 {"n":"11/0","v":"0"},
 {"n":"13","v":"1367491215"},
 {"n":"14","sv":"+02:00"},
{"n":"15","sv":"U"}]
}

For example a notification about a Resource containing multiple historical representations of a Temperature Resource in the example could result in the following JSON payload:
{“e”:[
 {"n":"1/2","v":"22.4","t":"-5"},
 {"n":"1/2","v":"22.9","t":"-30"},
 {"n":"1/2","v":"24.1","t":"-50"}],
 "bt":"25462634"
}

[bookmark: _Toc365465924]Security
The LWM2M protocol is based on [CoAP] principles and utilizes the UDP and SMS transport channel bindings of the protocol. The LWM2M protocol utilizes the security mechanisms of these channel bindings to implement authentication, confidentiality, and data integrity features of the protocol between communicating LWM2M entities.
For authentication of communicating LWM2M entities, the LWM2M protocol requires that all communication between LWM2M Clients and LWM2M Servers as well as LWM2M Clients and LWM2M Bootstrap Servers are authenticated using mutual authentication. This means that a:
· LWM2M Client MUST authenticate a LWM2M Server prior to exchange of any information.
· LWM2M Server MUST authenticate a LWM2M Client prior to exchange of any information.
· LWM2M Client MUST authenticate a LWM2M Bootstrap Server prior to exchange of any information.
· LWM2M Bootstrap Server MUST authenticate a LWM2M Client prior to exchange of any information.

For confidentiality and data integrity of information between communicating LWM2M entities, the LWM2M protocol requires that all communication between LWM2M Clients and LWM2M Servers as well as LWM2M Clients and LWM2M Bootstrap Servers are encrypted and integrity protected. This means that a:
· LWM2M Client MUST encrypt and integrity protect data communicated to a LWM2M Server.
· LWM2M Server MUST encrypt and integrity protect data communicated to a LWM2M Client.
· LWM2M Client MUST encrypt and integrity protect data communicated to a LWM2M Bootstrap Server.
· LWM2M Bootstrap Server MUST encrypt and integrity protect data communicated to a LWM2M Client.

The LWM2M protocol specifies that authorization of LWM2M Servers to access Object Instances and Resources within the LWM2M Client is provided through Access Control Object Instances within the LWM2M Client.

[bookmark: _Toc365465925]UDP Channel Security
The UDP channel security for [COAP] is defined by the Datagram Transport Layer Security (DTLS) [RFC6347], which is the equivalent of TLS v1.2 [RFC5246] for HTTP and utilizes a subset of the Cipher Suites defined in TLS. (Refers to TLS Cipher Suite registry http://www.iana.org/assignments/tls-parameters/tls-parameters.xml)
The DTLS binding for CoAP is defined in Section 9 of [CoAP]. DTLS is a long-lived session based security solution for UDP. It provides a secure handshake with session key generation, mutual authentication, data integrity and confidentiality.
Since the LWM2M protocol utilizes DTLS for authentication, data integrity and confidentiality purposes, the LWM2M Client and LWM2M Server SHOULD keep a DTLS session in use for as long a period as can be safely achieved without risking compromise to the session keys and counters. If a session persists across sleep cycles, encrypted and integrity-protected storage SHOULD be used for the session keys and counters.
Note that the Client-Server relationship of DTLS (i.e., who initiated the handshake) is separate from the Client-Server relationship of LWM2M.
Considering that any device with a LWM2M Client can be managed by any LWM2M Server and LWM2M Bootstrap Server the choice of Cipher Suites is not limited to the list defined in Section 9 of [CoAP]. Due the sensitive nature of Bootstrap Information, a particular care has to be taken to ensure protection of that data inducing constraints and dependencies within LWM2M Client/ Bootstrap Server relationship according to the adopted security mode.
Concerning Bootstrap from Smartcard, the same care has to be taken and a secure channel between the Smartcard and the LWM2M Device SHOULD be established as described in Appendix G in reference to [GLOBALPLATFORM 3], [GP SCP03].
The keying material used to secure the exchange of information using DTLS session is obtained using one of the bootstrap modes defined in Section 5.1.2 Bootstrap Modes. The formats of the keying material carried in the LWM2M Server Access Security Object Instances are defined in Appendix D.1.1.
The Resources (i.e., “Security Mode”, “Public Key or Identity” , “Server Public Key or Identity” and “Secret Key”) in the LWM2M Server Access Security Object that are associated with the keying material are used either
1) for providing UDP channel security in “Device Registration”, “Device Management & Service Enablement”, and “Information Reporting” Interfaces if the LWM2M Server Access Security Object Instance relates to a LWM2M Server, or,
2) for providing channel security in Bootstrap Interface if the LWM2M Server Access Security Object instance relates to a LWM2M Bootstrap Server.

LWM2M Clients MUST either be directly provisioned for use with a target LWM2M Server (Manufacturer Pre-configuration bootstrap mode) or else be provisioned for secure bootstrapping with an LWM2M Bootstrap Server. Any LWM2M Client which supports Client or Server initiated bootstrap mode MUST support at least one of the following secure methods:
1) Bootstrapping with a strong (high-entropy) pre-shared secret, as described in 7.1.1. The cipher-suites defined in this section MUST NOT be used with only a low-entropy pre-shared secret.
2) Bootstrapping with a temporary, low-entropy pre-shared secret (such as a PIN, password and private serial number) using the cipher-suite TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256, as defined in RFC5489.
3) Bootstrapping with a public key or certificate-based method (as described in 7.1.2 and 7.1.3). The LWM2M client MUST use a unique key-pair, one which is unique to each LWM2M client.
For full interoperability, a LWM2M Bootstrap Server SHALL support all of these methods.

[bookmark: _Toc365465926]Pre-Shared Keys
A LWM2M server MUST support the Pre-Shared Key mode of DTLS with the Cipher Suites below:
· TLS_PSK_WITH_AES_128_CCM_8 [RFC6655] as defined in Section 9.1.3.1 of [CoAP]
· TLS_PSK_WITH_AES_128_CBC_SHA256 as defined in [RFC5487]
A LWM2M Client MUST support the Pre-Shared Key mode of DTLS with at least one of the Cipher Suites specified for the LWM2M Server. The LWM2M Client MUST use the value of the "Public Key or Identity" Resource for "PSK identity" in [RFC4279] and the value of "Secret Key" Resource for "PSK" in [RFC4279] as defined in Appendix D.1.
The LWM2M Client and LWM2M Server MAY support the use of other Cipher Suites.
For all Cipher Suites using AES in an LWM2M implementation, the hashing functions SHOULD be SHA256.
For all Cipher Suites using AES in an LWM2M implementation, the hashing functions SHALL NOT be SHA-1, and SHALL NOT be MD5, and SHALL NOT be any other hashing function that is weaker than SHA-1 and MD5 or otherwise deprecated.
A LWM2M Client negotiates with the LWM2M Server the best method during the DTLS handshake for establishing the DTLS session.
This security mode is appropriate for LWM2M deployments where there is an existing trust relationship between the LWM2M Server and Client. The same PSKs and PSK IDs need to be generated, and installed on the Client and Server. When using a Bootstrap Server, this security mode requires a 3-way trust relationship between the Bootstrap Server, LWM2M Server(s) and LWM2M Client(s): namely Bootstrap Server got the secret key (PSK) from Server(s), and should also share a pre-provisioned secret with Client(s) for ensuring secure DTLS Bootstrap communication.
Using Smartcard PSK provisioning needs no pre-existing trust relationship between LWM2M Server(s) and LWM2M Client(s). The pre-established trust relationship is simply between the LWM2M Server(s) and the SmartCard(s).

[bookmark: _Toc365465927]Raw Public Key Certificates
If a LWM2M Server supports Raw Public Key Certificates it MUST support the Cipher Suites below:
· TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 as defined in Section 9.1.3.2 of [CoAP]
· TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 as defined in [RFC5289]
If a LWM2M Client supports Raw Public Key Certificates it MUST support at least one of the Cipher Suites supported by the LWM2M Server.
The LWM2M Client MUST use the value of the "Public Key or Identity" Resource for its Raw Public Key certificate and the value of "Secret Key" Resource for its Private Key as defined in Appendix D.1.
If the LWM2M Client and LWM2M Server supports Raw Public Key Certificates, they MAY support the use of other Cipher Suites.
If the LWM2M Client or LWM2M Server supports ECDHE and ECDSA for Raw Public Key Certificates, SHA-1 SHALL NOT be used, and MD5 SHALL NOT be used, and any other hashing function that is weaker than SHA-1 and MD5 or otherwise deprecated SHALL NOT be used. The minimum key length SHALL be at least 256 bits.
This security mode is appropriate for LWM2M deployments where there is an existing trust relationship between the LWM2M Server and Client. When using a Bootstrap Server, this security mode requires a 3-way trust relationship between the Bootstrap Server, LWM2M Server(s) and LWM2M Client(s): namely Bootstrap Server got the Client private key from Server(s), and should also share a pre-provisioned secret with Client(s) for ensuring secure DTLS Bootstrap communication.
The LWM2M Client MUST use the value of the "Public Key or Identity" Resource for its Raw Public Key certificate and the value of the "Secret Key" Resource for its Private Key as defined in Appendix D.2.1. The client MUST also use the "Server Public Key or Identity Resource" to determine the expected value of the LWM2M Server's raw public key, and MUST check that the raw public key presented by the LWM2M server exactly matches this stored public key.
Similarly, the LWM2M Server MUST store its own private and public keys, and MUST have a stored copy of the expected client public key. The server MUST check that the raw public key presented by the LWM2M client exactly matches this stored public key.
The server and client SHALL use different key-pairs, and the LWM2M client MUST use a unique key-pair, one which is unique to each LWM2M client.
Using Smartcard RPK certificates provisioning needs no pre-existing trust relationship between LWM2M Server(s) and LWM2M Client(s). The pre-established trust relationship is simply between the LWM2M Server(s) and the SmartCard(s).

[bookmark: _Toc365465928]X.509 Certificates
The X.509 Certificate mode requires the use of X.509v3 Certificates [RFC5280].
Certificates used in LWM2M SHOULD be signed by a root certificate, either by a public root CA or a private root.
The LWM2M Client SHALL either directly trust the server's X509 certificate or trust it indirectly by verifying it is correctly signed by a trusted CA.

In the case of direct trust, the client MUST have a copy of the expected LWM2M server certificate stored in the corresponding “Server Public Key or Identity Resource” and MUST check that the certificate presented by the LWM2M server exactly matches this stored certificate.

In the case of indirect trust, the client MUST have a copy of the expected CA certificate and expected LWM2M Server Subject and/or SubjectAltName names stored in the corresponding “Server Public Key or Identity Resource”. The client MUST check that the certificate presented by the LWM2M server is correctly signed by the expected CA, and that it contains the expected Subject and/or SubjectAltName infomation. A LWM2M Server Certificate SHOULD include Subject and/or SubjectAltName fields listing its known DNS names and IP addresses which are included in the LWM2M Server URI resource of the LWM2M Access Security Object Instance. The LWM2M Server MAY use a wild card certificate for the DNS with the host represented as an * and the rest of the domain fully qualified (e.g., *.acme.com). A wildcard with only a top level domain is not permitted (e.g., *.com). The LWM2M Client MUST check that these fields of the Certificate match the URI used to register with the LWM2M Server.
Similarly, the LWM2M Server SHALL either directly trust the client's X509 certificate or trust it indirectly by verifying it is correctly signed by a trusted CA certificate. In the case of direct trust, the server SHALL store a copy of the expected LWM2M client certificate and MUST check that the certificate presented by the LWM2M client exactly matches this stored certificate. In the case of indirect trust, the server SHALL store a copy of the expected CA certificate and expected LWM2M Client Subject and/or SubjectAltName names. The server MUST check that the certificate presented by the LWM2M client is correctly signed by the expected CA certificate, is within its stated validity period, and contains the expected Subject and/or SubjectAltName information. A LWM2M Client Certificate MUST include the Endpoint Name parameter used to register the device in the Subject Common Name (CN) field of the Certificate. Upon registration, the LWM2M Server MUST check that this CN field matches the Endpoint Name parameter of the registration message during authentication and MUST reject the handshake if these fields do not match.
If a LWM2M server supports X.509 Certificate mode it MUST support the Cipher Suites below:
· TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 as defined in Section 9.1.3.3 of [CoAP].
· TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 as defined in [RFC5289]
If a LWM2M Client supports X.509 Certificate mode it MUST support at least one of the Cipher Suites supported by the LWM2M Server. The LWM2M Client MUST use the value of the "Public Key or Identity" Resource for its X.509 certificate and the value of "Secret Key" Resource for its Private Key as defined in Appendix D.1.
If the LWM2M Client and LWM2M Server supports X.509 Certificate mode, they MAY support the use of other Cipher Suites.
If the LWM2M Client or LWM2M Server supports ECDHE and ECDSA for X.509 Certificate mode, SHA-1 SHALL NOT be used, and MD5 SHALL NOT be used, and any other hashing function that is weaker than SHA-1 and MD5 or otherwise deprecated SHALL NOT be used. The minimum key length SHALL be at least 256 bits.
This security mode does not require a pre-existing trust relationship (if all entities used X.509 certificate security mode) between the LWM2M Client and LWM2M Server, nor between a LWM2M Bootstrap Server and a LWM2M Client. However, in the case of indirect trust, all entities need a trust relationship with the CA(s) that issued the certificates used in LWM2M Servers and Clients.
Using Smartcard with certificates provisioning needs no pre-existing trust relationship between LWM2M Server(s) and LWM2M Client(s). The pre-established trust relationship is simply between the LWM2M Server(s) and the SmartCard(s).

A LWM2M Client SHOULD wait until it has accurate absolute time before contacting the LWM2M Server or LWM2M Bootstrap Server. If the client uses direct trust, and has no accurate absolute time, it MUST ignore those components of the LWM2M Server or LWM2M Bootstrap Server certificate that involve absolute time, e.g. not-valid-before and not-valid-after certificate restrictions. If the client uses indirect trust, and has no accurate absolute time, it MUST otherwise establish that the LWM2M Server or LWM2M Bootstrap Server certificate is within its validity period. For example, the client MAY just know the date (or year), and the server certificate MAY have a long validity period, extending well before and after the expected time period needed to bootstrap the device.

[bookmark: _Toc365465929]“NoSec” mode
It is highly recommended to always use LWM2M with one of the security mechanisms described above. However, there are few scenarios and use cases where security is provided by lower layers. For example LWM2M devices in a controlled environment behind a gateway, or, tests focussing first on other functions before performing end-to-end tests including security.

[bookmark: _Toc365465930]Access Control
[bookmark: _Toc365465931]Access Control Object
Access Control Object overview
In the context a LWM2M Client is supporting a single LWM2M Server only, this Server MUST have full Access Right on all Object Instances present in the Client, and there is no need of creating Access Control Object Instances except the ones managed by Bootstrap Interface (see section on Access Control Object Instantiation).
In the context a LWM2M Client is supporting two or more LWM2M Servers, there is a need to determine which operation on a given Object Instance is authorized for which LWM2M Server.
· The operations are the ones specified for Development & Service Interfaces, as well as for Discover & Notification Interfaces (Section 5.3, 5.4).
· Authorization for operation on a given Object Instance MUST be delivered by the LWM2M Server which has created this Instance (Access Control Owner).
· An Access Control Object Instance is assigned per Object Instance (see Figure 15), for registering which operations can be performed by a given LWM2M Server on this associated Object Instance.
Within the Access Control Object Instance is an ACL Resource which can have several Instances (see Figure 15):
· Each ACL Resource Instance is associated to a different Server and represents the Access Right determining which operations a LWM2M Server can perform on the Object Instance.
· For realizing a simple association between an ACL Resource Instance and a given Server, the Short Server ID value is assigned to this ACL Resource Instance ID (see Figure 15).
· A default ACL Resource Instance MAY be used to grant access rights to LWM2M Servers for which no specific ACL Resource Instances have been declared. The ID of this default ACL Resource Instance MUST be 0.
· Each Access Control Object Instance MUST be managed by one LWM2M Server called Access Control Owner.
· The Access Control Object is further defined and described in Appendix D.3 and Examples of Access Control Object Instances are presented in Appendix E.

[bookmark: _Toc365468502]Figure 15 : Illustration of the relations between the LWM2M Access Control Object and the other LWM2M objects

Access Control Object instantiation
Access Control Object will be instantiated by the LWM2M Client under two circumstances:
1st case occurs during a Bootstrap procedure for specifying which Server is authorized to instantiate (Create operation) which Object.
2nd case occurs in the context of multi-Servers support only when a LWM2M Server wants to instantiate a given Object using a Create operation procedure.

1. Bootstrap procedure case
During that procedure, for each Object supported by the LWM2M Client, an Access Control Object Instance per Object MUST be created with the resources value set as follows:

	Resource Name
	Resource ID
	Value

	Object ID
	0
	ID of the targeted Object

	Object Instance ID
	1
	MAX_INTEGER=0xFFFF (irrelevant)

	ACL
	2
	1 instance per Server authorized to create instance of the targeted Object for that Client (1)
4th lsb: set for Create

	Access Control Owner
	3
	MAX_INTEGER=0xFFFF (meaning : managed by Bootstrap Interface)

(1) In any such a created Access Control Object Instance, an ACL instance per supported Server authorized to create Instance of the associated Object, MUST also be created with the “Create” Access Right resource value.

2. Create operation procedure case (multi-Servers context)
When a LWM2M Server is authorized to create a given Object Instance (see section 7.2.2) in the LWM2M Client, the Client instantiates at the same time an Access Control Object with the following resource values.The Access Control Owner resource is set with the requester LWM2M Server Short Server ID.

	Resource Name
	Resource ID
	Value

	Object ID
	0
	ID of the targeted Object

	Object Instance ID
	1
	ID of the newly created Object Instance

	ACL
	2
	None yet

	Access Control Owner
	3
	The Short Server ID of the LWM2M Server requesting the Object Instantiation

For information on ACL Usage: This Access Control Object Instance will be updated, when a given Server needs to have access to the associated Object Instance; the Server declared as the “Access Control Owner Server has to send a “Write” operation
· to instantiate an ACL Resource having the targeted Short Server ID as ACL Instance ID,
· and to affect the appropriate Access Right (R,W,D,E) for that supported Server on such an Object Instance.

[bookmark: _Toc358709843][bookmark: _Toc365465932]Authorization
The LWM2M Client authorizes operations requested by a LWM2M Server either on an Object Instance, or on one or several targeted Resources after performing a two-steps check:
· 1st step : the LWM2M Client gets the Access Right of the targeted Object Instance (as described in section 7.2.3) - in using the appropriate ACL Resource Instance if present - and then checks this Access Right against the Server requested operation.
· 2nd step : when – through step 1 procedure – the Client grants access to the Server, the LWM2M Client has still to check if this Server requested operation is supported by the targeted Resource or Resources.

The next subsection specifies how the LWM2M Client obtains the Access Rright on the Object Instance for the LWM2M Server; others sub-sections provide the rules a LWM2M Client has to follow for authorizing an operation either on an Object Instance, or, on one or on several Resources.
The LWM2M Object specification defines the operations that are allowed to be performed on each Resource within an Object Instance. The operations allowed by the LWM2M Client on a given Resource apply to all Instances of that Resource.
The LWM2M Server and the LWM2M Client MUST support the authorization procedure described in Section 7.2.2 and its sub-sections.

7.2.1
7.2.1.1 Obtaining Access Right
For creating an Object Instance with the “Create” operation, the LWM2M Server MUST get the Access Right from the ACL Resource - if it exists - associated to this Server on that Object, contained in Access Control Object provisioned during Bootstrap procedure (Access Control Owner is MAX_INTEGER=0xFFFF). If this Access Right has not the “Create” value, or cannot be obtained, so the Server has no Access Right.
For obtaining the Access Right for a LWM2M Server on an Object Instance for any other operation than “Create”, the LWM2M Client MUST perform the following procedure:
1. If the LWM2M Client has only one LWM2M Server Object Instance, the LWM2M Server has full access rights without checking Access Control Object Instance.
2. If the LWM2M Client has more than one LWM2M Server Object Instance, the LWM2M Client gets an Access Control Object Instance associated with the Object Instance the LWM2M Server has requested access to and MUST follow the procedure below:
A. If the Client has an ACL Resource Instance for the LWM2M Server, the LWM2M Client gets the access right from that ACL Resource Instance.
B. If the Client doesn’t have ACL Resource Instance for the Server, the LWM2M Client gets the Access Right from the default ACL Resource Instance if it exists.
C. If the Client doesn’t have default ACL Resource Instance then, the LWM2M Server has no access right, and an “Access Right Permission Denied” error code is reported to the Server.

7.2.1.2 [bookmark: _Ref338172719]Operation on Resource
When the LWM2M Server accesses a Resource, the LWM2M Client MUST obtain an Access Right for the LWM2M Server on the Object Instance that Resource belongs to according to Section 7.2.2.1 and MUST checks whether the Access Right is granted prior to perform the requested operation.
· If the operation is not permitted, the LWM2M Client MUST send an “Access Right Permission Denied” error code to the LWM2M Server.
· If the operation is permitted, the LWM2M Client verifies whether the Resource supports the operation.
· If the operation is not supported by the Resource, the LWM2M Client MUST send an “Operation is not supported” error code to the LWM2M Server.
· If the Resource supports the operation, the LWM2M Client MUST performs the requested operation.

7.2.1.3 Operation on Object Instance
When the LWM2M Server accesses an Object Instance, the LWM2M Client MUST obtain an access right for the LWM2M Server on Object Instance according to Section 7.2.2.1 and MUST check whether the Access Right is granted prior to perform the requested operation.
· If the operation is not permitted, the LWM2M Client MUST send an “Access Right Permission Denied” error code to the LWM2M Server.
· If the operation is permitted, the following cases apply, according to the requested operation:
· For the “Write” operation on an Object Instance, the LWM2M Client MUST perform the requested action , if all the Resources conveyed in the operation are allowed to perform the “Write” operation. If any Resource does not support the “Write”operation, the LWM2M Client MUST inform the LWM2M Server, the Object Instance doesn’t perform the requested “Write” operation by sending a “Operation is not supported” error code.
· For the “Read” operation, the LWM2M Client MUST retrieve all the Resources except the Resource(s) which doesn’t support the “Read” operation and sends the retrieved Resource(s) information to the LWM2M Server.
· For the “Execute” operation, the LWM2M Client MUST NOT perform the operation, and MUST send an “Operation is not supported” error code to the LWM2M Server.
· For the “Create” operation, the LWM2M Client MUST perform the operation on the Object Instance only if all the Resources conveyed in the operation are writable and all the mandatory Resources are specified. If any conveyed Resource does not support the “Write” operation, the LWM2M Client MUST inform the LWM2M Server it doesn’t support the operation by sending “Operation is not supported” error code. If all the mandatory Resources are not specified, the LWM2M Client MUST send an “Bad Request” error code to the LWM2M Server.
· For the “Delete” , “Observe”, “Write Attribute”, or “Discover” operations, the LWM2M Client MUST perform the requested operation: this operation could have no effect on a particular Ressource if this Ressource doesn’t support the requested operation (for instance modification of a not “readable” Ressource of an “Observed” Object Instance, will trigger no Client’s Notify operation).

7.2.1.4 Operation on Object
Some operations - Write,Write Attribute, Execute - do not apply on Objects, so if a given LWM2M Server still attempt to do so, the LWM2M Client MUST NOT perform such an operation and MUST send an “Operation is not supported” error code to this Server.
· The other operations - “Create”, “Discover”, “Read” and “Observe”- have specific rules regarding Access Right.The “Create” operation on Object is no more than a “Create” operation on an Object Instance (Object Instance ID is automatically generated by the Client) and the rules specified for the Create on Object Instance in section 7.2.2.3 apply for this operation.
· The “Discover” operation on Object is specific in the sense, that no Access Right is needed; the LWM2M Client MUST perfom the operation.
· A “Read” or “Observe” operation on an Object is no more than a Client internal iteration of the same operation on all the Instances of that Object with the benefit of reducing the traffic on network (a single Server operation request and a single Client associated answer): in particular all the access rules specified on Section 7.2.2.3 for “Operation on Object Instance”, apply on any Object Instance concerned by the operation.
When the LWM2M Server issues an operation on an Object, the LWM2M Client has to obtain the Access Right for this Server on each Object Instance according to Section 7.2.2. and has to check for each particular Object Instance whether the Access Right is granted prior to perform the requested operation on it.
In particular, the following cases apply, according to the requested operation:
· For the “Read” Object operation, the LWM2M Client MUST retrieve all the Object Instances for which the LWM2M Server has “Read” Access Right; for each of these qualified Object Instances, the LWM2M Client MUST retrieve all the Resources except the Resources which do not support the “Read” operation. The Client MUST then aggregate in the response to the Server, all the information individually produced by the operation on each of these Object Instances.
· For the “Observe” operation, the LWM2M Client MUST perform the operation on all the Object Instances for which the LWM2M Server has “Read” Access Right; for each of these qualified Object Instances, the LWM2M Client MUST perform the “Observe ” operation.

7.2.1.5 Observe/Notify Operation Consideration
If the LWM2M Client needs to send a “Notify” operation containing an Object Instance or a Resource to the Server, the LWM2M Client MUST check whether the LWM2M Server is authorized for the “Read” operation. If the LWM2M Server is not authorized, the Client MUST NOT send the “Notify” operation.

[bookmark: _Toc365465933]Transport Layer Binding and Encodings
[bookmark: _Toc51147387][bookmark: _Toc51149241]The LWM2M interfaces use the IETF Constrained Application Protocol [CoAP] as an underlying transfer protocol across IP and SMS bearers. This protocol defines the message header, request/response codes, message options and retransmission mechanisms. This section defines the subset of features from the IETF CoAP specification to be used by LWM2M interfaces.
[bookmark: _Toc365465934]Required Features
For realization of the LWM2M interfaces, only the basic binary CoAP message header, and a small subset of options are required. This section explicitly defines the features of the CoAP standard that are required for LWM2M.
· The 4-byte binary CoAP message header is defined in Section 3 of [CoAP]. This same base message is used for Request and Response interactions.
· Confirmable, Acknowledgement and Reset messages MUST be supported. The Reset message is used as a message layer error message in response to a malformed Confirmable message. Non-Confirmable messages MAY be used by a Client for sending Information Reporting notifications as per [Observe].
· GET, PUT, POST and DELETE methods MUST be supported. LWM2M Operations map to these methods.
· A subset of Response Codes MUST be supported for LWM2M response message mapping.
· The Uri-Path Option MUST be supported to indicate the identifier of the interface, Object Instance and Resource being requested.
· The Location-Path Option MUST be supported to indicate the handle of a registration for future update and delete operations.
· The Uri-Query Option MUST be supported.
· The Content-Type Option MAY be used to indicate the media type of the payload. A default value of plain/text is assumed, allowing this option to be elided for most payloads.
· The Token Option MAY be used to enable multiple requests in parallel with an endpoint, and MUST be supported for the Information Reporting interface.
[bookmark: _Toc365465935]URI Identifier & Operation Mapping
Although CoAP supports a URI in requests, it is not used in the same way as in HTTP. The URI in CoAP is broken down into binary parts, minimizing overhead and complexity. In LWM2M only path segment and query string URI components are needed. The URI path is used to simply identify the interface, Object Instance or Resource that the request is for, and is encoded in Uri-Path options. The LWM2M Registration interface also makes use of query string parameters to pass on meta-data with the request separately from the payload. Each query parameter is encoded in a Uri-Query Option. Likewise, the LWM2M Operations for each interface are mapped to CoAP Methods.
[bookmark: _Toc365465936]Firewall/NAT
For a firewall to support LWM2M, it should be configured to allow outgoing UDP packets to destination port 5683 (other ports can be configured), and allow incoming UDP packets back to the source address/port of the outgoing UDP packet for a period of at least 240 seconds. These UDP packets may contain DTLS or CoAP payloads. When a firewall is configured as such any Clients behind it should use Queue Mode.
For a firewall to support LWM2M it can be configured to allow both outgoing and incoming UDP packets to destination port 5683 (other ports can be configured). These UDP packets may contain DTLS or CoAP payloads. When a firewall is configured as such any Clients behind it are not required to use Queued Mode, but may use it for other reasons (e.g. a battery powered sleeping device).
Any Clients behind a NAT can use Queued Mode. There are other mechanisms to transverse a NAT, however they are out of scope for the LWM2M Enabler.

[bookmark: _Toc365465937]Registration Interface
The registration interface is used by a LWM2M Client to register with a LWM2M Server, identified by the LWM2M Server URI. Registration is performed by sending a CoAP POST to the LWM2M Server URI, with registration parameters passed as query string parameters as per Table 17 and Object and Object Instances included in the payload as specified in Section 5.2.1. The response includes Location-Path Options, which indicate the path to use for updating or deleting the registration. The server MUST return a location under the /rd path segment.
Registration update is performed by sending a CoAP PUT to the Location path returned to the LWM2M Client as a result of a successful registration.
De-registration is performed by sending a CoAP DELETE to the Location path returned to the LWM2M Client as a result of a successful registration.
[bookmark: _Toc365466029]Table 19: Operation to Method and URI Mapping
	Logical Operation
	CoAP Method
	URI
	Success
	Failure

	Register
	POST
	/rd?ep={Endpoint Client Name}<={Lifetime}&sms={MSISDN}
&lwm2m={version}&b={binding}
	2.01 Created
	4.00 Bad Request

	Update
	PUT
	/{location}?lt={Lifetime}&sms={MSISDN}
&b={binding}
	2.04 Changed
	4.00 Bad Request

	De-register
	DELETE
	/{location}
	2.02 Deleted
	4.00 Bad Request

[image:]
[bookmark: _Toc365468503]Figure 16: Example register, update and de-register logical operation exchanges (shorthand in [CoAP] example style, actual messages using CoAP binary headers)

[bookmark: _Toc365465938]Bootstrap Interface
The bootstrap interface is used to optionally configure a LWM2M Client so that it can successfully register with a LWM2M Server. The client bootstrap operation is performed by sending a CoAP POST request to the LWM2M Bootstrap Server at the /bs path including the Endpoint Client Name as a query string parameter.
In client initiated bootstrap, when the Bootstrap Server receives Request Bootstrap logical operation, the Bootstrap Server performs Write and/or Delete logical operation. In server initiated bootstrap, the Bootstrap Server performs Write logical operation. The Write or Delete logical operation targets to an Object Instance or a Resource. The Write and Delete logical operation can be sent multiple times. Only in Bootstrap Interface, Delete logical operation MAY target to “/” URI to delete all the existing Object Instances in the LWM2M Client for initializing before LWM2M Bootstrap Server sends Write logical operation(s) to the LWM2M Client. Different from Write operation in Device Management and Service Enablement interface, the Client MUST write the payload regardless of an existence of the targeting Object Instance or Resource.
[bookmark: _Toc365466030] Table 20: Operation to Method and URI Mapping
	Logical Operation
	CoAP Method
	URI
	Success
	Failure

	Request Bootstrap
	POST
	/bs?ep={Endpoint Client Name}
	2.04 Changed
	4.00 Bad Request

	Write
	PUT
	/{Object ID}/{Object Instance ID}/ {Resource ID}
	2.04 Changed
	4.00 Bad Request

	Delete
	DELETE
	/{Object ID}/{Object Instance ID}
	2.02 Deleted
	4.00 Bad Request

[image:]
[bookmark: _Toc365468504]Figure 17: Example of Client initiated Bootstrap exchange.

[image:]
[bookmark: _Toc365468505]Figure 18: Example of Server initiated Bootstrap exchange.

[bookmark: _Toc365465939]Device Management & Service Enablement Interface
The Device Management & Service Enablement Interface is used to access an Object Instance or an individual Resource of an Object Instance. An Object Instance is identified by the path /{Object ID}/{Object Instance ID}. If Object doesn’t support multiple Object Instances, the Object Instance is identified by the path /{Object ID}/0. A Resource is identified by the path /{Object ID}/{Object Instance ID}/{Resource ID}.
An Object Instance or Resource is Read by sending a CoAP GET to the corresponding path. The response includes the value in the corresponding Plain Text, TLV or JSON format.
An Object Instance or Resource is Written to by sending a CoAP PUT to the corresponding path. The request includes the value to be written in the corresponding Plain Text, TLV or JSON format.
A Resource is Executed by sending a CoAP POST to the corresponding path.
An Object Instance is created by sending a CoAP POST to the corresponding path. The request includes the value to be written in the corresponding TLV or JSON format.
An Object Instance is deleted by sending a CoAP DELETE to the corresponding path.
Resource attributes MAY be set by a LWM2M Server using the Write Operation on a Resource ID, and can be accessed using the Read Operation. One or more attributes can be written at a time, whereas only one attribute can be read at a time. The values of these attributes are used by the Information Reporting interface to determine how often Notifications are sent regarding that Resource. A LWM2M Client MAY support a set of these attributes for each LWM2M Server it is configured for.

[bookmark: _Toc365466031]Table 21: Operation to Method Mapping
	Logical Operation
	CoAP Method
	Path
	Success
	Failure

	Read
	GET
	/{Object ID}/{Object Instance ID}/{Resource ID}
	2.05 Content
	4.00 Bad Request, 4.04 Not Found, 4.05 Method Not Allowed

	Discover Resources
	GET Accept: application/link-format
	/{Object ID}/{Object Instance ID}/{Resource ID}
	2.05 Content
	4.00 Bad Request, 4.04 Not Found, 4.05 Method Not Allowed

	Write
	PUT
	/{Object ID}/{Object Instance ID}/{Resource ID} ?pmin={minimum period}&pmax={maximum period}>={greater than}<={less than}&st={step}
	2.04 Changed
	4.00 Bad Request, 4.04 Not Found, 4.05 Method Not Allowed

	Write Attributes
	PUT
	/{Object ID}/{Object Instance ID}/{Resource ID} ?pmin={minimum period}&pmax={maximum period}>={greater than}<={less than}&st={step}
	2.04 Changed
	4.00 Bad Request, 4.04 Not Found, 4.05 Method Not Allowed

	Execute
	POST
	/{Object ID}/{Object Instance ID}/{Resource ID}
	2.04 Changed
	4.00 Bad Request, 4.04 Not Found, 4.05 Method Not Allowed

	Create
	POST
	/{Object ID}/{Object Instance ID}
	2.01 Created
	4.00 Bad Request, 4.04 Not Found, 4.05 Method Not Allowed

	Delete
	DELETE
	/{Object ID}/{Object Instance ID}
	2.02 Deleted
	4.00 Bad Request, 4.04 Not Found, 4.05 Method Not Allowed

[image:]
[bookmark: _Toc365468506]Figure 19: Example of Device Management & Service Enablement interface exchanges.

[image:]
[bookmark: _Toc365468507]Figure 20: Example of Object Creation and Deletion.

[bookmark: _Toc365465940]Information Reporting Interface
Periodic and event-triggered reporting about Resource values from the LWM2M Client to the LWM2M Server is achieved through CoAP Observation [OBSERVE]. This simple mechanism allows the LWM2M Server to send an Observe GET request for an Object, Object Instance, Resource which results in asynchronous notifications whenever that Object Instance changes (periodically or as a result of an event). Token of CoAP layer is used to match the asynchronous notifications with the Observe GET. The LWM2M Server can cancel the Observe operation by sending CoAP GET without Observe option. Cancel Observation works as the same as Read operation in CoAP transport layer binding. The LWM2M Server may set the Observe attributes of a Resource to affect the behavior its notifications using the ”Write Attributes” logical operation (see Section 5.3.4Error! Reference source not found.).

[bookmark: _Toc365466032]Table 22: Operation to Method Mapping
	Logical Operation
	CoAP Method
	Path
	Success
	Failure

	Observe
	GET with Observe option
	/{Object ID}/{Object Instance ID}/{Resource ID}
	2.05 Content with Observe option
	4.00 Bad Request, 4.04 Not Found, 4.05 Method Not Allowed

	Cancel Observation
	GET
	/{Object ID}/{Object Instance ID}/{Resource ID}
	2.05 Content
	4.00 Bad Request, 4.04 Not Found
4.01 Unauthorized, 4.05 Method Not Allowed

	Notify
	Asynchronous Response
	
	2.04 Changed
	

[image:]
[bookmark: _Toc365468508]Figure 21: Example of an Information Reporting exchange.

[bookmark: _Toc365465941]Queue Mode Operation
When the Client has registered with low communication access availability Queue Mode (it has included the “q” query string parameter when registering), The Server does not immediately send downlink requests on this interface, but instead waits until the Client is online.
A Client lets the Server know it is awake by sending a registration update message as a Confirmable message. The Server then makes any queued requests to the Client in a serial fashion. The Client MUST wait at least ACK_TIMEOUT [COAP] seconds from the last CoAP message it sent to the Server before intentionally going offline. If the Server is not successful in sending a request, then it stops emptying the queue and keeps the request for the next time the Client is online.
A typical Queue Mode sequence follows the following steps:
1. The LWM2M Client registers to the LWM2M Server and requests the LWM2M Server to run in Queue mode by using the correct Binding value in the registration.
2. The LWM2M Client uses the CoAP ACK_TIMEOUT parameter to set a timer for how long it shall stay awake since last sent message to the LWM2M Server. After ACK_TIMEOUT without any messages from the LWM2M Server, the LWM2M Client SHOULD sleep until sending next periodic “Update” operation.
3. When LWM2M Server receives a message from the Client (e.g. a notification or a registration update), it checks its request queue for the LWM2M Client and performs the needed CoAP operation(s) (e.g. GET, PUT, and POST). Note: There could be several requests in the queue). Each request is sent serially to the Client, waiting for request to be Acknowledged before sending the next request. If a request is unsuccessful then it is returned to the queue. The LWM2M Client may have pending Observer notifications.

Below is an example flow for Queue Mode in relation to Device Management & Service Enablement Interface.

[bookmark: _Toc365468509]Figure 22: Example of Device Management & Service Enablement interface exchanges for Queue Mode.

Below is an example flow for Queue Mode in relation to Information Reporting Interface

[bookmark: _Toc365468510]Figure 23: Example of an Information Reporting exchange for Queue Mode.

Queue Mode may also be used to reach LWM2M Clients behind a NAT using an SMS based trigger mechanism. Typically, a LWM2M Client registers to the LWM2M Server with binding preference set to UDP with queue mode and SMS Below is an example flow for Queue Mode in relation to Information Reporting Interface using SMS Registration Update Trigger:

[bookmark: _Toc365468511]Figure 24: Example of Device Management & Service Enablement interface exchanges for Queue Mode with SMS Registration Update Trigger.

[bookmark: _Toc365465942]Response Codes
This Chapter lists available response codes of each logical operation. The codes are divided into each interface. These are the only valid response codes defined in for the LWM2M Enabler.
[bookmark: _Toc365466033]Table 23: Response Codes
	Logical Operations
	Available CoAP Response Codes
	Reason Phrase

	Device Discovery and Registration Interface

	Register
	2.01 Created
	Register operation is completed successfully

	
	4.00 Bad Request
	The mandatory parameter is not specified or unknown parameter is specified
Unknown Endpoint Client Name

	
	4.09 Conflict
	The Endpoint Client Name results in a duplicate entry on the LWM2M Server.

	Update
	2.04 Changed
	Update operation is completed successfully

	
	4.00 Bad Request
	The mandatory parameter is not specified or unknown parameter is specified or URI is not found

	De-register
	2.02 Deleted
	De-register operation is completed successfully

	
	4.00 Bad Request
	URI is not found

	 Bootstrap Interface

	 Request Bootstrap
	2.04 Changed
	Request Bootstrap is completed successfully

	
	4.00 Bad Request
	Unknown Endpoint Client Name

	Write
	2.04 Changed
	Write operation is completed successfully

	
	4.00 Bad Request
	The format of data to be written is different
Target (i.e., Object) is not allowed for Write operation

	 Device Management and Service Enablement Interface

	Create
	2.01 Created
	Create operation is completed successfully

	
	4.00 Bad Request
	Target (i.e., Resource) is not allowed for Create operation
Target (i.e., Object) already exists

	
	4.01 Unauthorized
	Access Right Permission Denied

	Read
	2.05 Content
	Read operation is completed successfully

	
	4.00 Bad Request
	

	
	4.04 Not Found
	URI of Read operation is not found

	
	4.01 Unauthorized
	Access Right Permission Denied

	
	4.05 Method Not Allowed
	Operation is not supported

	Write
	2.04 Changed
	Write operation is completed successfully

	
	4.00 Bad Request
	The format of data to be written is different
Target (i.e., Object) is not allowed for Write operation

	
	4.04 Not Found
	URI of Write operation is not found

	
	4.01 Unauthorized
	Access Right Permission Denied

	
	4.05 Method Not Allowed
	Access Type Permission Denied

	Delete
	2.02 Deleted
	Delete operation is completed successfully

	
	4.00 Bad Request
	Target (i.e., Object) is not allowed for Delete operation

	
	4.01 Unauthorized
	Access Right Permission Denied

	Execute
	2.04 Changed
	Execute operation is completed successfully

	
	4.00 Bad Request
	Target (i.e., Object, Object Instance) is not allowed for Execute operation

	
	4.04 Not Found
	URI of Execute operation is not found

	
	4.01 Unauthorized
	Access Right Permission Denied

	
	4.05 Method Not Allowed
	Operation is not supported

	Information Reporting Interface

	Observe
	2.05 Content
	Observe operation is completed successfully

	
	4.00 Bad Request
	Target (i.e., Object) is not allowed for Observe operation

	
	4.04 Not Found
	URI of Observe operation is not found

	
	4.05 Method Not Allowed
	Operation is not supported

	Cancel Observation
	Response codes for Cancel Observation are the same as the codes for Read operation

	Notify
	2.04 Changed
	Notify operation is completed successfully

[bookmark: _Toc365465943]Transport Bindings
[bookmark: _Toc365465944]UDP Binding
The CoAP binding for UDP is defined in [CoAP]. The protocol has a IANA registered scheme of coap:// and a default port of 5683. The UDP binding is used in NoSec (no security) mode. Reliability over the UDP transport is provided by the built-in retransmission mechanism of CoAP.

[bookmark: _Toc365465945]SMS Binding
CoAP is used over SMS in this transport binding by placing a CoAP message in the SMS payload using 8-bit encoding. SMS concatenation MAY be used for messages larger than 140 characters. CoAP retransmission is disabled for this binding. An LWM2M Client indicates the use of this binding by including a parameter (sms) in its registration to the LWM2M Server including the node’s MSISDN number. The LWM2M Client MAY interact with the server using both UDP and SMS bindings.
[bookmark: _Toc365465946]Change History	(Informative)
[bookmark: _Toc365465947]Approved Version History
	Reference
	Date
	Description

	
	
	

	
	
	

	
	
	

[bookmark: _Toc365465948]Draft/Candidate Version <current version> History
	Document Identifier
	Date
	Sections
	Description

	Draft Versions
OMA-TS-LightweightM2M-V1_0-20120904-D
	04 Sep 2012
	All
	TS baseline agreed as in
 OMA-DM-LightweightM2M-2012-0078-INP_TS_kick_off

	Draft Version
OMA-TS-LightweightM2M-V1_0-20120918-D
	18 Sep 2003
	6, 7
	Incorporates input to committee:
OMA-DM-LightweightM2M-2012-0083R01-CR_Skeleton_Base_Line
OMA-DM-LightweightM2M-2012-0090R02-CR_TS_Resource_Model
OMA-DM-LightweightM2M-2012-0061R04-CR_Interfaces

	Draft Version
OMA-TS-LightweightM2M-V1_0-20121024-D
	24 Oct 2012
	6, 7, Appendix A
	OMA-DM-LightweightM2M-2012-0095R01-CR_TS_Interface_and_Resource_Additions

	Draft Version
OMA-TS-LightweightM2M-V1_0-20121030-D
	30 Oct 2012
	7, 8
	OMA-DM-LightweightM2M-2012-0097R01-CR_Identifiers_and_Security_Considerations

	Draft Version
OMA-TS-LightweightM2M-V1_0-20121117-D
	17 Nov 2012
	2, 6, 7, 8, 9, 10
	OMA-DM-LightweightM2M-2012-0088R04-CR_Transfer_Protocol
OMA-DM-LightweightM2M-2012-0098R02-CR_Bootstrap_Information_and_Modes
OMA-DM-LightweightM2M-2012-0099R01-CR_Default_ACL_Entry
OMA-DM-LightweightM2M-2012-0100R02-CR_Authorization_Procedure_and_Error_Code
OMA-DM-LightweightM2M-2012-0104R01-CR_Registration_Interface

	Draft Version
OMA-TS-LightweightM2M-V1_0-20121130-D
	30 Nov 2012
	
	OMA-DM-LightweightM2M-2012-0107R01-CR_Appendix_for_LWM2M_Objects.
OMA-DM-LightweightM2M-2012-0106R02-CR_Information_Interfaces.
OMA-DM-LightweightM2M-2012-0108R01-CR_LWM2M_Server_Account_Object.
OMA-DM-LightweightM2M-2012-0109R01-CR_Authorization_Update

	Draft Version
OMA-TS-LightweightM2M-V1_0-20121206-D
	06 Dec 2012
	6
	OMA-DM-LightweightM2M-2012-0110R01-CR_Interfaces_Intro_Update

	Draft Version
OMA-TS-LightweightM2M-V1_0-20121219-D
	19 Dec 2012
	6,7,8,9,
Annex
	OMA-DM-LightweightM2M-2012-0111R01-CR_Object_Instance_Introduction
OMA-DM-LightweightM2M-2012-0112-CR_Object_Template_Update
OMA-DM-LightweightM2M-2012-0113R02-CR_Access_Control
OMA-DM-LightweightM2M-2012-0114-CR_Update_Operation_Modification
OMA-DM-LightweightM2M-2012-0115-CR_Connection_Control

	Draft Version
OMA-TS-LightweightM2M-V1_0-20130123-D
	22 Jan 2013
	2, 7, 8, 9, Annex
	OMA-DM-LightweightM2M-2012-0101R03-CR_change_of_the_TLV_data_format
OMA-DM-LightweightM2M-2012-0117-CR_remove_example_objects_and_resources
OMA-DM-LightweightM2M-2013-0001R04-CR_Firmware_Object
OMA-DM-LightweightM2M-2013-0003R01-CR_LwM2M_Client_and_Server_Security_Considerations
OMA-DM-LightweightM2M-2013-0006-CR_Security_Mode_in_RessourceInfo_Table

	Draft Version
OMA-TS-LightweightM2M-V1_0-20130206-D
	6 Feb 2013
	
	OMA-DM-LightweightM2M-2013-0004R03-CR_SmartCard_Bootstrap
OMA-DM-LightweightM2M-2013-0005R01-CR_device_object OMA-DM-LightweightM2M-2013-0007-CR_Object_Instance_Modification

	Draft Version
OMA-TS-LightweightM2M-V1_0-20130226-D
	26 Feb 2013
	All
	OMA-DM-LightweightM2M-2013-0002R04-CR_Adding_Creatable_Object
OMA-DM-LightweightM2M-2013-0008R02-CR_Improvement_to_the_JSON_format_for_IETF_alignment
OMA-DM-LightweightM2M-2013-0013R01-CR_LWM2M_Version_CoAP_Option
OMA-DM-LightweightM2M-2013-0014R01-CR_Data_Format_Negotiation
OMA-DM-LightweightM2M-2013-0015R02-CR_Notification_Aggregation_and_Reporting
OMA-DM-LightweightM2M-2013-0016R03-CR_Connectivity
OMA-DM-LightweightM2M-2013-0019R01-CR_SmartCard_Bootstrap_Appendix
OMA-DM-LightweightM2M-2013-0020-CR_Response_Code

	Draft Version
OMA-TS-LightweightM2M-V1_0-20130301-D
	01 Mar 2013
	All
	OMA-DM-LightweightM2M-2013-0011R03-CR_Failure_indication_for_firmware_object
OMA-DM-LightweightM2M-2013-0022R03-CR_TLV_Tags
OMA-DM-LightweightM2M-2013-0023R01-CR_location_object

	Draft Version
OMA-TS-LightweightM2M-V1_0-20130314-D
	14 Mar 2013
	All
	OMA-DM-LightweightM2M-2012-0116R03-CR_Bootstrap_Interface_Chapter_Modification
OMA-DM-LightweightM2M-2013-0018R01-CR_Bootstrap_Interface_Transport_Binding
OMA-DM-LightweightM2M-2013-0024R04-CR_Time_Resource
OMA-DM-LightweightM2M-2013-0026R05-CR_Erro_Code
OMA-DM-LightweightM2M-2013-0027R01-CR_Delete_Object_Instance
OMA-DM-LightweightM2M-2013-0028R01-CR_Location_objet_speed_direction

	Draft Version
OMA-TS-LightweightM2M-V1_0-20130409-D
	09 Apr 2013
	All
	OMA-DM-LightweightM2M-2013-0047R02-CR_major_TS_cleanup
OMA-DM-LightweightM2M-2013-0029R01-CR_Server_Object_Instance_Deletion
OMA-DM-LightweightM2M-2013-0030R01-CR_Registration_Update
OMA-DM-LightweightM2M-2013-0032-CR_Read_Operation_Update
OMA-DM-LightweightM2M-2013-0044R01-CR_Response_Code_Update
OMA-DM-LightweightM2M-2013-0034R01-CR_Device_Object_Update
OMA-DM-LightweightM2M-2013-0035R01-CR_Bootstrap_Interface_Update
OMA-DM-LightweightM2M-2013-0037R01-CR_Access_Control_Update
OMA-DM-LightweightM2M-2013-0038R02-CR_Firmware_Object_Update
OMA-DM-LightweightM2M-2013-0039-CR_Moving_Response_Code_Chapter

	Draft Version
OMA-TS-LightweightM2M-V1_0-20130412-D
	12 Apr 2013
	All
	OMA-DM-LightweightM2M-2013-0054R02-CR_Bootstrap_Process_Update
OMA-DM-LightweightM2M-2013-0051-CR_certificate_definition
OMA-DM-LightweightM2M-2013-0052-CR_root_resource
OMA-DM-LightweightM2M-2013-0053R01-CR_connectivity_object_update
OMA-DM-LightweightM2M-2013-0050-CR_object_template_and_datatypes
OMA-DM-LightweightM2M-2013-0036R02-CR_Information_Reporting_Update
OMA-DM-LightweightM2M-2013-0049R01-CR_queue_mode

	Draft Version
OMA-TS-LightweightM2M-V1_0-20130522-D
	22 May 2013
	All
	OMA-DM-LightweightM2M-2013-0062R01-CR_TS_Editorial_streamlining
OMA-DM-LightweightM2M-2013-0041R02-CR_Update_Error_Code
OMA-DM-LightweightM2M-2013-0048R03-CR_Statistician_Object
OMA-DM-LightweightM2M-2013-0055R01-CR_Cancel_Observation
OMA-DM-LightweightM2M-2013-0056R01-CR_TLV_update
OMA-DM-LightweightM2M-2013-0057-CR_SMS_trigger
OMA-DM-LightweightM2M-2013-0058R06-CR_Security_key_formats
OMA-DM-LightweightM2M-2013-0059-CR_Adding_Create_Operation_Example
OMA-DM-LightweightM2M-2013-0061R01-CR_Adding_Access_Control_Example
OMA-DM-LightweightM2M-2013-0063R01-CR_Reserved_Resource_ID_Space
OMA-DM-LightweightM2M-2013-0064-CR_Update_Server_Deletion

Plus editorial changes done by the editor

	Draft Version
OMA-TS-LightweightM2M-V1_0-20130610-D
	10 June 2013
	All
	OMA-DM-LightweightM2M-2013-0070-CR_examples_update
OMA-DM-LightweightM2M-2013-0066R01-CR_16bit_instance_IDs
OMA-DM-LightweightM2M-2013-0067-CR_Observe_Operation_Range
OMA-DM-LightweightM2M-2013-0068-CR_Server_Initiated_Bootstrap_Procedure
OMA-DM-LightweightM2M-2013-0069R03-CR_observe_read_parameters
OMA-DM-LightweightM2M-2013-0071R03-CR_Endpoint_Client_Name_–_Type_Attribute
OMA-DM-LightweightM2M-2013-0072-CR_TS_X509_Validation_Rules
OMA-DM-LightweightM2M-2013-0073-CR_Security_Section_Update
OMA-DM-LightweightM2M-2013-0075-CR_Mandatory_Fields_and_Object_Template_Update
OMA-DM-LightweightM2M-2013-0076R01-CR_Queue_Mode_Clarification
OMA-DM-LightweightM2M-2013-0078R02-CR_BootstrapInformation___Objects
OMA-DM-LightweightM2M-2013-0079R01-CR_Appendix_F_upgrade
OMA-DM-LightweightM2M-2013-0081R02-CR_LWM2M_Security_Implications
OMA-DM-LightweightM2M-2013-0082-CR_Data_Format_for_Resource_Supporting_Multiple_Instances
OMA-DM-LightweightM2M-2013-0083R01-CR_no_sec_mode
OMA-DM-LightweightM2M-2013-0084-CR_firmware_URI
OMA-DM-LightweightM2M-2013-0085R01-CR_power_info_improvements
OMA-DM-LightweightM2M-2013-0087R01-CR_Data_Type_Usage_Cleaning

Plus editorial changes done by the editor

	Draft Version
OMA-TS-LightweightM2M-V1_0-20130717-D
	17 July 2013
	All
	It incorporates:
OMA-DM-LightweightM2M-2013-0103-CR_A103_TLV_bit_ordering
OMA-DM-LightweightM2M-2013-0098-CR_A132
OMA-DM-LightweightM2M-2013-0097-CR_A046_A099_A100_A101_A104_A118_A119_139_140
OMA-DM-LightweightM2M-2013-0096R01-CR_A047_SC_Secure_Channel
OMA-DM-LightweightM2M-2013-0095-CR_A180_Appendix_F
OMA-DM-LightweightM2M-2013-0094R01-CR_Addressing_Comment_A187
OMA-DM-LightweightM2M-2013-0092R03-CR_Appendix_D_Fixes
OMA-DM-LightweightM2M-2013-0089R01-CR_TLV_and_Device_Object_Examples_Fixes

Plus editorial changes done by Seongyoon on behalf of the editor

	Draft Version
OMA-TS-LightweightM2M-V1_0-20130802-D
	02 Aug 2013
	All
	OMA-DM-LightweightM2M-2013-0100R02-CR_121
OMA-DM-LightweightM2M-2013-0101R01-CR_Client_and_Server_Initiated_Bootstrap_Update
OMA-DM-LightweightM2M-2013-0102R01-CR_Resolving_Comments_on_Section_5.2
OMA-DM-LightweightM2M-2013-0108-CR_D.4_Clarification
OMA-DM-LightweightM2M-2013-0110-CR_Secure_Channel_Fix

Plus editorial changes done by the editor

	Draft Version
OMA-TS-LightweightM2M-V1_0-20130819-D
	19 Aug 2013
	All
	OMA-DM-LightweightM2M-2013-0104R03-CR_Registration_Binding
OMA-DM-LightweightM2M-2013-0106R02-CR_OMA_DM_LightweightM2M_2013_0102_CR_Resolving_Comments_on_Section_5.3_5.4
OMA-DM-LightweightM2M-2013-0111R03-CR_Resolving_Comments_on_Section_6
OMA-DM-LightweightM2M-2013-0112-CR_Server_Objects_Modifications
OMA-DM-LightweightM2M-2013-0113-CR_D.2_Clarification
OMA-DM-LightweightM2M-2013-0116-CR_TLV_Example_Editorial_Fix

Plus editorial changes done by the editor

	Draft Version
OMA-TS-LightweightM2M-V1_0-20130828-D
	28 Aug 2013
	All
	OMA-DM-LightweightM2M-2013-0099R03-CR_Resolving_Comments_on_Section_5.1
OMA-DM-LightweightM2M-2013-0109R05-CR_ACL_Clarification_Proposal_D3
OMA-DM-LightweightM2M-2013-0117R01-CR_security_comments_A114_A117_A120_A124

Plus editorial changes done by the editor

	Draft Version
OMA-TS-LightweightM2M-V1_0-20130904-D
	
	
	OMA-DM-LightweightM2M-2013-0114R01-CR_Comments_Resolving_for_D.3
OMA-DM-LightweightM2M-2013-0119R01-CR_Example_Client_Fix

Plus editorial changes done by the editor

[bookmark: _Toc365465949]Data Types
This appendix defines the data types that a Resource can be defined to be.
	Data Type
	Description
	Text Format
	TLV Format

	String
	A UTF-8 string, the minimum and/or maximum length of the String MAY be defined.
	Represented as a UTF-8 string.
	Represented as a UTF-8 string of Length bytes.

	Integer
	An 8, 16, 32 or 64-bit signed integer. The valid range of the value for a resource SHOULD be defined. This data type is also used for the purpose of enumeration.
	Represented as an ASCII signed integer.
	Represented as a binary signed integer in network byte order, where the first (most significant) bit is 0 for a positive integer and 1 for a negative integer. The value may be 1 (8-bit), 2 (16-bit), 4 (32-bit) or 8 (64-bit) bytes long as indicated by the Length field.

	Float
	A 32 or 64-bit floating point value. The valid range of the value for a resource SHOULD be defined.
	Represented as an ASCII signed decimal.
	Represented as an IEEE 754-2008 [REF] binary floating point value. The value may use the binary32 (4 byte Length) or binary64 (8 byte Length) format as indicated by the Length field.

	Boolean
	An integer with the value 0 for False and the value 1 for True.
	Represented as the ASCII value 0 or 1.
	Represented as an Integer with value 0 , or 1. The Length of a Boolean value MUST always be 1.

	Opaque
	A sequence of binary octets, the minimum and/or maximum length of the String MAY be defined.
	
	Represented as a sequence of binary data of Length bytes.

	Time
	Unix Time. A signed integer representing the number of seconds since Jan 1st, 1970 in the UTC time zone.
	Represented as an ASCII integer.
	Same representation as Integer.

REF = IEEE Computer Society (August 29, 2008). IEEE Standard for Floating-Point Arithmetic. IEEE. doi:10.1109/IEEESTD.2008.4610935. ISBN 978-0-7381-5753-5. IEEE Std 754-2008

[bookmark: _Toc365465950]LWM2M Object Template and Guidelines (Informative)
This Appendix provides the template to be used for the specification of LWM2M objects. Furthermore, guidelines for the creation of LWM2M objects are provided.
[bookmark: _Toc365465951]Object Template
Appendix D.x	 LWM2M Object: <LWM2M object name>
Description:

Object info:

	Object
	Object ID
	Object URN
	Multiple Instances?
	Mandatory?

	Object Name
	16-bit Unsigned Integer
	urn:oma:lwm2m:{oma,ext,x}:{Object ID}
	Yes/No
	Yes/No

R
· Object: specifies the Object name.
· Object ID: specifies the Object ID.
· Object URN: specifies the Object URN. The format of the Object URN is “urn:oma:lwm2m:{oma,ext,x}:{Object ID}” and {} part means that those values are variable and filled with real value. For example, Object URN of LWM2M Server Object is “urn:oma:lwm2m:oma:1”.
· Multiple Instances: indicates whether this Object supports multiple Object Instances. If this field is “Yes” then the number of Object Instance can be from 0 to many. If this field is “No” then the number of Object Instance can be from 0 to 1. If Mandatory of Object is “Yes” and Multiple Instances of the Object is “No” then, the number of Object Instance MUST be 1.
· Mandatory: if this field is “Yes”, then the LWM2M Client MUST support Object. If this field is “No”, then the LWM2M Client can support Object if Object is needed for deployment.

Resource info:

	Resource Name
	Resource ID
	Supported
Operations
	Multiple
Instances?
	Mandatory?
	Data Type
	Range or Enumeration
	Units
	Description

	Resource Name
	0
	R (Read),
W (Write),
E (Execute)
	Yes/No
	Yes/No
	String,
Integer,
Float,
Boolean,
Opaque,
Time
	If any
	If any
	Description

· Resource Name: specifies the Resource name.
· Resource ID: specifies the Resource ID which is unique within Object.
· Supported Operations: indicates which operations the Resource supports in “Device Management & Service Enablement” Interface. This field can have a combination of R (Read), W (Write), and E (Execute). This field also have empty value, which means that this field is not allowed to access via “Device Management & Service Enablement” Interface.
· Multiple Instances: indicates whether this Resource supports multiple Resource Instances. If this field is “Yes” then the number of Resource Instance can be from 0 to many. If this field is “No” then the number of Resource Instance can be from 0 to 1. If Mandatory of Resource is “Yes” and Multiple Instances of the Resource is “No” then, the number of Resource Instance MUST be 1. Resource which supports “Execute” logical operation MUST have “No” for Multiple Instances.
· Mandatory: if this field is “Yes”, then the LWM2M Client MUST support Resource. If this field is “No”, then the LWM2M Client can support the Resource if the Resource is needed for deployment.
· Data Type: Data Type indicates the type of Resource value. Data Types used in this enabler are described in Appendix B Data Types.
· Range or Enumeration: this field limits the value of Resource.
· Units: specifies the unit of the Resource value.
· Description: specifies the Resource description.

[bookmark: _Toc365465952]OMNA Guidelines
This appendix defines guidelines for OMNA regarding registries and protocol ID ranges to be maintained.
[bookmark: _Toc365465953]Object Registry
LWM2M objects must be registered with the OMNA Lightweight Object registry. There are three classes of Objects in which an Object can be registered:
· OMA Objects (oma label) – Objects defined by the Open Mobile Alliance.
· 3rd Party SDO Objects (ext label) – Objects defined by a 3rd party SDO.
· Vendor Specific Objects (x label) – Objects defined by a vendor or individual, such an object may be either private (no DDF or Specification made available) or public.
Each one of these classes is assigned a range of IDs by OMNA.
The URN format for an Object is automatically built from the class of Object and the Object ID as follows:
urn:oma:lwm2m:{oma,ext,x}:{Object ID}

[bookmark: _Toc365465954]Resource Registry
LWM2M Objects are specified as being composed of Resources, each identified by a Resource ID. Resources can either be specific to each Object with meaning only when used in that Object, or Reusable Resources can be registered, assigned an ID from the OMNA range and re-used in any Object. The following Resource ID ranges are defined:
· Object specific Resource ID range – Defined by the Object specification.
· Reusable Resource ID range – Registered by an Object Specification, with the Resource ID assigned by OMNA. Defined in any Object specification. Resources from this Resource ID range can be re-used in any Object.
· Reserved range – Range or Resource IDs reserved for future use.
A Reusable Resource ID registration entry MUST define the Resource Name, Resource ID (assigned by OMNA), Supported Operations, Data Type, Range or Enumeration, Units and Description of the Resource.

[bookmark: _Toc365465955]LWM2M Objects defined by OMA (Normative)
This Appendix provides LWM2M Objects defined by OMA. Other organizations and companies may define additional LWM2M according to the guidelines and template provided in Annex C.
The following LWM2M objects have been defined by OMA
· LWM2M Server Access Security
· LWM2M Server
· Access Control
· Device
· Connectivity
· Firmware
· Location
· Connectivity Statistics

[bookmark: _Toc365465956]LWM2M Object: LWM2M Server Access Security
Description: This LWM2M object provides the keying material of a LWM2M Client appropriate to access a specified LWM2M Server. One Object Instance SHOULD address a LWM2M Bootstrap Server
These LWM2M object resources MUST only be changed by a LWM2M Bootstrap Server or Bootstrap from Smartcardand MUST NOT be accessible by any other LWM2M Server.

Object Info:

	Object
	Object ID
	Object URN
	Multiple Instances?
	Mandatory?

	LWM2M Server Access Security
	0
	
	Yes
	Yes

Resource Info:

	Resource Name
	Resource ID
	Supported Operations
	Multiple
Instances?
	Mandatory?
	Type
	Range or Enumeration
	Units
	Descriptions

	LWM2M Server URI
	0
	
	No
	Yes
	String

	0 – 255 bytes
	-
	Uniquely identifies the LWM2M Server or LWM2M Bootstrap Server, and is in the form:
“coaps://host:port”, where host is an IP address or FQDN, and port is the UDP port of the Server.

	Bootstrap Server
	1
	
	No
	Yes
	Boolean
	
	-
	Determines if the current instance concerns a LWM2M Bootstrap Server (true) or a standard LWM2M Server (false)

	Security Mode
	2
	
	No
	Yes
	Integer
	0-3
	-
	Determines which security mode of DTLS is used
0: Pre-Shared Key mode
1: Raw Public Key mode
2: Certificate mode
3: NoSec mode

	Public Key or Identity
	3
	
	No
	Yes
	Opaque
	
	-
	Stores the LWM2M Client’s Certificate (Certificate mode), public key (RPK mode) or PSK Identity (PSK mode). The format is defined in Section D.1.1.

	Server Public Key or Identity
	4
	
	No
	Yes
	Opaque
	
	-
	Stores the LWM2M Server’s or LWM2M Bootstrap Server’s Certificate (Certificate mode), public key (RPK mode) or PSK Identity (PSK mode). The format is defined in Section Error! Reference source not found..

	Secret Key
	5
	
	No
	Yes
	Opaque
	
	-
	Stores the secret key or private key of the security mode. The format of the keying material is defined by the security mode in Section D.1.1. This resource MUST only be changed by a bootstrap server and MUST NOT be readable by any server.

	Short Server ID
	6
	
	No
	No
	Integer
	1-65535
	-
	This identifier uniquely identifies each LWM2M Server configured for the LWM2M Client.
This resource MUST be set when the Bootstrap Server resource has false value.
Default Short Server ID (i.e. 0) MUST NOT be used for identifying the LWM2M Server.

	Client Hold Off Time
	7
	
	No
	Yes
	Integer

	
	s
	Relevant information for a Bootstrap Server only.
The number of seconds to wait before initiating a Client Initiated Bootstrap once the LWM2M Client has determined it should initiate this bootstrap mode

[bookmark: _Toc365465957]Security Key Resource Format
This section defines the format of the Secret Key and Public Key and Identity resources of the LWM2M Server and LWM2M Bootstrap Objects. These resources are used to configure the security mode and keying material that a Client uses with a particular Server. The Objects are configured on the Client using one of the Bootstrap mechanisms described in Section 5.1. The use of this keying material for each security mode is defined in Section 7.1.

Pre-Shared Key (PSK) Mode
The PSK is a binary shared secret key between the Client and Server of the appropriate length for the Cipher Suite used [RFC4279]. This key is composed of a sequence of binary bytes in the Secret Key resource. The default PSK Cipher Suites defined in this specification use a 128-bit AES key. Thus this key would be represented in 16 bytes in the Secret Key Resource.
The corresponding PSK Identity for this PSK is stored in the Public Key or Identity resource. The PSK Identity is simply stored as a UTF-8 String as per [RFC4279]. Clients and Servers MUST support a PSK Identity of at least 128 bytes in length as required by [RFC4279].

Raw-Public Key (RPK) Mode
The raw-public key mode requires a public key and a private key of the appropriate type and length for the Cipher Suite used. These keys are carried as a sequence of binary bytes with the public key stored in the Public Key or Identity Resource, and the private key stored in the Secret Key Resource. The default RPK Cipher Suites defines in this specification use a 256-bit ECC key. Thus the Certificate Resource would contain a 32 byte public key and the Secret Key Resource a 32 byte private key.

Certificate Mode
The Certificate mode requires an X.509v3 Certificate along with a matching private key. The private key is stored in the Secret Key Resource as in RPK mode. The Certificate is simply represented as binary X.509v3 in the value of the Public Key or Identity Resource.

[bookmark: _Toc365465958]Unbootstrapping
If a Server Access Security Object Instance is to be deleted, some related resources and configurations need to be deleted or modified. Therefore when Delete operation is sent via Bootstrap Interface, the Client MUST proceed following procedure.
1. If there is an Object Instance that can be accessed only by a Server of the Server Object Instance (i.e., the Server is Access Control Owner and there is only one ACL Resource Instance for the Server in an Access Control Object Instance), the Object Instance and the corresponding the Access Control Object Instance MUST be deleted
2. If an Object Instance can be accessed by multiple Servers including the Server, then
· An ACL Resource Instance for the Server in Access Control Object Instance for the Object Instance MUST be deleted
· If the Server is Access Control Owner of the Access Control Object Instance, then the Access Control Owner MUST be changed to another Server according to below rules:
The Client MUST choose the Server who has highest sum of each number assigned to an access right (Write: 1, Delete: 1) for the Access Control Owner. If some Servers get the same with the highest, the Client MUST choose one of them for the Access Control Owner
3. Observation from the Server MUST be deleted
4. the Server Object Instance MUST be deleted
5. Client MUST send de-registration message to the Server
Note: To monitor the change of Access Control Owner, the Server MAY observe Access Control Owner Resource.

[bookmark: _Toc365465959]LWM2M Object: LWM2M Server
Description: This LWM2M objects provides the data related to a LWM2M Server. A Bootstrap Server has no such an object instance associated to it.

Object Info:

	Object
	Object ID
	Object URN
	Multiple Instances?
	Mandatory?

	LWM2M Server
	1
	
	Yes
	Yes

Resource Info:

	Resource Name
	Resource ID
	Supported Operations
	Multiple
Instances?
	Mandatory?
	Data Type
	Range or Enumeration
	Units
	Descriptions

	Short Server ID
	0
	R
	No
	Yes
	Integer
	1-65535
	-
	Used as link to associate server object instance.

	Lifetime
	1
	R, W
	No
	Yes
	Integer
	
	s
	Specify the lifetime of the registration in seconds.

	Default Minimum Period
	2
	R, W
	No
	No
	Integer
	
	s
	The default value the Client should use for the Minimum Period of an Observation in the absence of this parameter being included in an Observation.
If this Resource doesn’t exist, the default value is 1.

	Default Maximum Period
	3
	R, W
	No
	No
	Integer
	
	s
	The default value the Client should use for the Maximum Period of an Observation in the absence of this parameter being included in an Observation.

	Disable
	4
	E
	No
	No
	
	
	
	If this Resource is executed, this LWM2M Server Object is disabled for a certain period defined in the Disabled Timeout Resource. After receiving “execute” logical operation, Client MUST send response of the operation and perform de-registration process, and underlying network connection between the Client and Server MUST be disconnected to disable the LWM2M Server account.
After the above process, the LWM2M Client MUST NOT send any message to the Server and ignore all the messages from the LWM2M Server for the period.

	Disable
Timeout
	5
	R, W
	No
	No
	Integer
	
	s
	A period to disable the Server. After this period, the LWM2M Client MUST perform registration process to the Server. If this Resource is not set, a default timeout value is 86400 (1 day).

	Notification Storing When Disabled or Offline
	6
	R, W
	No
	Yes
	Boolean
	
	
	If true, the LWM2M Client stores “Notify” logical operations to the LWM2M Server while the LWM2M Server account is disabled or the Client is offline. After the LWM2M Server account is enabled or the Client is online, the LWM2M Client reports the stored “Notify” logical operations to the Server.
If false, the LWM2M Client discards all the “Notify” logical operationsor temporally disables the Observe function while the LWM2M Server is disabled or the Client is offline.
The default value is true.
The maximum number of storing Notification per the Server is up to the implementation.

	Binding
	7
	R, W
	No
	Yes
	String
	The possible values of Resource are listed in 5.2.1.1
	
	This Resource defines the transport binding configured for the Client.
If the Client supports the binding specified in this Resource, the Client MUST use that for Current Binding and Mode.

	Registration Update Trigger
	8
	E
	No
	Yes
	
	
	
	If this Resource is executed the LWM2M Client SHALL perform an “Update” logical operation with this LWM2M Server using the Current Transport Binding and Mode.

[bookmark: _Toc365465960]LWM2M Object: Access Control
Description: Access Control Object is used to check whether the LWM2M Server has access right for performing an operation. Each Access Control Object Instance contains ACL for a certain Object Instance in the LWM2M Client and MUST be uniquely associated with that Object Instance.
The Access Control Object Instance SHOULD be created by the LWM2M Client and the LWM2M Server MUST NOT create the Access Control Object Instance.
Only the LWM2M Server which is the Access Control Owner of the Access Control Object Instance MUST be able to manipulate the Access Control Object Instance via the Device Management and Service Enablement Interface..

Object Info:

	Object
	Object ID
	Object URN
	Multiple Instances?
	Mandatory?

	Access Control
	2
	
	Yes
	No

Resource Info:

	Resource Name
	Resource ID
	Supported Operations
	Multiple
Instances?
	Mandatory?
	Data Type
	Range or Enumeration
	Units
	Descriptions

	Object ID
	0
	R, W
	NO
	Yes
	Integer
	1-65535
	-
	The Object ID and The Object Instance ID are applied for

	Object Instance ID
	1
	R, W
	NO
	Yes
	Integer
	1-65535
	-
	See Table 14: LWM2M Identifiers.

	ACL
	2
	R, W
	YES
	No
	Integer
	168-bit
	-
	Resource Instance ID MUST be the same with the Short Server ID of a certain LWM2M Server which has an access right.
Resource Instance ID 0 is for default Short Server ID.
The Value of corresponding to the the Resource Instance ID contains the access rights.
Setting each bit means the LWM2M Server has the access right for that logical operation. The bit order is specified as below.is 1 byte access right value specified as below.
1st lsb: Read, Observe, Discover, Write Attribute
2nd lsb: Write
3rd lsb: Execute
4th lsb: Create
5th lsb: Delete
Other bits are reserved for future use

	Access Control Owner
	3
	R
	NO
	Yes
	Integer
	0-65535
	-
	Short Server ID of a certain LWM2M Server. Only this LWM2M Server can manage these Resources of the Object Instance.
Value MAX_INTEGER=0xFFFF is reserved for the Access Control Object Instances created during Bootstrap procedure.

Object Instance Configurations
If a new LWM2M Server Account is added when LWM2M Client has only one LWM2M Server Account, Client MUST ensure that Access Control Object Instances for every Object Instance except Server Access Security Object Instance exist. The LWM2M Client MUST create the missing Access Control Object Instances as follows:
· Access Control Owner MUST be the previously existing LWM2M Server
· Previously existing LWM2M Server MUST have full access right

[bookmark: _Toc361854649][bookmark: _Toc361855373][bookmark: _Toc365465962]LWM2M Object: Device
Description: This LWM2M Object provides a range of device related information which can be queried by the LWM2M Server, and a device reboot and factory reset function.

Object info:

	Object
	Object ID
	Object URN
	Multiple Instances?
	Mandatory?

	Device
	3
	
	No
	Yes

Resource Info:

	Resource Name
	Resource
ID
	Supported Operations
	Multiple
Instances?
	Mandatory?
	Data Type
	Range or Enumeration
	Units
	Descriptions

	Manufacturer
	0
	R
	No
	No
	String

	
	-
	Human readable manufacturer name

	Model Number
	1
	R
	No
	No
	String
	
	-
	A model identifier (manufacturer specified string)

	Serial Number
	2
	R
	No
	No
	String
	
	-
	Serial Number

	Firmware Version
	3
	R
	No
	No
	String
	
	-
	Current firmware version

	Reboot
	4
	E
	No
	Yes
	-
	
	-
	Reboot the LWM2M Device to restore the Device from unexpected firmware failure.

	Factory Reset
	5
	E
	No
	No
	-
	
	-
	Perform factory reset of the LWM2M Device to make the LWM2M Device have the same configuration as at the initial deployment.
When this Resource is executed, “De-register” logical operation MAY be sent to the LWM2M Server(s) before factory reset of the LWM2M Device

	Available Power Sources
	6
	R
	Yes
	No
	Integer
	0-7
	
	0 – DC power
1 – Internal Battery
2 – External Battery
4 – Power over Ethernet
5 – USB
6 – AC (Mains) power
7 – Solar

	Power Source Voltage
	7
	R
	Yes
	No
	Integer
	
	mV
	Present voltage for each Available Power Sources Resource Instance.
Each Resource Instance ID MUST map to the value of Available Power Sources Resource

	Power Source Current
	8
	R
	Yes
	No
	Integer
	
	mA
	Present current for each Available Power Source

	Battery Level
	9
	R
	No
	No
	Integer
	0-100
	%
	Contains the current battery level as a percentage (with a range from 0 to 100). This value is only valid when the value of Available Power Sources Resource is 1.

	Memory Free
	10
	R
	No
	No
	Integer
	
	KB
	Estimated current available amount of storage space which can store data and software in the LWM2M Device (expressed in kilobytes).

	Error Code
	11
	R
	Yes
	Yes
	Integer
	
	
	0=No error
1=Low battery power
2=External power supply off
3=GPS module failure
4=Low received signal strength
5=Out of memory
6=SMS failure
7=IP connectivity failure
8=Peripheral malfunction

When the single Device Object Instance is initiated, there is only one error code Resource Instance whose value is equal to 0 that means no error. When the first error happens, the LWM2M Client changes error code Resource instance to any non-zero value to indicate the error type. When any other error happens, a new error code Resource instance is created.
This error code Resource MAY be observed by the LWM2M server. How to deal with LWM2M Client’s error report depends on the policy of the LWM2M Server.

	Reset Error Code
	12
	E
	No
	No
	-
	-
	-
	Delete all error code Resource instances and create only one zero-value error code that implies no error.

	Current Time
	13
	R,W
	No
	No
	Time
	
	
	Current UNIX time of the LWM2M Client.
The LWM2M Client should be responsible to increase this time value as every second elapses.
The LWM2M Server is able to write this Resource to make the LWM2M Client synchronized with the LWM2M Server.

	UTC Offset
	14
	R, W
	No
	No
	String
	
	
	Indicates in which time zone the LWM2M Device is located. UTS+X [ISO 8601], where X is the Resource value in hours.

	Supported Binding and Modes
	15
	R
	No
	Yes
	String
	
	
	Indicates which bindings and modes are supported in the LWM2M Client. The possible values of Resource are combination of “U” or “UQ” and “S” or “SQ”.

[bookmark: _Toc365465963]LWM2M Object: Connectivity Monitoring
Description: This LWM2M objects enables monitoring of parameters related to network connectivity.
In this general Connectivity Object, the Resources are limited to the most general cases common to most network bearers. It is recommended to read the description, which refers to relevant standard development organizations (e.g. 3GPP, IEEE).
The goal of the connectivity object is to carry information reflecting the more up to date values of the current connection for monitoring purposes. Resources such as signal quality, signal level; cell id are retrieved during connected mode at least for cellular networks.

Object info:

	Object
	Object ID
	Object URN
	Multiple Instances?
	Mandatory?

	Connectivity
Monitoring
	4
	
	No
	No

Resource Info:

	Resource Name
	Resource ID
	Supported Operations
	Multiple
Instances?
	Mandatory?
	Data Type
	Range or Enumeration
	Units
	Descriptions

	Network Bearer
	0
	R
	No
	Yes
	Integer
	
	-
	Indicates the current underlying network bearer among the below network bearer list.
0~20 are Cellular Bearers
0: GSM cellular network
1: TD-SCDMA cellular network
2: WCDMA cellular network
3: CDMA2000 cellular network
4: WiMAX cellular network
5: LTE-TDD cellular network
6: LTE-FDD cellular network
7~20: Reserved for other type cellular network
21~40 are Wireless Bearers
21: WLAN network
22: Bluetooth network
23: IEEE 802.15.4 network
24~40: Reserved for other type local wireless network
41~50 are Wireline Bearers
41: Ethernet
42: DSL
43: PLC
44~50: reserved for others type wireline networks.

	Available Network Bearer
	1
	R
	Yes
	Yes
	Integer
	
	-
	Indicates list of current available network bearer. Each Resource Instance has the value among the network bearer list.

	Radio signal strength
	2
	R
	No
	Yes
	Integer
	
	dBm
	This node contains the average value of the received signal strength indication used in current network bearer in case Network Bearer Resource has Cellular Networks (RXLEV range 0…64) 0 is < 110dBm, 64 is >-48 dBm)
Refers to [3GPP.44018] for more details on Network Measurement Report encoding and [3GPP 45.008] or Wireless Network refers to the appropriate wireless standard.

	Link Quality
	3
	R
	No
	No
	Integer
	
	
	This contains received link quality (e.g., LQI for IEEE 802.15.4, (Range (0..255)),
RxQual Downlink (for GSM range is 0…7)
Refers to [3GPP.44018] for more details on Network Measurement Report encoding.

	IP Addresses
	4
	R
	Yes
	Yes
	String
	
	-
	The IP addresses assigned to the connectivity interface. (e.g., IPv4, IPv6, etc.)

	Parent IP Addresses
	5
	R
	Yes
	No
	String
	
	-
	The IP address of the next-hop IP router in case Network Bearer Resource has 1(Wireless). (e.g., IPv4, IPv6, etc.)
Note: these IP Addresses doesn’t indicate the Server IP address

	Link Utilization
	6
	R
	No
	No
	Integer
	0-100
	%
	The average utilization of the link to the next-hop IP router in % in case Network Bearer Resource has 1(Wireless).

	APN
	7
	R
	Yes
	No
	String
	
	-
	Access Point Name in case Network Bearer Resource is a Cellular Network.

	Cell ID
	8
	R
	No
	No
	Integer
	
	-
	Serving Cell ID in case Network Bearer Resource is a Cellular Network.
As specified in TS [3GPP 23.003] and in [3GPP. 24.008]. Range (0…65535) in GSM/EDGE
UTRAN Cell ID is 28 bits length
Cell Identity in WCDMA/TD-SCDMA. Range: (0..268435455).
LTE Cell ID. Length is 28 bits
Parameter definitions in [3GPP 25.331].

	SMNC
	9
	R
	No
	No
	Integer
	
	-
	Serving Mobile Network Code. In case Network Bearer Resource has 0(cellular network). Range (0…999)
As specified in TS [3GPP 23.003].

	SMCC
	10
	R
	No
	No
	Integer
	
	-
	Serving Mobile Country Code. . In case Network Bearer Resource has 0(cellular network). Range (0…999)
As specified in TS [3GPP 23.003].

[bookmark: _Toc361854653][bookmark: _Toc361855377][bookmark: _Toc361854654][bookmark: _Toc361855378][bookmark: _Toc361854655][bookmark: _Toc361855379][bookmark: _Toc365465964]LWM2M Object: Firmware
Description: This LWM2M Object enables FW management of firmware which is to be updated. This Object includes installing firmware package, updating firmware, and performing actions after updating firmware

Object Info:

	Object
	Object ID
	Object URN
	Multiple Instances?
	Mandatory?

	Firmware
	5
	
	No
	No

Resource Info:

	Resource Name
	Resource ID
	Supported Operations
	Multiple
Instances?
	Mandatory?
	Data Type
	Range or Enumeration
	Units
	Descriptions

	Package
	1
	W
	No
	Yes
	Opaque
	-
	-
	Firmware package

	Package URI
	1
	W
	No
	
	String
	0-255 bytes
	-
	URI from where the device can download the firmware package by an alternative mechanism. As soon the device has received the Package URI it performs the download at the next practical opportunity.

	Update
	2
	E
	No
	Yes
	-
	-
	-
	Updates firmware by using the firmware package stored in Package, or, by using the firmware downloaded from the Package URI.
This Resource is only executable when the value of the State Resource is Downloaded.

	State
	3
	R
	No
	Yes
	Integer
	1-3
	
	Indicates current state with respect to this firmware update. This value is set by the LWM2M Client.
1: Idle (before downloading or after updating)
2: Downloading (The data sequence is on the way)
3: Downloaded
If writing the firmware package to Package Resource is done, or, if the device has downloaded the firmware package from the Package URI the state changes to Downloaded.
If writing an empty string to Package Resource is done, the state changes to Idle.
If performing the Update Resource failed, the state remains at Downloaded.
If performing the Update Resource was successful, the state changes from Downloaded to Idle.

	UpdateSupportedObjects
	4
	R, W
	No
	No
	Boolean
	
	
	If this value is true, the LWM2M Client MUST inform the registered LWM2M Servers of Objects and Object Instances parameter by sending an Update or Registration message after the firmware update operation at the next practical opportunity if supported Objects in the Client have changed, in order for the Servers to promptly manage newly installed Objects.
If false, Objects and Object Instances parameter MUST be reported at the next periodic Update message.
The default value is false.

	Update
Result
	5
	R
	No
	Yes
	Integer
	0-6
	-
	0: Default value. Once the updating process is initiated, this Resource SHOULD be reset to default value.
1: Firmware updated successfully,
2: Not enough storage for the new firmware package.
3. Out of memory during downloading process.
4: Connection lost during downloading process.
5: CRC check failure for new downloaded package.
6: Unsupported package type.
7: Invalid URI

This resource MAY be reported by sending Observe operation.

[bookmark: _Toc365465965]Firmware Update Consideration
If some Objects are not supported after firmware update, the Client MUST delete all the Object Instances of the Objects that are not supported.

[bookmark: _Toc361854658][bookmark: _Toc361855382][bookmark: _Toc361854659][bookmark: _Toc361855383][bookmark: _Toc361854660][bookmark: _Toc361855384][bookmark: _Toc347941175][bookmark: _Toc365465966]LWM2M Object: Location
Description: This LWM2M objects provide a range of device related information which can be queried by the LWM2M server, and a device reboot and factory reset function.

Object info:

	Object
	Object ID
	Object URN
	Multiple Instances?
	Mandatory?

	Location
	6
	
	No
	No

Resource Info:

	Resource Name
	Resource ID
	Supported Operations
	Multiple
Instances?
	Mandatory?
	Data Type
	Range or Enumeration
	Units
	Descriptions

	Latitude
	0
	R
	No
	Yes
	String
	
	Deg
	The decimal notation of latitude, e.g. -43.5723 [World Geodetic System 1984]

	Longitude
	1
	R
	No
	Yes
	String
	
	Deg
	The decimal notation of longitude, e.g. 153.21760 [World Geodetic System 1984]

	Altitude
	2
	R
	No
	No
	String
	
	m
	The decimal notation of altitude in meters above sea level.

	Uncertainty
	3
	R
	No
	No
	String
	
	m
	The accuracy of the position in meters.

	Velocity
	4
	R
	No
	No
	Opaque
	
	Refers to 3GPP GAD specs
	The velocity of the device as defined in 3GPP 23.032 GAD specification. This set of values may not be available if the device is static.

	Timestamp
	5
	R
	No
	Yes
	Time
	
	
	The timestamp of when the location measurement was performed.

[bookmark: _Toc351033860]

[bookmark: _Toc365465967]LWM2M Object: Connectivity Statistics
Description: This LWM2M objects enables client to collect statistical information and enables the server to retrieve these information, set the collection duration and reset the statistical parameters.

Object info:

	Object
	Object ID
	Object URN
	Multiple Instances?
	Mandatory?

	Connectivity Statistics
	7
	
	No
	No

Resource Info:

	Resource Name
	Resource ID
	Supported Operations
	Multiple
Instances?
	Mandatory?
	Data Type
	Range or Enumeration
	Units
	Descriptions

	SMS Tx Counter
	0
	R
	No
	No
	Integer
	
	
	Indicate the total number of SMS successfully transmitted during the collection period.

	SMS Rx Counter
	1
	R
	No
	No
	Integer
	
	
	Indicate the total number of SMS successfully received during the collection period.

	Tx Data
	2
	R
	No
	No
	Integer
	
	Kilo-Bytes
	Indicate the total amount of data transmitted during the collection period.

	Rx Data
	3
	R
	No
	No
	Integer
	
	Kilo-Bytes
	Indicate the total amount of data received during the collection period.

	Max Message Size
	4
	R
	No
	No
	Integer
	
	Byte
	The maximum message size that is used during the collection period.

	Average Message Size
	5
	R
	No
	No
	Integer
	
	Byte
	The average message size that is used during the collection period.

	StartOrReset
	6
	E
	No
	Yes
	
	
	
	Start to collect information or reset all other resources to zeros in this object. For example, the first time this resource is executed, the client starts to collect information. The second time this resource is executed, the values of resource 0~5 are reset to 0.

[bookmark: _Ref231282105][bookmark: _Ref231283174][bookmark: _Toc365465968]Example LWM2M Client (Informative)
This appendix defines an example LWM2M Client for a simple imaginary device with a Cellular interface including instantiated Objects and their values, which is used throughout this specification in examples. The example has the Endpoint Name “example-client”. The example device has two Server Objects (it is configured to register with two different LWM2M Servers), two accompanying ACL Objects for those servers, a Device Object and a Connectivity Monitoring Object for a Cellular interface. The first Server controls the access control rights for both servers.

[bookmark: _Toc365466034]Table 24: Object instances of the example
	Object
	Object ID
	Object Instance ID

	LWM2M Server Access Security Object[0]
	0
	0

	LWM2M Server Access Security Object[1]
	0
	1

	LWM2M Server Access Security Object[2]
	0
	2

	LWM2M Server Object [1]
	1
	1

	LWM2M Server Object [2]
	1
	2

	Access Control Object [0]
	2
	0

	Access Control Object [1]
	2
	1

	Access Control Object [2]
	2
	2

	Device Object
	3
	-

	Connectivity Monitoring Object
	4
	-

[bookmark: _Toc365466035]Table 25: LWM2M Server Access Security Object [0]
	Resource Name
	Resource ID
	Resource Instance ID
	Value
	Notes

	LWM2M Server URI
	0
	
	coap://bootstrap.example.com
	Example Bootstrap Server

	Bootstrap Server
	1
	
	true
	

	Security Mode
	2
	
	0
	PSK mode

	Public Key or Identity
	3
	
	[identity string]
	PSK Identity

	Secret Key
	4
	
	[secret key data]
	AES key

	Short Server ID
	5
	
	0
	unused

	Client Hold Off Time
	6
	
	3600
	

[bookmark: _Toc365466036]Table 26: LWM2M Server Access Security Object [1]
	Resource Name
	Resource ID
	Resource Instance ID
	Value
	Notes

	LWM2M Server URI
	0
	
	coap://server1.example.com
	Example LWM2M Server 1unused

	Bootstrap Server
	1
	
	false
	

	Security Mode
	2
	
	0
	PSK mode

	Public Key or Identity
	3
	
	[identity string]
	PSK Identity

	Secret Key
	4
	
	[secret key data]
	AES key

	Short Server ID
	5
	
	101
	

	Client Hold Off Time
	6
	
	0
	unused

[bookmark: _Toc365466037]Table 27: LWM2M Server Access Security Object [2]
	Resource Name
	Resource ID
	Resource Instance ID
	Value
	Notes

	LWM2M Server URI
	0
	
	coap://server2.example.com
	Example LWM2M Server 2unused

	Bootstrap Server
	1
	
	false
	

	Security Mode
	2
	
	0
	PSK mode

	Public Key or Identity
	3
	
	[identity string]
	PSK Identity

	Secret Key
	4
	
	[secret key data]
	AES key

	Short Server ID
	5
	
	102
	

	Client Hold Off Time
	6
	
	0
	unused

[bookmark: _Toc365466038]Table 28: LWM2M Server Object [1]
	Resource Name
	Resource ID
	Resource Instance ID
	Value
	Notes

	Short Server IDLWM2M Server URI
	0
	
	101coap://server1.example.com
	Example LWM2M Server 1

	Lifetime
	1
	
	86400
	

	Short Server ID
	2
	
	101
	

	Default Minimum Period
	23
	
	300
	

	Default Maximum Period
	34
	
	6000
	

	DisableTimeout
	56
	
	86400
	

	Notification Storing When Disabled or Offline
	67
	
	True
	

	Binding Preference
	78
	
	U
	UDP binding preference

[bookmark: _Toc365466039]Table 29: LWM2M Server Object [2]
	Resource Name
	Resource ID
	Resource Instance ID
	Value
	Notes

	Short Server IDLWM2M Server URI
	0
	
	coap://server2.example.com102
	Example LWM2M Server 2

	Lifetime
	1
	
	86400
	

	Short Server ID
	2
	
	102
	

	Default Minimum Period
	32
	
	60
	

	Default Maximum Period
	43
	
	6000
	

	DisableTimeout
	65
	
	86400
	

	Notification Storing When Disabled or Offline
	76
	
	False
	

	Binding Preference
	78
	
	UQ
	UDP with Queuing binding preference

[bookmark: _Toc365466040]Table 30: Access Control Object [0] (for the Device Object)
	Resource Name
	Resource ID
	Resource Instance ID
	Value
	Notes

	Object ID
	0
	
	3
	Device Object

	Object Instance ID
	1
	
	-
	

	ACL
	2
	101
	R. W, E
	Server 1 has all access rights. Note that the Resource Instance ID indicates the Server ID.

	ACL
	2
	102
	R
	Server 2 has read-only access rights. Note that the Resource Instance ID indicates the Server ID.

	Access Control Owner
	3
	
	101
	Server 1 controls this Object’s access rights.

[bookmark: _Toc365466041]Table 31: Access Control Object [1] (for the Connectivity Monitoring Object)
	Resource Name
	Resource ID
	Resource Instance ID
	Value
	Notes

	Object ID
	0
	
	4
	Connectivity Monitoring Object

	Object Instance ID
	1
	
	-
	

	ACL
	2
	101
	R
	Server 1 has read-only access rights. Note that the Resource Instance ID indicates the Server ID.

	ACL
	2
	0
	R
	The other Servers except Server 1 have read-only access rights. Note that this Resource Instance ID indicates the default Server ID.

	Access Control Owner
	3
	
	[bookmark: _GoBack]101
	Server 1 controls this Object’s access rights.

[bookmark: _Toc365466042]Table 32: Access Control Object [2] (for the Firmware Object)
	Resource Name
	Resource ID
	Resource Instance ID
	Value
	Notes

	Object ID
	0
	
	5
	Firmware Object

	Object Instance ID
	1
	
	-
	

	ACL
	2
	101
	C
	Server 1 can create Firmware Object Instance

	Access Control Owner
	3
	
	-
	This Object Instance must be managed by Bootstrap Interface

[bookmark: _Toc365466043]Table 33: Device Object
	Resource Name
	Resource ID
	Resource Instance ID
	Value
	Notes

	Manufacturer
	0
	
	Open Mobile Alliance
	

	Model Number
	1
	
	Lightweight M2M Client
	

	Serial Number
	2
	
	345000123
	

	Firmware version
	3
	
	1.0
	

	Available Power Sources
	6
	0
	1
	Internal Battery

	Available Power Sources
	6
	1
	5
	USB

	Power Source Voltage
	7
	0
	3800
	3.8V battery

	Power Source Voltage
	7
	1
	5000
	USB VBUS

	Power Source Current
	8
	0
	125
	125mA

	Power Source Current
	8
	1
	900
	USB 900mA

	Battery level
	9
	
	100
	

	Memory free
	10
	
	15
	15 kB of free memory

	Error code
	11
	0
	0
	No errors

	Current Time
	13
	
	1367491215
	May 2nd, 2013 at 11:42 AM GMT

	UTC Offset
	14
	
	+02:00
	UTC+2 (CET)

	Supported Binding and Modes
	15
	
	U
	UDP binding

[bookmark: _Toc365466044]Table 34: Connectivity Monitoring Object
	Resource Name
	Resource ID
	Resource Instance ID
	Value
	Notes

	Network Bearer
	0
	
	0
	GSM Bearer

	Available Network Bearer
	1
	
	0
	GSM Bearer

	Radio signal strength
	2
	
	92
	RSSI in dBm

	
	
	
	
	

	Link Quality
	3
	
	2
	RxQual Downlink

	IP Addresses
	4
	0
	192.168.0.100
	

	Parent IP Addresses
	5
	0
	192.168.1.1
	

	Link Utilization
	6
	
	5
	%

	APN
	7
	0
	internet
	

[bookmark: _Ref303177048][bookmark: _Toc314837644][bookmark: _Toc336982053][bookmark: _Toc365465969]Storage of LWM2M Bootstrap Information on the Smartcard (Normative)

This appendix aims at specifying the storage mechanism of Bootstrap Information on UICC Smartcard platform type [ETSI TS 102.221] activated in 3G mode.
Note: There is no rational to equip LWM2M device with 2G-only Smart Card.

[bookmark: _Toc314837645][bookmark: _Toc336982054][bookmark: _Toc365465970]File structure
The information format is based on [PKCS#15] specification. The Bootstrap data is located under the PKCS#15 directory allowing the card issuer to decide the identifiers and the file locations. The smartcard operations that are relevant include:
· Application selection
· Cardholder verification
· File access (select file, read, write)
File access (select file, read, write)The [PKCS#15] specification defines a set of files. Within the PKCS#15 application, the starting point to access these files is the Object Directory File (ODF). The EF(ODF) contains pointers to other directory files. These directory files contain information on different types of objects (authentication objects, data objects, etc). For the purpose of Bootstrap data, EF (ODF) SHALL contain the EF Record describing the DODF-bootstrap. The EF(ODF) is described in Appendix F.3.1 and [PKCS#15].
EF(ODF) contains pointers to one or more Data Object Directory Files (DODF) in priority order (i.e. the first DODF has the highest priority). Each DODF is regarded as the directory of data objects known to the PKCS#15 application. For the purposes of LWM2M bootstrapping, EF(DODF-bootstrap) contains pointer to the Bootstrap data, namely LWM2M_Bootstrap File. The EF(DODF-bootstrap) is described in Appendix F.3.2 and [PKCS#15].
[bookmark: _Object_Directory_File,]The provisioning files are stored as PKCS#15 opaque data objects.
The support of smartcard Bootstrap data will be indicated by the presence in the EF DIR (see [ETSI TS 102.221]) of an application template as defined here after.
The RECOMMENDED format of EF(DIR) is a linear fixed record in order to be in line with [ETSI TS 102.221].
EF (DIR) SHALL contain the application template used for a PKCS#15 application as defined in [PKCS#15]. Application template SHALL consist of Application identifier (tag 0x4F) and Path (tag 0x51) information.
The EF(ODF) and EF(DODF-bootstrap) SHALL be used by the Device to determine the path of the LWM2M_Bootstrap file.
UICC Smartcard platforms can support two modes of activation: 2G and 3G. In the context of LWM2M, for Device simplification, UICC SHALL be activated in 3G Mode
UICC smartcard platform activated in a 3G mode has the physical and logical characteristics according to [ETSI TS 102.221]. In that case, smartcard operations for accessing the Bootstrap data are specified in Appendix F2.

[bookmark: _Access_Method_1][bookmark: _Toc314837652][bookmark: _Toc336982061][bookmark: _Toc365465971]Bootstrap Information on UICC (Activated in 3G Mode)

[bookmark: _WAP_provisioning_data_2][bookmark: _Toc314837653][bookmark: _Ref315802566][bookmark: _Toc336982062][bookmark: _Toc365465972]Access to the file structure
To select the PKCS#15 application, the Device:
· SHALL evaluate the PKCS#15 application template – i.e. PKCS#15 AID - present in the EF (DIR),
· SHALL open a logical channel using UICC Command MANAGE CHANNEL as specified in [ETSI TS 102.221],
· SHALL select the PKCS#15 ADF using the PKCS#15 AID as parameter of the UICC Command SELECT, using direct application selection as defined in [ETSI TS 102.221].
LWM2M_Bootstrap file will be located under the PKCS#15 ADF.
[bookmark: _Toc314837654][bookmark: _Toc336982063][bookmark: _Toc365465973]Files Overview

[bookmark: _Toc316564344][bookmark: _Toc316564353][bookmark: _Toc336982079][bookmark: _Toc365468512]Figure 25: File structure for Bootstrap Message on 3G UICC
[bookmark: _Access_Method_2][bookmark: _Toc314837655][bookmark: _Toc336982064][bookmark: _Toc365465974]Access Method
UICC Commands Read Binary and Update Binary, as defined in [ETSI TS 102.221], are used to access bootstrap data.

[bookmark: _Toc314837656][bookmark: _Toc336982065][bookmark: _Toc365465975][bookmark: _Ref14062026][bookmark: _Toc14064519][bookmark: _Ref18840974][bookmark: _Toc20227479][bookmark: _Toc314837657][bookmark: _Toc336982066]Access Conditions
The Device is informed of the access conditions of provisioning files by evaluating the “private” and “modifiable” flags in the corresponding DODF-bootstrap files structure.
In the case where one of the above mentioned flag is set, cardholder verification is required. The Device must evaluate the PIN references that must be verified as defined in [ETSI TS 102.221] (ie evaluate FCP)

[bookmark: _Toc365465976]Requirements on the 3G UICC
To retrieve the Bootstrap Information from the 3G UICC, the Device SHALL perform the following steps:
· Select PKCS#15 file structure as specified in F.2.1.
· Read ODF to locate the DODF-bootstrap,
· Read DODF-bootstrap to locate the LWM2M_Bootstrap file,
· Read the LWM2M_Bootstrap file

[bookmark: _Toc470597947][bookmark: _Toc14064508][bookmark: _Ref18816318][bookmark: _Ref18826404][bookmark: _Ref18838600][bookmark: _Toc20227468][bookmark: _Toc314837658][bookmark: _Toc336982067][bookmark: _Toc365465977]Files Description
All files defined are binary files as defined in [ETSI TS 102.221]. These files are read and updated using 3G UICC Commands related to the application they belong to.
[bookmark: _EF_ODF][bookmark: _Ref10622547][bookmark: _Ref10622835][bookmark: _Ref10623302][bookmark: _Ref10624530][bookmark: _Ref14003395][bookmark: _Ref14057598][bookmark: _Toc14064509][bookmark: _Toc20227469][bookmark: _Toc314837659][bookmark: _Toc336982068][bookmark: _Toc365465978]Object Directory File, EF ODF
The mandatory Object Directory File (ODF) ([PKCS#15], Section 5.5.1) contains pointers to other EFs, each one containing a directory of PKCS#15 objects of a particular class (e.g. DODF-bootstrap). The File ID is specified in [PKCS#15]. The card issuer decides the file size. The EF (ODF) can be read but it SHALL NOT be modifiable by the user.
The EF (ODF) is described below:

	Identifier: default 0x5031, see [PKCS#15]
	Structure: Binary
	Mandatory

	File size: decided by the card issuer
	Update activity: low

	Access Conditions:
READ	 ALW
	UPDATE	 ADM
	INVALIDATE	 ADM
	REHABILITATE	ADM

	Description

	See [PKCS#15]

[bookmark: _EF_CDF][bookmark: _EF_DODF-prov][bookmark: _Ref10622536][bookmark: _Ref10622827][bookmark: _Ref10623388][bookmark: _Ref14003639][bookmark: _Ref14057660][bookmark: _Toc14064489][bookmark: _Toc20227449][bookmark: _Ref10622526][bookmark: _Ref10622813][bookmark: _Ref10623369][bookmark: _Ref14003650][bookmark: _Ref14057671][bookmark: _Toc14064511][bookmark: _Toc20227471][bookmark: _Toc314837660]
[bookmark: _Toc336982069][bookmark: _Toc365465979]Bootstrap Data Object Directory File, EF DODF-bootstrap
This Data Object Directory File provisioning contains directories of provisioning data objects ([PKCS#15], Section 6.7) known to the PKCS#15 application.
The File ID is described in the EF (ODF). The file size depends on the number of provisioning objects stored in the smartcard. Thus, the card issuer decides the file size.

	Identifier: 0x6430, See ODF
	Structure: Binary
	Mandatory

	File size: decided by the card issuer
	Update activity: low

	Access Conditions: READ	 ALW
 or Universal / application / Local PIN (UICC, See Appendix C.2)
	UPDATE	 ADM
	INVALIDATE	 ADM
	REHABILITATE ADM

	Description

	See hereafter and [PKCS#15]

The EF (DODF-bootstrap) SHALL contain information on provisioning objects:
· Readable label describing the provisioning document (CommonObjectAttributes.label). The ME could display this label to the user.
· Flags indicating whether the provisioning document is private (i.e., is protected with a PIN) and/or modifiable (CommonObjectAttributes.flags). The card issuer decides whether or not a file is private (it does not need to be if it does not contain any sensitive information)
· Object identifier indicating a LWM2M boostrap object and the type of the provisioning object (CommonDataObjectAttributes.applicationOID)
· Pointer to the contents of the provisioning document (Path.path)

[bookmark: _EF_Bootstrap][bookmark: _Toc470597948][bookmark: _Ref10622506][bookmark: _Ref10622772][bookmark: _Ref10623422][bookmark: _Ref14056801][bookmark: _Ref14057709][bookmark: _Toc14064512][bookmark: _Toc20227472][bookmark: _Toc314837661][bookmark: _Toc336982070][bookmark: _Toc365465980]EF LWM2M_Bootstrap
Only the card issuer can modify EF LWM2M_Bootstrap
.
	Identifier: See DODF
	Structure: Binary
	Optional

	File size: decided by the card issuer
	Update activity: low

	Access Conditions:
READ ALW
or Universal / application / Local PIN (UICC, See Appendix C.2)
	UPDATE	 ADM
	INVALIDATE	 ADM
	REHABILITATE	 ADM

	Description

	Contains Bootstrap data (encapsulated LWM2M Objects)

This file size is limited to 32KB; the effective file size, in Bytes, is accessible from the File header.
 In this file, the Bootstrap data relies on LWM2M TLV Data format specification.
 The LWM2M specification already describes the TLV format for coding multiples instances and resources of a given object (§6.3.3)., this section will only detailled how storing a collection of LWM2M objects in this file; each object being coded as a simple TLV with LWM2M Object ID as the tag, a LWM2M-TLV coding the object instances as the TLV payload, and the TLV length being the size of the payload (LWM2M-TLV of the object instances).
 Additionally, this Bootstrap data will have a 2 Byte header indicating the number of objects contained in that file and another 2 Bytes for indicating the size of the payload (size of the collection of LWM2M Objects).

Using a BNF-like description:

<bootstrap_data> ::= <number of objects> <size> <collection_of_lwm2m_objects>
<number of Objects> ::= HWORD
<size> ::= HWORD
<collection_of_lwm2m_objects> ::= <single_lwm2m_object>*
<single_lwm2m_object> ::= <lwm2m_object_ID> <length_of_object> <lwm2m_object_instances>
<lwm2m_object_ID> ::= HWORD
<length_of_object> ::= HWORD
<lwm2m_object_instances> ::= TLV data format as described in §6.3.3
HWORD ::= %x00-FFFF

In reading and processing the data of this file, the LWM2M Client is then able to be configured with the Bootstrap Information and thus to access the LWM2M Server(s)

[bookmark: _Toc365465981]Secure channel between Smartcard and LWM2M Device Storage for secure Bootstrap Data provisioning (Normative)
During LWM2M Bootstrap procedure, sensitive data have to be provisioned in LWM2M Device.
When Bootstrap information comes from Smartcard, a secure channel SHOULD be established. When required this secure channel SHALL follow the following procedure based on [GLOBALPLATFORM][GP SCP03] which is illustrated below. The Bootstrap information will be retrieved from Smartcard as described in Appendix F of this document but in including the channel securisation.

Pre-requisite : the Smartcard and the LWM2M device have to share the same static Keys KEY_ENC, KEY_MAC, KEY_DEK as specified in [GLOBALPLATFORM] [GP SCP03]
These keys are provisioned in the devices in using out-of-band methods.
The steps for the secure transfer are the following and are illustrated below (figure 25):
· The PKSC#15 application used for transferring the Bootstrap information is selected
· Secure channel (mutual authentication) is established
· PKCS#15 flow as described in Appendix F takes place for selecting and transferring the Bootstrap file from Smartcard to the device: the sensitive Bootstrap data are transferred crypted.

[bookmark: _Toc365468513]Figure 26: Bootstrap Infromation transfer from Smartcard to LWM2M Device using Secure channel according to [GLOBALPLATFORM] [GP SCP03] [GP AMD_A]
Note 1: The INITIALIZE_UPDATE specifies the logical channel to use (CLA: 80H / 83H)
Note 2: The security level (P1) of the EXTERNAL_AUTH command is C-DECRYPTION, R-ENCRYPTION, C-MAC and R-MAC (P1=0x33)

[bookmark: _Toc84123007][bookmark: _Toc365465982][bookmark: _Toc51147390][bookmark: _Toc51149244]Static Conformance Requirements	(Normative)
The notation used in this appendix is specified in [IOPPROC].
[bookmark: _Toc84123008][bookmark: _Toc365465983]SCR for LWM2M Client
	Item
	Function
	Reference
	Status
	Requirement

	XYZ-C-001
	Something mandatory
	Section x.y
	M
	(XYZ-C-001 OR XYZ-C-003) AND
 XYZ-C-002

	XYZ-C-002
	Something optional
	Section x.y
	O
	

	XYZ-C-003
	Dependencies on ZYX
	Section x.y
	M
	ZYX:MCF

	XYZ-C-004
	Dependencies on ZYX
	Section x.y
	O
	ZYX:OCF

[bookmark: _Toc84123009][bookmark: _Toc365465984]SCR for LWM2M Server
	Item
	Function
	Reference
	Status
	Requirement

	XYZ-S-001
	Something mandatory
	Section x.y
	M
	XYZ-S-001 OR XYZ-S-002 OR XYZ-S-003

	XYZ-S-002
	Something optional
	Section x.y
	O
	

	XYZ-S-003
	Dependencies on ZYX
	Section x.y
	M
	ZYX:MSF

	XYZ-S-004
	Dependencies on ZYX
	Section x.y
	O
	ZYX:OSF

[bookmark: FootText1][bookmark: FootText2][bookmark: TemplateName] 2012 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.	[OMA-Template-Spec-20060101-I]
 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.	[OMA-Template-Spec-20060101-I]
image2.png

image3.png

image4.emf
LWM2M

Bootstrap

Server

LWM2M

Client

Smart

Card

Flash

Request Bootstrap

Write, Delete

oleObject1.bin
LWM2M Bootstrap
Serve�

LWM2M Clien�

Smart Car�

Flas�

Request Bootstra�

Write, Delet�

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.emf
ACL InstancesID = 2/..Object Instance IDObject IDAccess Control OwnerSupported operations R / W / .. /x/1/x/2/x/0/x/0Object Instances2/0Object XServer Object Instances /1Server Object /1/0/1/1/1/2/1/3ID = /XID =/2Access Control Object ID =/2/yAccess Control Object Instance2/1012/222/31klAssociates ACL Instance & Short Server ID 101Refers one Server ResourceID 2 : Short Server ID = 101

ACL Instances
ID = 2/..
Object Instance ID
Object ID
Access Control Owner
Supported operations R / W / ..
/x/1
/x/2
/x/0
/x/0
Object Instances
2/0
Object X
Server Object Instances
/1
Server Object
/1/0
/1/1
/1/2
/1/3
ID = /X
ID =/2
Access Control Object
ID =/2/y
Access Control Object Instance
2/101
2/22
2/31

k
l
Associates ACL Instance
& Short Server ID 101
Refers one Server
ResourceID 2 : Short Server ID = 101

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.emf
LWM2M ServerPUT / 5a3f

2.04 ChangedBody: Success,

GET / 2/0

2.05 Content

Re-registration

POST/ rd?ep=node341411&b=UQ</1>, </2>, </3>,

2.04 Changed /5a3f

Registration withQueue Mode indicationLWM2M Server waits for LWM2M Client to go on-line. During waiting time LWM2M Server creates a queuing Write requestLWM2M Server fetches 1st queued request and sends it to LWM2M Client Device turns into sleeping modeDevice turns into sleeping modeDevice wakes up and informs LWM2M ServerLWM2M Server has an empty request queue

LWM2M Client

2.04 Changed

LWM2M Server fetches Next queued request and sends it to LWM2M Client

Body: Enabled

PUT / 2/0

Body: Disabled

oleObject3.bin

LWM2M

Server

PUT / 5a3f

2.04 Changed

Body: Success,

GET / 2/0

2.05 Content

Re-registration

POST/ rd?ep=node341411&b=UQ

</1>, </2>, </3>,

2.04 Changed /5a3f

Registration with

Queue Mode

indication

LWM2M Server waits for LWM2M Client to

go on-line. During waiting

time LWM2M Server

creates a queuing

Write request

LWM2M Server fetches

1st queued request

and sends it to LWM2M

Client

Device turns into sleeping mode

Device turns into sleeping mode

Device wakes up and informs LWM2M Server

LWM2M Server has an

empty request queue

LWM2M

Client

2.04 Changed

LWM2M Server fetches

Next queued request

and sends it to LWM2M

Client

Body: Enabled

PUT / 2/0

Body: Disabled

image24.emf
LWM2M ClientLWM2M ServerPUT / 5a3f

2.04 ChangedGET /3/1 Observe2.05 Content Observe: 0Body: 22.5

Re-registration

POST/ rd?ep=node34141&b=UQ</1>, </2>, </3>,

2.04 Changed /5a3f

Registration withQueue Mode indicationLWM2M Server waits for LWM2M Client to go on-line. During waiting time LWM2M Server creates aqueuing Write requestLWM2M Server fetches queued request reportingand sends to LWM2M Client Device turns into sleeping modeDevice turns into sleeping modeDevice wakes up and informs LWM2M ServerLWM2M Server has an empty request queue

PUT / 5a3f

2.04 Changed

Re-registrationDevice wakes up and informs LWM2M Server

2.05 Content Observe: 1Body: 22.9

LWM2M Server receives notification.Device turns into sleeping modeAn Observe request triggers device to send notification

oleObject4.bin

LWM2M

Client

LWM2M

Server

PUT / 5a3f

2.04 Changed

GET /3/1 Observe

2.05 Content Observe: 0

Body: 22.5

Re-registration

POST/ rd?ep=node34141&b=UQ

</1>, </2>, </3>,

2.04 Changed /5a3f

Registration with

Queue Mode

indication

LWM2M Server waits for LWM2M

Client to go on-line. During waiting

time LWM2M Server creates a

queuing Write request

LWM2M Server fetches

queued request reporting

and sends to LWM2M

Client

Device turns into sleeping mode

Device turns into sleeping mode

Device wakes up and informs LWM2M Server

LWM2M Server has an

empty request queue

PUT / 5a3f

2.04 Changed

Re-registration

Device wakes up and informs LWM2M Server

2.05 Content Observe: 1

Body: 22.9

LWM2M Server receives

notification.

Device turns into sleeping mode

An Observe request triggers device to send notification

image25.emf
LWM2M ServerPUT / 5a3f

2.04 ChangedBody: Success,

GET / 2/0

2.05 Content

Re-registration(UDP transport)

POST/ rd?ep=node34141&b=UQS&sms=%2B12345678</1>, </2>, </3>,

2.04 Changed /5a3f

Registration withQueue Mode Indication (UDP transport)LWM2M Server requests a registration update beforre end of the lifetime (SMS transport)LWM2M Server fetches 1st queued request and sends it to LWM2M Client (UDP transport)Device is idle and reachable by SMSDevice sends a Registration Update to the LWM2M ServerLWM2M Server has an empty request queue

LWM2M Client

2.04 Changed

LWM2M Server fetches Next queued request and sends it to LWM2M Client (UDP transport)

Body: Enabled

PUT / 2/0

Body: Disabled 2.04 Changed

POST / 0/10

Device is idle and reachable by SMS

oleObject5.bin

LWM2M

Server

PUT / 5a3f

2.04 Changed

Body: Success,

GET / 2/0

2.05 Content

Re-registration

 (UDP transport)

POST/ rd?ep=node34141&b=UQS&sms=%2B12345678

</1>, </2>, </3>,

2.04 Changed /5a3f

Registration with

Queue Mode

Indication (UDP transport)

LWM2M Server requests a registration update beforre end of the lifetime (SMS transport)

LWM2M Server fetches

1st queued request

and sends it to LWM2M

Client (UDP transport)

Device is idle and reachable by SMS

Device sends a Registration Update to the LWM2M Server

LWM2M Server has an

empty request queue

LWM2M

Client

2.04 Changed

LWM2M Server fetches

Next queued request

and sends it to LWM2M

Client (UDP transport)

Body: Enabled

PUT / 2/0

Body: Disabled

2.04 Changed

POST / 0/10

Device is idle and reachable by SMS

image26.wmf

MF

‘3F00’

DF

-

Telecom

‘7F10’

EFDIR

‘2F00’

ADF

USIM

ADF

PKCS#15

EF ODF

EF DODF

-

bootstrap

EF

LWM2M

_Bootstrap

oleObject6.bin

MF

‘3F00’

DF-

Telecom

‘7F10’

EFDIR

‘2F00’

ADF

USIM

ADF

PKCS#15

EF ODF

EF DODF-

bootstrap

EF

 LWM2M_Bootstrap

image27.emf
KEY_ENCKEY_MACKEY_DEKSecurity DomainSmartcardBootstrap InformationLWM2M DeviceKEY_ENCKEY_MACKEY_DEKINITIALIZE_UPDATE Initialize Update RESPEXTERNAL_AUTH SW 90 00Security level = 0x33 R_Encrypt/ R_MACSelect AID / Bootstrap Transfer AppliMutual AuthentData Transfer

KEY_ENC
KEY_MAC
KEY_DEK
Security Domain
Smartcard
Bootstrap Information
LWM2M Device
KEY_ENC
KEY_MAC
KEY_DEK
INITIALIZE_UPDATE
Initialize Update RESP
EXTERNAL_AUTH
SW 90 00
Security level = 0x33 R_Encrypt/ R_MAC
PKCS#15 Flow (see appendix F)
Bootstrap Information
Select AID / Bootstrap Transfer Appli
Mutual Authent
Data Transfer

image1.jpeg

